1
|
Karnes JP, Lind NM, Oliver AG, Day CS, Day VW, Blakemore JD. Tunability in Heterobimetallic Complexes Featuring an Acyclic "Tiara" Polyether Motif. Inorg Chem 2025; 64:571-593. [PMID: 39715321 DOI: 10.1021/acs.inorgchem.4c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Both cyclic "crown" and acyclic "tiara" polyethers have been recognized as useful for the binding of metal cations and enabling the assembly of multimetallic complexes. However, the properties of heterobimetallic complexes built upon acyclic polyethers have received less attention than they deserve. Here, the synthesis and characterization of a family of eight redox-active heterobimetallic complexes that pair a nickel center with secondary redox-inactive cations (K+, Na+, Li+, Sr2+, Ca2+, Zn2+, La3+, and Lu3+) bound in acyclic polyether "tiara" moieties are reported. Structural studies with X-ray diffraction analysis were carried out on the monometallic nickel precursor complex to the heterobimetallics and the adducts with K+, Li+, Sr2+, Zn2+, and Lu3+; the results confirm the binding of secondary cations in the tiara site and demonstrate that the tiara moiety is more conformationally flexible than the analogous 18-crown-6-like moiety of a closely related macrocyclic "crown" ligand. Spectroscopic and electrochemical studies show, however, that the stability and cation-driven tunability of the tiara-based heterobimetallic species are quite similar to those previously measured for crown-based species. Consequently, the tiara motif appears to be at least as equally useful for constructing tunable multimetallic species as the more commonly encountered crown motif; a comprehensive set of titration data collected in an acetonitrile solution support this conclusion as well. Because the use of acyclic tiaras avoids the need for tedious and/or time-intensive syntheses of macrocyclic structures, these findings suggest that tiara motifs could be broadly advantageous in the design of ligands to support multimetallic chemistry.
Collapse
Affiliation(s)
- Joseph P Karnes
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Natalie M Lind
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
3
|
Kessler BJO, Mansoor IF, Wozniak DI, Emge TJ, Lipke MC. Controlling Intramolecular and Intermolecular Electronic Coupling of Radical Ligands in a Series of Cobaltoviologen Complexes. J Am Chem Soc 2023; 145:15924-15935. [PMID: 37460450 DOI: 10.1021/jacs.3c03725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Controlling electronic coupling between multiple redox sites is of interest for tuning the electronic properties of molecules and materials. While classic mixed-valence (MV) systems are highly tunable, e.g., via the organic bridges connecting the redox sites, metal-bridged MV systems are difficult to control because the electronics of the metal cannot usually be altered independently of redox-active moieties embedded in its ligands. Herein, this limitation was overcome by varying the donor strengths of ancillary ligands in a series of cobalt complexes without directly perturbing the electronics of viologen-like redox sites bridged by the cobalt ions. The cobaltoviologens [1X-Co]n+ feature four 4-X-pyridyl donor groups (X = CO2Me, Cl, H, Me, OMe, NMe2) that provide gradual electronic tuning of the bridging CoII centers, while a related complex [2-Co]n+ with NHC donors supports exclusively CoIII states even upon reduction of the viologen units. Electrochemistry and IVCT band analysis indicate that the MV states of these complexes have electronic structures ranging from fully localized ([2-Co]4+; Robin-Day Class I) to fully delocalized ([1CO2Me-Co]3+; Class III) descriptions, demonstrating unprecedented control over electronic coupling without changing the identity of the redox sites or bridging metal. Additionally, single-crystal XRD characterization of the homovalent complexes [1H-Co]2+ and [1H-Zn]2+ revealed radical-pairing interactions between the viologen ligands of adjacent complexes, representing a type of through-space electronic coupling commonly observed for organic viologen radicals but never before seen in metalloviologens. The extended solid-state packing of these complexes produces 3D networks of radical π-stacking interactions that impart unexpected mechanical flexibility to these crystals.
Collapse
Affiliation(s)
- Brice J O Kessler
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Derek I Wozniak
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Sailer R, VandeVen W, Teindl K, Chiang L. Ni II and Cu II complexes of a salen ligand bearing ferrocenes in its secondary coordination sphere. RSC Adv 2023; 13:7293-7299. [PMID: 36891492 PMCID: PMC9986886 DOI: 10.1039/d2ra07671c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Herein, we report the synthesis, spectroscopic characterization and electrochemical investigation of the NiII and CuII complexes of a novel Sal ligand bearing two ferrocene moieties attached at its diimine linker, M(Sal)Fc. The electronic spectra of M(Sal)Fc are near identical to its phenyl-substituted counterpart, M(Sal)Ph, indicating the ferrocene moieties exist in the secondary coordination sphere of M(Sal)Fc. The cyclic voltammograms of M(Sal)Fc exhibit an additional two-electron wave in comparison to M(Sal)Ph, which is assigned to the sequential oxidation of the two ferrocene moieties. The chemical oxidation of M(Sal)Fc, monitored by low temperature UV-vis spectroscopy, supports the formation of a mixed valent FeIIFeIII species followed by a bis(ferrocenium) species upon sequential addition of one and two equivalents of chemical oxidant. The addition of a third equivalent of oxidant to Ni(Sal)Fc yielded intense near-IR transitions that are indicative of the formation of a fully delocalized Sal-ligand radical (Sal˙), while the same addition to Cu(Sal)Fc yielded a species that is currently under further spectroscopic investigation. These results suggest the oxidation of the ferrocene moieties of M(Sal)Fc does not affect the electronic structure of the M(Sal) core, and these are thus in the secondary coordination sphere of the overall complex.
Collapse
Affiliation(s)
- Rachel Sailer
- Department of Chemistry, University of the Fraser Valley Abbotsford V2S 7M8 British Columbia Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University Burnaby V5A 1S6 British Columbia Canada
| | - Kaeden Teindl
- Department of Chemistry, University of the Fraser Valley Abbotsford V2S 7M8 British Columbia Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley Abbotsford V2S 7M8 British Columbia Canada
| |
Collapse
|
5
|
Sharma A, Mejia K, Ueno H, Zhou W, Chiang L. Copper complexes of strongly electron rich and deficient salen ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Martelino D, Mahato S, VandeVen W, Hein NM, Clarke RM, MacNeil GA, Thomas F, Storr T. Chromium Nitride Umpolung Tuned by the Locus of Oxidation. J Am Chem Soc 2022; 144:11594-11607. [PMID: 35749669 DOI: 10.1021/jacs.2c01840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of a series of CrV nitride salen complexes (CrVNSalR) with different para-phenolate substituents (R = CF3, tBu, NMe2) was investigated to determine how the locus of oxidation (either metal or ligand) dictates reactivity at the nitride. Para-phenolate substituents were chosen to provide maximum variation in the electron-donating ability of the tetradentate ligand at a site remote from the metal coordination sphere. We show that one-electron oxidation affords CrVI nitrides ([CrVINSalR]+; R = CF3, tBu) and a localized CrV nitride phenoxyl radical for the more electron-donating NMe2 substituent ([CrVNSalNMe2]•+). The facile nitride homocoupling observed for the MnVI analogues was significantly attenuated for the CrVI complexes due to a smaller increase in nitride character in the M≡N π* orbitals for Cr relative to Mn. Upon oxidation, both the calculated nitride natural population analysis (NPA) charge and energy of molecular orbitals associated with the {Cr≡N} unit change to a lesser extent for the CrV ligand radical derivative ([CrVNSalNMe2]•+) in comparison to the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu). As a result, [CrVNSalNMe2]•+ reacts with B(C6F5)3, thus exhibiting similar nucleophilic reactivity to the neutral CrV nitride derivatives. In contrast, the CrVI derivatives ([CrVINSalR]+; R = CF3, tBu) act as electrophiles, displaying facile reactivity with PPh3 and no reaction with B(C6F5)3. Thus, while oxidation to the ligand radical does not change the reactivity profile, metal-based oxidation to CrVI results in umpolung, a switch from nucleophilic to electrophilic reactivity at the terminal nitride.
