1
|
Ferraz-Caetano J, Teixeira F, Cordeiro MNDS. Systematic Development of Vanadium Catalysts for Sustainable Epoxidation of Small Alkenes and Allylic Alcohols. Int J Mol Sci 2023; 24:12299. [PMID: 37569673 PMCID: PMC10418365 DOI: 10.3390/ijms241512299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The catalytic epoxidation of small alkenes and allylic alcohols includes a wide range of valuable chemical applications, with many works describing vanadium complexes as suitable catalysts towards sustainable process chemistry. But, given the complexity of these mechanisms, it is not always easy to sort out efficient examples for streamlining sustainable processes and tuning product optimization. In this review, we provide an update on major works of tunable vanadium-catalyzed epoxidations, with a focus on sustainable optimization routes. After presenting the current mechanistic view on vanadium catalysts for small alkenes and allylic alcohols' epoxidation, we argue the key challenges in green process development by highlighting the value of updated kinetic and mechanistic studies, along with essential computational studies.
Collapse
Affiliation(s)
- José Ferraz-Caetano
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| | - Filipe Teixeira
- CQUM, Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Maria Natália Dias Soeiro Cordeiro
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| |
Collapse
|
2
|
Heterogeneous asymmetric β-C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Zvaigzne M, Samokhvalov P, Gun'ko YK, Nabiev I. Anisotropic nanomaterials for asymmetric synthesis. NANOSCALE 2021; 13:20354-20373. [PMID: 34874394 DOI: 10.1039/d1nr05977g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.
Collapse
Affiliation(s)
- Mariya Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Yurii K Gun'ko
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- School of Chemistry, Trinity College, the University of Dublin, Dublin 2, Ireland.
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, 51 rue Cognacq Jay, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
4
|
An Z, Tang Y, Jiang Y, Han H, Ping Q, Wang W, Zhu Y, Song H, Shu X, Xiang X, He J. Enhanced enantioselectivity in heterogeneous manganese-catalyzed asymmetric epoxidation with nanosheets modified amino acid Schiff bases as ligands by modulating the orientation and the arrangement order. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
|
6
|
Shi X, Xing B, Pan D, Fan B, Li R. Enantioselectivity Enhanced on LDH Layers in Ruthenium Catalyzed Asymmetric Hydrogenation of Acetophenone. ChemistrySelect 2020. [DOI: 10.1002/slct.202