Collapse
Affiliation(s)
- Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ryan M Clarke
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
7
|
Reversible Redox Processes in Polymer of Unmetalated Salen-Type Ligand: Combined Electrochemical in Situ Studies and Direct Comparison with Corresponding Nickel Metallopolymer. Int J Mol Sci 2022; 23:ijms23031795. [PMID: 35163715 PMCID: PMC8836782 DOI: 10.3390/ijms23031795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Most non-metalized Salen-type ligands form passivation thin films on electrode surfaces upon electrochemical oxidation. In contrast, the H2(3-MeOSalen) forms electroactive polymer films similarly to the corresponding nickel complex. There are no details of electrochemistry, doping mechanism and charge transfer pathways in the polymers of pristine Salen-type ligands. We studied a previously uncharacterized electrochemically active polymer of a Salen-type ligand H2(3-MeOSalen) by a combination of cyclic voltammetry, in situ ultraviolet-visible (UV-VIS) spectroelectrochemistry, in situ electrochemical quartz crystal microbalance and Fourier Transform infrared spectroscopy (FTIR) spectroscopy. By directly comparing it with the polymer of a Salen-type nickel complex poly-Ni(3-MeOSalen) we elucidate the effect of the central metal atom on the structure and charge transport properties of the electrochemically doped polymer films. We have shown that the mechanism of charge transfer in the polymeric ligand poly-H2(3-MeOSalen) are markedly different from the corresponding polymeric nickel complex. Due to deviation from planarity of N2O2 sphere for the ligand H2(3-MeOSalen), the main pathway of electron transfer in the polymer film poly-H2(3-MeOSalen) is between π-stacked structures (the π-electronic systems of phenyl rings are packed face-to-face) and C-C bonded phenyl rings. The main way of electron transfer in the polymer film poly-Ni(3-MeOSalen) is along the polymer chain, while redox processes are ligand-based.
Collapse
|
8
|
Maleeva AV, Ershova IV, Trofimova OY, Arsenyeva KV, Yakushev IA, Piskunov AV. Near-IR absorbing donor–acceptor charge-transfer gallium complex, an example from non-transition metal chemistry. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Herasymchuk K, Allain M, MacNeil GA, Carré V, Aubriet F, Leznoff DB, Sallé M, Goeb S, Storr T. Exciton Coupling in Redox-Active Salen based Self-Assembled Metallacycles. Chemistry 2021; 27:16161-16172. [PMID: 34595790 DOI: 10.1002/chem.202102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/09/2022]
Abstract
The incorporation of a redox-active nickel salen complex into supramolecular structures was explored via coordination-driven self-assembly with homobimetallic ruthenium complexes (bridged by oxalato or 5,8-dihydroxy-1,4-naphthoquinato ligands). The self-assembly resulted in the formation of a discrete rectangle using the oxalato complex and either a rectangle or a catenane employing the larger naphthoquinonato complex. The formation of the interlocked self-assembly was determined to be solvent and concentration dependent. The electronic structure and stability of the oxidized metallacycles was probed using electrochemical experiments, UV-Vis-NIR absorption, EPR spectroscopy and DFT calculations, confirming ligand radical formation. Exciton coupling of the intense near-infrared (NIR) ligand radical intervalence charge transfer (IVCT) bands provided further confirmation of the geometric and electronic structures in solution.
Collapse
Affiliation(s)
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, 2 bd Lavoisier, 49000, Angers, France) E-mails: E-mails
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078, Metz Cedex 03, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078, Metz Cedex 03, France
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, 2 bd Lavoisier, 49000, Angers, France) E-mails: E-mails
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, 2 bd Lavoisier, 49000, Angers, France) E-mails: E-mails
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, V5A 1S6, Canada
| |
Collapse
|
10
|
Hein NM, MacNeil GA, Storr T. Elaboration on the Electronics of Salen Manganese Nitrides: Investigations into Alkoxy-Substituted Ligand Scaffolds. Inorg Chem 2021; 60:16895-16905. [PMID: 34719930 DOI: 10.1021/acs.inorgchem.1c02668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligand electronics of salen manganese nitride complexes directly influence the locus of oxidation and, thus, the reactivity of the resulting oxidized species. This work investigates the influence of tert-butoxy, isopropoxy, and methoxy substituents on the electronics of salen manganese nitride species and includes the first documentation of the para Hammett value for the tert-butoxy substituent (σpara = -0.13 ± 0.03). Each alkoxy-substituted complex undergoes metal-based oxidation to form manganese(VI), and the kinetics of bimolecular homocoupling to form N2 were assessed by cyclic voltammetry. Bis-oxidation of the manganese complexes was investigated at low temperature using cyclic voltammery and UV-vis-near-IR spectroscopy, and in combination with theoretical calculations, plausible electronic structures of the dications are provided.
Collapse
Affiliation(s)
- Nicholas M Hein
- Department of Chemistry, Simon Fraser University (SFU), 8888 University Drive, Burnaby, British Columbia V5A 1S4, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University (SFU), 8888 University Drive, Burnaby, British Columbia V5A 1S4, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University (SFU), 8888 University Drive, Burnaby, British Columbia V5A 1S4, Canada
| |
Collapse
|
11
|
Switchover from NiIIN2O2 to NiIIN2O2S2 coordination triggered by the redox behaviour of a non-innocent 2-aminophenolate ligand. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01961-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Itoh S, Shinke T, Itoh M, Wada T, Morimoto Y, Yanagisawa S, Sugimoto H, Kubo M. Revisiting Alkane Hydroxylation with m-CPBA (mChloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes. Chemistry 2021; 27:14730-14737. [PMID: 34402568 DOI: 10.1002/chem.202102532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Mechanistic studies are performed on the alkane hydroxylation with m -CPBA ( m -chloroperbenzoic acid) catalyzed by nickel(II) complexes, Ni II (L). In the oxidation of cycloalkanes, Ni II (TPA) acts as an efficient catalyst with a high yield and a high alcohol selectivity. In the oxidation of adamantane, the tertiary carbon is predominantly oxidized. The reaction rate shows first-order dependence on [substrate] and [Ni II (L)] but is independent on [ m CPBA]; v obs = k 2 [substrate][ Ni II (L)]. The reaction exhibited a relatively large kinetic deuterium isotope effect ( KIE ) of 6.7, demonstrating that the hydrogen atom abstraction is involved in the rate-limiting step of the catalytic cycle. Furthermore, Ni II (L) supported by related tetradentate ligands exhibit apparently different catalytic activity, suggesting contribution of the Ni II (L) in the catalytic cycle. Based on the kinetic analysis and the significant effects of O 2 and CCl 4 on the product distribution pattern, possible contributions of (L)Ni II -O• and the acyloxyl radical as the reactive oxidants are discussed.
Collapse
Affiliation(s)
- Shinobu Itoh
- Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| | - Tomoya Shinke
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Mayu Itoh
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Takuma Wada
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Yuma Morimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | | | - Hideki Sugimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Minoru Kubo
- Graduate School of Science, Life Science, JAPAN
| |
Collapse
|
13
|
Lukyanov DA, Vereshchagin AA, Sizov VV, Kalnin AY, Novoselova JV, Alekseeva EV, Levin OV. Non-sterical stabilization of one-electron-oxidized NiSalen complex by thiophene core. NEW J CHEM 2021. [DOI: 10.1039/d1nj02443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined theoretical/experimental study of the new thiophene-based NiSalen complex with unconjugated bridging fragment. This complex demonstrates unusual stability of the oxidized form, which is not typical for this class of compounds.
Collapse
Affiliation(s)
- Daniil A. Lukyanov
- Institute of Chemistry
- Saint Petersburg University
- Peterhof
- Saint Petersburg
- Russia
| | | | - Vladimir V. Sizov
- Institute of Chemistry
- Saint Petersburg University
- Peterhof
- Saint Petersburg
- Russia
| | - Arseniy Y. Kalnin
- Institute of Chemistry
- Saint Petersburg University
- Peterhof
- Saint Petersburg
- Russia
| | - Julia V. Novoselova
- Institute of Chemistry
- Saint Petersburg University
- Peterhof
- Saint Petersburg
- Russia
| | - Elena V. Alekseeva
- Institute of Chemistry
- Saint Petersburg University
- Peterhof
- Saint Petersburg
- Russia
| | - Oleg V. Levin
- Institute of Chemistry
- Saint Petersburg University
- Peterhof
- Saint Petersburg
- Russia
| |
Collapse
|
14
|
Arnold A, Sherbow TJ, Bohanon AM, Sayler RI, Britt RD, Smith AM, Fettinger JC, Berben LA. Delocalization tunable by ligand substitution in [L 2Al] n− complexes highlights a mechanism for strong electronic coupling. Chem Sci 2021; 12:675-682. [PMID: 34163799 PMCID: PMC8179017 DOI: 10.1039/d0sc02812f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Organo-aluminum mixed-valent complexes combine properties of both organic and transition element mixed-valent compounds. This supports delocalized electronic structures that are structurally and electronically tunable.
Collapse
Affiliation(s)
- Amela Arnold
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - Tobias J. Sherbow
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - Amanda M. Bohanon
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - Richard I. Sayler
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - R. David Britt
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - Allison M. Smith
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - James C. Fettinger
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| | - Louise A. Berben
- Department of Chemistry, University of California, 1 Shields Ave., Davis, CA, 95616, USA
| |
Collapse
|
15
|
Saha A, Rajput A, Gupta P, Mukherjee R. Probing the electronic structure of [Ru(L 1) 2] Z ( z = 0, 1+ and 2+) (H 2L 1: a tridentate 2-aminophenol derivative) complexes in three ligand redox levels. Dalton Trans 2020; 49:15355-15375. [PMID: 33135029 DOI: 10.1039/d0dt03074k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic reaction between [RuII(DMSO)4Cl2], a redox-active 2-aminophenol-based ligand (H2L1: 2-[2-(benzylthio)phenylamino]-4,6-di-tert-butylphenol) and Et3N in MeOH under refluxing conditions afforded a purple complex [Ru(L1)2] (S = 0). Structural analysis reveals that the tridentate ligand coordinates in a mer conformation providing a distorted octahedral RuN2O2S2 coordination. Cyclic voltammetry on 1 in CH2Cl2 reveals the accessability of the monocation, dication and monoanion forms. Reddish purple monocation [Ru(L1)2](PF6)·CH2Cl2 ([1OX1](PF6)·CH2Cl2; S = 1/2) and green dication [Ru(L1)2](BF4)2·H2O ([1OX2](BF4)2·H2O; S = 0) have been isolated through the chemical oxidation of 1 in CH2Cl2 by [FeIII(η5-C5H5)2](PF6) and AgBF4, respectively. A structural analysis of the single crystals of the monocation and the dication with the compositions [1OX1](PF6)·CH2Cl2·H2O (2) and [1OX2](BF4)2·1.7H2O (3), respectively, has been done. Metrical (metal-ligand and ligand backbone) parameters, values of metrical oxidation states of coordinated ligands, 1H NMR spectra of 1 and [1OX2](BF4)2·H2O, EPR spectra of [1OX1](PF6)·CH2Cl2, X-ray photoelectron and UV-VIS-NIR spectra of 1-3, spin population analysis from broken-symmetry (BS) density functional theory (DFT) calculations and quasi-restricted orbital (QRO) analysis have allowed us to assign the electronic structure of the complexes. The complexes exhibit highly covalent metal-ligand interactions. The electronic states of 1, [1OX1]1+ and [1OX2]2+ are best described as [RuII{(LISQ)˙-}2] ↔ [RuIII{(LAP)2-}{(LISQ)˙-}] (S = 0), [RuIII{(LISQ)˙-}2]1+ (S = 1/2) and [RuII{(LIBQ)0}2]2+ ↔ [RuIII{(LISQ)˙-}{(LIBQ)0}]2+ (S = 0), respectively. Notably, all redox processes are ligand-centred. Absorption spectral properties have been rationalized based on time-dependent (TD)-DFT calculations. For 1, the appearance of an IVCT band at 1100 nm supports its Class II-III (borderline) ligand-based mixed-valence character.
Collapse
Affiliation(s)
- Anannya Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Amit Rajput
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India. and Department of Chemistry, School of Basic and Applied Sciences, G. D. Goenka University, Sohna Road, Gurugram 122 103, Haryana, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | | |
Collapse
|
16
|
A kinetic study and mechanisms of reduction of N, N'-phenylene bis(salicyalideneiminato)cobalt(III) by L-ascorbic acid in DMSO-water medium. Heliyon 2020; 6:e04621. [PMID: 32939409 PMCID: PMC7479326 DOI: 10.1016/j.heliyon.2020.e04621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/17/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
The kinetics of reduction of N, N1-phenylenebis-(salicylideneiminato)cobalt (III), referred to as [Co(Salophen)]+ by L-ascorbic acid (H2A) was studied in mixed aqueous medium (DMSO:H2O; 1:4 v/v) under pseudo-first-order conditions at 33 ± 1 °C, μ = 0.1 mol dm−3 (NaCl) and λmax = 470 nm. L-ascorbic acid was oxidized to dehydroascorbic acid with kinetics that was first order in both the [H2A] and [Co(Salophen)+] and second-order overall. The reaction involves two parallel reaction pathways; an acid-dependent and the inverse acid-dependent pathways. The inverse acid pathway shows that there is a pre-equilibrium step before the rate determining-step in which a proton is lost. The kinetics followed negative Brønsted–Debye salt effect. Evidence was obtained for the presence of free radicals but none to support the formation of an intermediate complex of significant stability during the reaction. Overall, the data obtained suggest an outer-sphere mechanism for the reaction. A plausible mechanism is proposed.
Collapse
|
17
|
Kanso H, Clarke RM, Kochem A, Arora H, Philouze C, Jarjayes O, Storr T, Thomas F. Effect of Distortions on the Geometric and Electronic Structures of One-Electron Oxidized Vanadium(IV), Copper(II), and Cobalt(II)/(III) Salen Complexes. Inorg Chem 2020; 59:5133-5148. [DOI: 10.1021/acs.inorgchem.0c00381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hussein Kanso
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Ryan M. Clarke
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Amélie Kochem
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | - Himanshu Arora
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| | | | | | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000 Grenoble, France
| |
Collapse
|
18
|
Dmitrieva EA, Chepurnaya IA, Karushev MP, Timonov AM. The Nature of Charge Carriers in Polymeric Complexes of Nickel with Schiff Bases Containing Electron-Withdrawing Substituents. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s1023193519110041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Oshita H, Suzuki T, Kawashima K, Abe H, Tani F, Mori S, Yajima T, Shimazaki Y. The effect of π-π stacking interaction of the indole ring with the coordinated phenoxyl radical in a nickel(ii)-salen type complex. Comparison with the corresponding Cu(ii) complex. Dalton Trans 2019; 48:12060-12069. [PMID: 31250847 DOI: 10.1039/c9dt01887e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to gain new insights into the effect of the π-π stacking interaction of the indole ring with the phenoxyl radical moiety as seen in the active form of galactose oxidase, we have prepared Ni(ii) complexes of a methoxy substituted salen-type ligand containing a pendent indole ring on the dinitrogen chelate backbone and characterized their one-electron oxidized forms. The X-ray crystal structure analysis and the other physicochemical experiments of the Ni(ii) complex revealed no significant intramolecular interaction of the indole ring with the coordination plane. On the other hand, the X-ray crystal structures of the oxidized Ni(ii) complex exhibited the π-π stacking interaction of the indole ring mainly with one of the two phenolate moieties. While the phenoxyl radical electron was delocalized on the two phenolate moieties in the Ni(ii)-salen coordination plane, the phenolate moiety in close contact with the indole moiety was considered to be the initial oxidation locus, indicating that the indole ring interacted with the phenoxyl radical by π-π stacking. The UV-vis-NIR spectrum of the oxidized Ni(ii) complex with the pendent indole ring was different from that of the complex without the side chain indole ring, but the differences were rather small in comparison with the oxidized Cu(ii)-salen complexes with the π-π stacking interaction of the indole ring. Such differences are due to the electronic structure difference, the localized radical electron on one of the phenolate moieties in the oxidized Cu(ii) complexes being more favorable for the π-π stacking interaction.
Collapse
Affiliation(s)
- Hiromi Oshita
- Department of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe 658-8501, Japan
| | - Takashi Suzuki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| | - Kyohei Kawashima
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| | - Hitoshi Abe
- Institute of Materials Structure Science (IMSS), High Energy Accelerator Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Seiji Mori
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| | - Tatsuo Yajima
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| |
Collapse
|
20
|
Dobrov A, Darvasiová D, Zalibera M, Bučinský L, Puškárová I, Rapta P, Shova S, Dumitrescu D, Martins LMDRS, Pombeiro AJL, Arion VB. Nickel(II) Complexes with Redox Noninnocent Octaazamacrocycles as Catalysts in Oxidation Reactions. Inorg Chem 2019; 58:11133-11145. [PMID: 31373487 DOI: 10.1021/acs.inorgchem.9b01700] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel(II) complexes with 15-membered (1-5) and 14-membered (6) octaazamacrocyclic ligands derived from 1,2- and 1,3-diketones and S-methylisothiocarbohydrazide were prepared by template synthesis. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry, IR, UV-vis, 1H NMR spectroscopies, and X-ray diffraction. The complexes contain a low-spin nickel(II) ion in a square-planar coordination environment. The electrochemical behavior of 1-6 was investigated in detail, and the electronic structure of 1e-oxidized and 1e-reduced species was studied by electron paramagnetic resonance, UV-vis-near-IR spectroelectrochemistry, and density functional theory calculations indicating redox noninnocent behavior of the ligands. Compounds 1-6 were tested in the microwave-assisted solvent-free oxidation of cyclohexane by tert-butyl hydroperoxide to produce the industrially significant mixture of cyclohexanol and cyclohexanone (i.e., A/K oil). The results showed that the catalytic activity was affected by several factors, namely, reaction time and temperature or amount and type of catalyst. The best values for A/K oil yield (23%, turnover number of 1.1 × 102) were obtained with compound 6 after 2 h of microwave irradiation at 100 °C.
Collapse
Affiliation(s)
- Anatolie Dobrov
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| | - Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Ingrid Puškárová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology , Slovak University of Technology in Bratislava , Radlinského 9 , SK-81237 Bratislava , Slovak Republic
| | - Sergiu Shova
- Inorganic Polymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41 A , 700487 Iasi , Romania
| | - Dan Dumitrescu
- Elettra-Sincrotrone Trieste S.C.p.A. , Strada Statale 14-km 163,5 in AREA Science Park , 34149 Basovizza, Trieste , Italy
| | - Luísa M D R S Martins
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Vladimir B Arion
- Institute of Inorganic Chemistry , University of Vienna , Währinger Strasse 42 , A-1090 Vienna , Austria
| |
Collapse
|
21
|
Synthesis, optical spectroscopy, structural, and DFT studies on dimeric iodo-bridged Copper(I) complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Kunert R, Philouze C, Jarjayes O, Thomas F. Stable M(II)-Radicals and Nickel(III) Complexes of a Bis(phenol) N-Heterocyclic Carbene Chelated to Group 10 Metal Ions. Inorg Chem 2019; 58:8030-8044. [PMID: 31185559 DOI: 10.1021/acs.inorgchem.9b00784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tetradentate ligand based on (1-imidazolium-3,5-di tert-butylphenol) units was prepared and chelated to group 10 metal ions (Ni(II), Pd(II), and Pt(II)), affording complexes 1, 2, and 3, respectively. The X-ray crystal structures of 1-3 show a square planar metal ion coordinated to two N-heterocyclic carbenes and two phenolate moieties. The cyclic voltammetry curves of complexes 1-3 show two reversible oxidation waves in the range 0.11-0.21 V ( E1/21) and 0.55-0.65 V ( E1/22) vs Fc+/Fc, which are assigned to the successive oxidations of the phenolate moieties. One-electron oxidation affords mononuclear ( S = 1/2) systems. Complex 1+·SbF6- was remarkably stable, and its structure was characterized. The coordination sphere is slightly dissymmetric, while the typical patterns of phenoxyl radicals were observed within the ligand framework. Complex 1+ exhibits a rhombic signal at g = 2.087, 2.016, and 1.992, confirming its predominant phenoxyl radical character. The g-values are slightly smaller for 2+ (2.021, 2.008, and 1.983) and larger for 3+ (2.140, 1.999, and 1.885) yet consistent with phenoxyl radical species. The electronic spectra of 1+-3+ display an intervalence charge-transfer (IVCT) transition at 2396, 2600, and 2294 nm, respectively. Its intensity supports the description of cations 1+ and 3+ as mixed-valent (Class II/III) compounds according to the Robin Day classification. Complex 2+ behaves as a mixed-valent class II radical compound. In the presence of pyridine, radical species 1+ is successively converted into stable mono and bis(adducts), which are both Ni(III) complexes. Dications 1+2-3+2 were prepared electrochemically. They are electron paramagnetic resonance (EPR)-silent and do not show IVCT transition in their NIR spectra, consistent with a bis(radical) formulation. The proposed electronic structures are fully supported by density functional theory calculations.
Collapse
Affiliation(s)
- Romain Kunert
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Christian Philouze
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Olivier Jarjayes
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| | - Fabrice Thomas
- Université Grenoble Alpes , UMR CNRS-5250, Département de Chimie Moléculaire , Grenoble F-38000 , France
| |
Collapse
|
23
|
Oshita H, Suzuki T, Kawashima K, Abe H, Tani F, Mori S, Yajima T, Shimazaki Y. π-π Stacking Interaction in an Oxidized Cu II -Salen Complex with a Side-Chain Indole Ring: An Approach to the Function of the Tryptophan in the Active Site of Galactose Oxidase. Chemistry 2019; 25:7649-7658. [PMID: 30912194 DOI: 10.1002/chem.201900733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 11/07/2022]
Abstract
In order to gain new insights into the effect of the π-π stacking interaction of the indole ring with the CuII -phenoxyl radical as seen in the active form of galactose oxidase, we have prepared a CuII complex of a methoxy-substituted salen-type ligand, containing a pendent indole ring on the dinitrogen chelate backbone, and characterized its one-electron-oxidized forms. The X-ray crystal structures of the oxidized CuII complex exhibited the π-π stacking interaction of the indole ring mainly with one of the two phenolate moieties. The phenolate moiety in close contact with the indole moiety showed the characteristic phenoxyl radical structural features, indicating that the indole ring favors the π-π stacking interaction with the phenoxyl radical. The UV/Vis/NIR spectra of the oxidized CuII complex with the pendent indole ring was significantly different from those of the complex without the side-chain indole ring, and the absorption and CD spectra exhibited a solvent dependence, which is in line with the phenoxyl radical-indole stacking interaction in solution. The other physicochemical results and theoretical calculations strongly support that the indole ring, as an electron donor, stabilizes the phenoxyl radical by the π-π stacking interaction.
Collapse
Affiliation(s)
- Hiromi Oshita
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, 310-8512, Japan.,Present address: Department of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe, 658-8501, Japan
| | - Takashi Suzuki
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Kyohei Kawashima
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Hitoshi Abe
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Fumito Tani
- Institute for Material Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Seiji Mori
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| | - Tatsuo Yajima
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, 564-8680, Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki, 310-8512, Japan
| |
Collapse
|
24
|
Molloy JK, Fedele L, Jarjayes O, Philouze C, Imbert D, Thomas F. Structural and spectroscopic investigations of redox active seven coordinate luminescent lanthanide complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Coordination chemistry of a redox non-innocent NHC bis(phenolate) pincer ligand with nickel(II). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Chiang L, Wasinger EC, Shimazaki Y, Young V, Storr T, Stack TDP. Electronic Structure and Reactivity Studies of a Nonsymmetric One-Electron Oxidized Cu II Bis-phenoxide Complex. Inorganica Chim Acta 2018; 481:151-158. [PMID: 30581226 PMCID: PMC6301013 DOI: 10.1016/j.ica.2017.09.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The tetradentate mixed imino/amino phenoxide ligand (N-(3,5-di-tert-butylsalicylidene)-N'-(2-hydroxyl-3,5-di-tert-butylbenzyl))-trans-1,2-cyclohexanediamine (salalen) was complexed with CuII, and the resulting Cu complex (2) was characterized by a number of experimental techniques and theoretical calculations. Two quasi-reversible redox processes for 2, as observed by cyclic voltammetry, demonstrated the potential stability of oxidized forms, and also the increased electron-donating ability of the salalen ligand in comparison to the salen analogue. The electronic structure of the one-electron oxidized [2]+ was then studied in detail, and Cu K-edge X-ray Absorption Spectroscopy (XAS) measurements confirmed a CuII-phenoxyl radical complex in solution. Subsequent resonance Raman (rR) and variable temperature 1H NMR studies, coupled with theoretical calculations, showed that [2• ]+ is a triplet (S = 1) CuII-phenoxyl radical species, with localization of the radical on the more electron-rich aminophenoxide. Attempted isolation of X-ray quality crystals of [2• ]+ afforded [2H]+, with a protonated phenol bonded to CuII, and an additional H-bonding interaction with the SbF6 - counterion. Stoichiometric reaction of dilute solutions of [2• ]+ with benzyl alcohol showed that the complex reacted in a similar manner as the oxidized CuII-salen analogue, and does not exhibit a substrate-binding pre-equilibrium as observed for the oxidized bisaminophenoxide CuII-salan derivative.
Collapse
Affiliation(s)
- Linus Chiang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Erik C Wasinger
- Department of Chemistry and Biochemistry, California State University, Chico, CA 95928, USA
| | - Yuichi Shimazaki
- College of Science, Ibaraki University. Bunkyo, Mito, 310-8512, Japan
| | - Victor Young
- Department of Chemistry, The University of Minnesota, Minneapolis, MN 55455, USA
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - T Daniel P Stack
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Radical formation in polymeric nickel complexes with N2O2 Schiff base ligands: An in situ ESR and UV–vis–NIR spectroelectrochemical study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Mews NM, Hörner G, Schubert H, Berkefeld A. Tuning of Thiyl/Thiolate Complex Near-Infrared Chromophores of Platinum through Geometrical Constraints. Inorg Chem 2018; 57:9670-9682. [PMID: 29561154 DOI: 10.1021/acs.inorgchem.8b00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemistry of radical-ligand complexes of the transition metals has developed into a vibrant field of research that spans from fundamental studies on the relationship between the chemical and electronic structures to applications in catalysis and functional materials chemistry. In general, fine-tuning of the relevant properties relies on an increasingly diversifying pool of radical-proligand structures. Surprisingly, the variability of the conformational freedom and the number of distinct bonding modes supported by many radical proligands is limited. This work reports on the angular constraints and relative geometric alignment of metal and ligand orbitals as key parameters that render a series of chemically similar thiyl/thiolate complexes of platinum(II) electronically and spectroscopically distinct. The use of conformational flexible thiophenols as primary ligand scaffolds is essential to establishing a defined radical-ligand [(areneS)2PtII]•+ core whose electronic structure is modulated by a series of auxiliary coligands at platinum.
Collapse
Affiliation(s)
- Nicole M Mews
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Gerald Hörner
- Institut für Chemie, Quantenchemie und Bioanorganische Chemie , Technische Universität (TU) Berlin , Straße des 17 Juni 135 , 10623 Berlin , Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| | - Andreas Berkefeld
- Institut für Anorganische Chemie , Eberhard Karls Universität Tübingen , Auf der Morgenstelle 18 , 72076 Tübingen , Germany
| |
Collapse
|
29
|
Tomczyk D, Bukowski W, Bester K. Redox processes in the solution of Ni(II) complex with salen type ligand and in the polymer films. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Zhang C, Sutherland M, Herasymchuk K, Clarke RM, Thompson JR, Chiang L, Walsby CJ, Storr T. Octahedral Co(III) salen complexes: the role of peripheral ligand electronics on axial ligand release upon reduction. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of octahedral CoIII salen complexes (where salen represents a N2O2 bis-Schiff-base bis-phenolate framework) were prepared with axial imidazole ligating groups. When using 1-methylimidazole (1-MeIm) axial ligands, the CoIII/CoII reduction potential could be altered by 220 mV via variation of the electron-donating ability of the para-ring substituents (R = H (1), OMe (2), tBu (3), Br (4), NO2 (5), and CF3 (6)). In addition, the irreversibility of the reduction process suggested substantial geometrical changes and axial ligand exchange upon reduction to the more labile CoII oxidation state. Installing an imidazole-coumarin conjugate as the axial ligands resulted in fluorescence quenching when bound to the CoIII centre (R = H (7), OMe (8), and CF3 (9)). The redox properties and fluorescence increase upon ligand release for 7–9 were studied under reducing conditions and in the presence of excess competing ligand (1-MeIm). It was determined that the Lewis acidity of the CoIII centre was the dominant factor in controlling axial ligand exchange for this series of complexes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mathew Sutherland
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Khrystyna Herasymchuk
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Ryan M. Clarke
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John R. Thompson
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Charles J. Walsby
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
31
|
Marín IM, Auffrant A. Phosphasalen vs. Salen Ligands: What Does the Phosphorus Change? Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Irene Mustieles Marín
- LCM, CNRS-Ecole polytechnique; Université Paris-Saclay; F-91128 Palaiseau Cedex France
| | - Audrey Auffrant
- LCM, CNRS-Ecole polytechnique; Université Paris-Saclay; F-91128 Palaiseau Cedex France
| |
Collapse
|
32
|
Lecarme L, Chiang L, Moutet J, Leconte N, Philouze C, Jarjayes O, Storr T, Thomas F. The structure of a one-electron oxidized Mn(iii)-bis(phenolate)dipyrrin radical complex and oxidation catalysis control via ligand-centered redox activity. Dalton Trans 2018; 45:16325-16334. [PMID: 27711805 DOI: 10.1039/c6dt02163h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tetradentate ligand dppH3, which features a half-porphyrin and two electron-rich phenol moieties, was prepared and chelated to manganese. The mononuclear Mn(iii)-dipyrrophenolate complex 1 was structurally characterized. The metal ion lies in a square pyramidal environment, the apical position being occupied by a methanol molecule. Complex 1 displays two reversible oxidation waves at 0.00 V and 0.47 V vs. Fc+/Fc, which are assigned to ligand-centered processes. The one-electron oxidized species 1+ SbF6- was crystallized, showing an octahedral Mn(iii) center with two water molecules coordinated at both apical positions. The bond distance analysis and DFT calculations disclose that the radical is delocalized over the whole aromatic framework. Complex 1+ SbF6- exhibits an Stot = 3/2 spin state due to the antiferromagnetic coupling between Mn(iii) and the ligand radical. The zero field splitting parameters are D = 1.6 cm-1, E/D = 0.18(1), g⊥ = 1.99 and g∥ = 1.98. The dication 12+ is an integer spin system, which is assigned to a doubly oxidized ligand coordinated to a Mn(iii) metal center. Both 1 and 1+ SbF6- catalyze styrene oxidation in the presence of PhIO, but the nature of the main reaction product is different. Styrene oxide is the main reaction product when using 1, but phenylacetaldehyde is formed predominantly when using 1+ SbF6-. We examined the ability of complex 1+ SbF6- to catalyze the isomerization of styrene oxide and found that it is an efficient catalyst for the anti-Markovnikov opening of styrene oxide. The formation of phenylacetaldehyde from styrene therefore proceeds in a tandem E-I (epoxidation-isomerization) mechanism in the case of 1+ SbF6-. This is the first evidence of control of the reactivity for styrene oxidation by changing the oxidation state of a catalyst based on a redox-active ligand.
Collapse
Affiliation(s)
- Laureline Lecarme
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Linus Chiang
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Jules Moutet
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Nicolas Leconte
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Olivier Jarjayes
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Tim Storr
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| |
Collapse
|
33
|
Mustieles Marín I, Cheisson T, Singh-Chauhan R, Herrero C, Cordier M, Clavaguéra C, Nocton G, Auffrant A. Electronic Structures of Mono-Oxidized Copper and Nickel Phosphasalen Complexes. Chemistry 2017; 23:17940-17953. [PMID: 28980736 DOI: 10.1002/chem.201703390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/11/2022]
Abstract
Non-innocent ligands render the determination of the electronic structure in metal complexes difficult. As such, a combination of experimental techniques and quantum chemistry are required to correctly elucidate them. This paper deals with the one-electron oxidation of copper(II) and nickel(II) complexes featuring a phosphasalen ligand (Psalen), which differs from salen analogues by the presence of iminophosphorane groups (P=N) instead of imines. Various experimental techniques (X-ray diffraction, cyclic voltammetry, NMR, EPR, and UV/Vis spectroscopies, and magnetic measurements) as well as quantum chemical calculations were used to define the electronic structure of the oxidized complexes. These can be modified by a small change in the ligand structure, that is, the replacement of a tert-butyl group by a methoxy on the phenoxide ring. The different techniques have allowed quantifying the amount of spin density located on the metal center and on the Psalen ligands. All complexes were found to possess a multi-configurational ground state, in which the ratio of the +II versus +III oxidation state of the metal center, and therefore the phenolate versus phenoxyl radical ligand character, varies upon the substituents. The tert-butyl group favors a strong localization on the metal center whereas with the methoxy group the metallic configurations decrease and the ligand configurations increase. The importance of the geometrical considerations compared with the electronic substituent effect is highlighted by the differences observed between the solid-state (EPR, magnetic measurements) and solution characterizations (EPR and NMR data).
Collapse
Affiliation(s)
- Irene Mustieles Marín
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| | - Thibault Cheisson
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| | - Rohit Singh-Chauhan
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182 CNRS-Univ. Paris-Sud, Univ. Paris Saclay, 91405, Orsay Cedex, France
| | - Marie Cordier
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| | - Carine Clavaguéra
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France.,Laboratoire de Chimie Physique, CNRS-Université Paris-Sud, Université Paris-Saclay, 15 avenue Jean Perrin, 91405, Orsay, France
| | - Grégory Nocton
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| | - Audrey Auffrant
- LCM, CNRS-Ecole polytechnique, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| |
Collapse
|
34
|
Clarke RM, Jeen T, Rigo S, Thompson JR, Kaake LG, Thomas F, Storr T. Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption. Chem Sci 2017; 9:1610-1620. [PMID: 29675206 PMCID: PMC5887452 DOI: 10.1039/c7sc04537a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region.
We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we demonstrate that bimetallic Ni salen complexes form bis-ligand radicals upon two-electron oxidation, whose NIR absorption energies depend on the geometry imposed in the bis-ligand radical complex. Relative to the oxidized monomer [1˙]+ (E = 4500 cm–1, ε = 27 700 M–1 cm–1), oxidation of the cofacially constrained analogue 2 to [2˙˙]2+ results in a blue-shifted NIR band (E = 4830 cm–1, ε = 42 900 M–1 cm–1), while oxidation of 5 to [5˙˙]2+, with parallel arrangement of chromophores, results in a red-shifted NIR band (E = 4150 cm–1, ε = 46 600 M–1 cm–1); the NIR bands exhibit double the intensity in comparison to the monomer. Oxidation of the intermediate orientations results in band splitting for [3˙˙]2+ (E = 4890 and 4200 cm–1; ε = 26 500 and 21 100 M–1 cm–1), and a red-shift for [4˙˙]2+ using ortho- and meta-phenylene linkers, respectively. This study demonstrates for the first time, the applicability of exciton coupling to ligand radical systems absorbing in the NIR region and shows that by simple geometry changes, it is possible to tune the energy of intense low energy absorption by nearly 400 nm.
Collapse
Affiliation(s)
- Ryan M Clarke
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Tiffany Jeen
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Serena Rigo
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - John R Thompson
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Loren G Kaake
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Fabrice Thomas
- Départment de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250 , Université Grenoble-Alpes , B.P. 53 , 38041 Grenoble Cedex 9 , France
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| |
Collapse
|
35
|
|
36
|
Oshita H, Kikuchi M, Mieda K, Ogura T, Yoshimura T, Tani F, Yajima T, Abe H, Mori S, Shimazaki Y. Characterization of Group 10-Metal-p
-Substituted Phenoxyl Radical Complexes with Schiff Base Ligands. ChemistrySelect 2017. [DOI: 10.1002/slct.201701986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiromi Oshita
- Graduate School of Science and Engineering; Ibaraki University; Mito 310-8512 Japan
| | - Misa Kikuchi
- College of Science; Ibaraki University; Mito 310-8512 Japan
| | - Kaoru Mieda
- Picobiology Institute; Graduate School of Life Science; University of Hyogo, Sayo; Hyogo 679-5184 Japan
| | - Takashi Ogura
- Picobiology Institute; Graduate School of Life Science; University of Hyogo, Sayo; Hyogo 679-5184 Japan
| | - Takayoshi Yoshimura
- Graduate School of Science and Engineering; Ibaraki University; Mito 310-8512 Japan
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering; Kyushu University, Nishi-ku; Fukuoka 819-0395 Japan
| | - Tatsuo Yajima
- Faculty of Chemistry; Materials and Bioengineering; Kansai University, Suita; Osaka 564-8680 Japan
| | - Hitoshi Abe
- Photon Factory (PF); Institute of Materials Structure Science (IMSS); High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba; Ibaraki 305-0801 Japan
| | - Seiji Mori
- Graduate School of Science and Engineering; Ibaraki University; Mito 310-8512 Japan
- College of Science; Ibaraki University; Mito 310-8512 Japan
| | | |
Collapse
|
37
|
Haque A, Hsieh MF, Hassan SI, Haque Faizi MS, Saha A, Dege N, Rather JA, Khan MS. Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Safaei E, Bahrami H, Pevec A, Kozlevčar B, Jagličić Z. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Mews NM, Berkefeld A, Hörner G, Schubert H. Controlling Near-Infrared Chromophore Electronic Properties through Metal–Ligand Orbital Alignment. J Am Chem Soc 2017; 139:2808-2815. [DOI: 10.1021/jacs.6b13085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Nicole M. Mews
- Institut
für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Berkefeld
- Institut
für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Gerald Hörner
- Institut
für Chemie, Bioanorganische Chemie, TU Berlin, Straße
des 17. Juni 135, 10623 Berlin, Germany
| | - Hartmut Schubert
- Institut
für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
40
|
Broere DLJ, Plessius R, Tory J, Demeshko S, de Bruin B, Siegler MA, Hartl F, van der Vlugt JI. Localized Mixed-Valence and Redox Activity within a Triazole-Bridged Dinucleating Ligand upon Coordination to Palladium. Chemistry 2016; 22:13965-13975. [PMID: 27531163 DOI: 10.1002/chem.201601900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/31/2022]
Abstract
The new dinucleating redox-active ligand (LH4 ), bearing two redox-active NNO-binding pockets linked by a 1,2,3-triazole unit, is synthetically readily accessible. Coordination to two equivalents of PdII resulted in the formation of paramagnetic (S=1/2 ) dinuclear Pd complexes with a κ2 -N,N'-bridging triazole and a single bridging chlorido or azido ligand. A combined spectroscopic, spectroelectrochemical, and computational study confirmed Robin-Day Class II mixed-valence within the redox-active ligand, with little influence of the secondary bridging anionic ligand. Intervalence charge transfer was observed between the two ligand binding pockets. Selective one-electron oxidation allowed for isolation of the corresponding cationic ligand-based diradical species. SQUID (super-conducting quantum interference device) measurements of these compounds revealed weak anti-ferromagnetic spin coupling between the two ligand-centered radicals and an overall singlet ground state in the solid state, which is supported by DFT calculations. The rigid and conjugated dinucleating redox-active ligand framework thus allows for efficient electronic communication between the two binding pockets.
Collapse
Affiliation(s)
- Daniël L J Broere
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Raoul Plessius
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joanne Tory
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Bas de Bruin
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maxime A Siegler
- Department of Chemistry, John Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | - Frantisek Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Jarl Ivar van der Vlugt
- Homogeneous, Bioinspired and Supramolecular Catalysis, van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Ali A, Dhar D, Barman SK, Lloret F, Mukherjee R. Nickel(II) Complex of a Hexadentate Ligand with Two o-Iminosemiquinonato(1-) π-Radical Units and Its Monocation and Dication. Inorg Chem 2016; 55:5759-71. [PMID: 27232547 DOI: 10.1021/acs.inorgchem.5b02688] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aerobic reaction of a hexadentate redox-active o-aminophenol-based ligand, H4L(3) = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)-ethane, in CH3OH with Ni(II)(O2CCH3)2·4H2O and Et3N afforded isolation of a reddish-brown crystalline solid [Ni(L(3))] 1. Cyclic voltammetry (CV) experiment exhibits two oxidative responses at E1/2 = 0.09 and 0.53 V vs SCE (saturated calomel electrode). Chemical oxidation of 1 in air by [Fe(III)(η(5)-C5H5)2][PF6] and AgBF4 in CH2Cl2 led to the isolation of one-electron oxidized species [1](1+) as purple [1][PF6]·CH2Cl2 and two-electron oxidized species [1](2+) as dark purple [1][BF4]2·CH2Cl2, respectively. X-ray crystallographic analysis at 100(2) K unambiguously established that the ligand is present in [Ni(II){(L(ISQ)O,N)(•-)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}] 1, [Ni(II){(L(IBQ)O,N)(0)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}][PF6]·CH2Cl2, and [Ni(II){(L(IBQ)O,N)(0)}{(L(IBQ)O,N)(0)}{(LS,S)(0)}][BF4]2·CH2Cl2, as monoanionic o-iminosemiquinonate(1-) π-radical (Srad = 1/2) (L(ISQ))(•-) and neutral o-iminoquinone (L(IBQ))(0) redox-levels. Complexes 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 possess an S = 2, 3/2, and 1 ground-state, respectively, established by temperature-dependent (2-300 K) magnetic behavior of 1 and [1][PF6]·CH2Cl2, and a μeff value of [1][BF4]2·CH2Cl2 at 300 K. Both 1 and [1][PF6]·CH2Cl2 exhibit ferromagnetic exchange-coupling between the two electrons of Ni(II) and two/one ligand π-radicals, respectively. The redox processes are shown to be ligand-based. Spectroscopic and redox properties, and density functional theory (DFT) calculations at the CAM-B3LYP-level of theory adequately describe the electronic structure of 1, [1](1+), and [1](2+). The observed UV-vis-NIR absorptions for 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Debanjan Dhar
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia , Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| |
Collapse
|
42
|
Sheepwash MA, Lough AJ, Poggini L, Poneti G, Lemaire MT. Structure, magnetic properties and electronic structure of a nickel(II) complex with redox-active 6-(8-quinolylamino)-2,4-bis(tert-butyl)phenol. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.06.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Skara G, Gimferrer M, De Proft F, Salvador P, Pinter B. Scrutinizing the Noninnocence of Quinone Ligands in Ruthenium Complexes: Insights from Structural, Electronic, Energy, and Effective Oxidation State Analyses. Inorg Chem 2016; 55:2185-99. [DOI: 10.1021/acs.inorgchem.5b02543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gabriella Skara
- Eenheid Algemene Chemie (ALGC), Member
of the QCMM VUB-UGent Alliance Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Marti Gimferrer
- Institut de Química
Computacional i Catàlisi (IQCC) i Department de Química, Universitat de Girona, 17071 Girona, Spain
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Member
of the QCMM VUB-UGent Alliance Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Pedro Salvador
- Institut de Química
Computacional i Catàlisi (IQCC) i Department de Química, Universitat de Girona, 17071 Girona, Spain
| | - Balazs Pinter
- Eenheid Algemene Chemie (ALGC), Member
of the QCMM VUB-UGent Alliance Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
44
|
Ciccione J, Leconte N, Luneau D, Philouze C, Thomas F. Geometric and Electronic Structures of Nickel(II) Complexes of Redox Noninnocent Tetradentate Phenylenediamine Ligands. Inorg Chem 2016; 55:649-65. [PMID: 26689346 DOI: 10.1021/acs.inorgchem.5b01947] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Five tetradentate ligands based on the N,N'-bis(2-amino-3,5-di-tert-butylphenyl)-o-phenylenediamine backbone were prepared, with different substituents at positions 4 and 5 (CH3 (3a), p-CH3O-C6H4 (3b), H (3c), Cl (3d), F (3e)). Their reaction with a nickel(II) salt in air affords the neutral species 4(a-e), which were isolated as single crystals. 4(a-e) feature two antiferromagnetically exchange-coupled diiminosemiquinonate moieties, both located on peripheral rings, and a diamidobenzene bridging unit. Oxidation of 4(a-e) with 1 equiv of AgSbF6 yields the cations 4(a-e)(+), which harbor a single diiminosemiquinonate radical. Significant structural differences were observed within the series. 4b(+) is mononuclear and contains a localized diiminosemiquinonate moiety. In contrast, 4c(+) is a dimer wherein the diiminosemiquinonate radical is rather delocalized over both peripheral rings. 4d(+) represents an intermediate case where the complex is mononuclear, but the radical is fully delocalized. Oxidation of 4(a-e) with 2 equiv of AgSbF6 produces the corresponding mononuclear dications. X-ray diffraction data on 4(b-d)(2+) reveals that the bridging ring retains its diamidobenzene character, whereas both peripheral rings have been oxidized into diiminobenzoquinone moieties. All the complexes were characterized by electrochemistry, EPR, and UV-vis-NIR spectroscopy. Remarkably, the electronic structures of the complexes differ from those reported by Wieghardt et al. for copper and zinc complexes of a related ligand involving a mixed N2O2 donor set (J. Am. Chem. Soc. 1999, 121, 9599). The easier oxidation of phenylenediamine moieties in comparison to aminophenols is proposed to account for the difference.
Collapse
Affiliation(s)
- Jérémie Ciccione
- Chimie Inorganique Redox, Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, UMR-5250 , 38041 Grenoble Cedex 9, France
| | - Nicolas Leconte
- Chimie Inorganique Redox, Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, UMR-5250 , 38041 Grenoble Cedex 9, France
| | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces (UMR CNRS 5615), Université Claude Bernard Lyon 1 , 69622 Villeurbanne cedex, France
| | - Christian Philouze
- Chimie Inorganique Redox, Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, UMR-5250 , 38041 Grenoble Cedex 9, France
| | - Fabrice Thomas
- Chimie Inorganique Redox, Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, UMR-5250 , 38041 Grenoble Cedex 9, France
| |
Collapse
|
45
|
Herasymchuk K, Chiang L, Hayes CE, Brown ML, Ovens JS, Patrick BO, Leznoff DB, Storr T. Synthesis and electronic structure determination of uranium(vi) ligand radical complexes. Dalton Trans 2016; 45:12576-86. [DOI: 10.1039/c6dt02089e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentagonal bipyramidal uranyl (UO22+) complexes of salen ligands were prepared and the electronic structure of the one-electron oxidized species[1a–c]+were investigated in solution.
Collapse
Affiliation(s)
| | - Linus Chiang
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| | | | | | | | - Brian O. Patrick
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | | | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
46
|
Thomas F. Ligand-centred oxidative chemistry in sterically hindered salen complexes: an interesting case with nickel. Dalton Trans 2016; 45:10866-77. [DOI: 10.1039/c6dt00942e] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Salen ligands are ubiquitous chelators, whose nickel complexes readily undergo a ligand-centred redox chemistry in non-coordinating solvents.
Collapse
Affiliation(s)
- F. Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250
- Université Grenoble-Alpes
- 38041 Grenoble cedex 9
- France
| |
Collapse
|
47
|
Clarke RM, Hazin K, Thompson JR, Savard D, Prosser KE, Storr T. Electronic Structure Description of a Doubly Oxidized Bimetallic Cobalt Complex with Proradical Ligands. Inorg Chem 2015; 55:762-74. [DOI: 10.1021/acs.inorgchem.5b02231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ryan M. Clarke
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Khatera Hazin
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John R. Thompson
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Didier Savard
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kathleen E. Prosser
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tim Storr
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
48
|
Chiang L, Clarke RM, Herasymchuk K, Sutherland M, Prosser KE, Shimazaki Y, Storr T. Electronic Structure Evaluation of an Oxidized Tris(methoxy)-Substituted Ni Salen Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Rulev YA, Gugkaeva Z, Maleev VI, North M, Belokon YN. Robust bifunctional aluminium-salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides. Beilstein J Org Chem 2015; 11:1614-23. [PMID: 26664580 PMCID: PMC4660930 DOI: 10.3762/bjoc.11.176] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023] Open
Abstract
Two new one-component aluminium-based catalysts for the reaction between epoxides and carbon dioxide have been prepared. The catalysts are composed of aluminium–salen chloride complexes with trialkylammonium groups directly attached to the aromatic rings of the salen ligand. With terminal epoxides, the catalysts induced the formation of cyclic carbonates under mild reaction conditions (25–35 °C; 1–10 bar carbon dioxide pressure). However, with cyclohexene oxide under the same reaction conditions, the same catalysts induced the formation of polycarbonate. The catalysts could be recovered from the reaction mixture and reused.
Collapse
Affiliation(s)
- Yuri A Rulev
- Nesmeyanov Institute of Organoelement Compounds, Moscow 19991, Russia
| | - Zalina Gugkaeva
- Nesmeyanov Institute of Organoelement Compounds, Moscow 19991, Russia
| | - Victor I Maleev
- Nesmeyanov Institute of Organoelement Compounds, Moscow 19991, Russia
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Yuri N Belokon
- Nesmeyanov Institute of Organoelement Compounds, Moscow 19991, Russia
| |
Collapse
|
50
|
Cazacu M, Shova S, Soroceanu A, Machata P, Bucinsky L, Breza M, Rapta P, Telser J, Krzystek J, Arion VB. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations. Inorg Chem 2015; 54:5691-706. [DOI: 10.1021/acs.inorgchem.5b00229] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Cazacu
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Alina Soroceanu
- “Petru Poni” Institute of Macromolecular Chemistry, Alea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Peter Machata
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Lukas Bucinsky
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of
Chemical and Food Technology, Slovak University of Technology, Radlinského
9, SK-81237 Bratislava, Slovak Republic
| | - Joshua Telser
- Department of Biological, Chemical and
Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605 United States
| | - J. Krzystek
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 United States
| | - Vladimir B. Arion
- Faculty of Chemistry, Institute of Inorganic
Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|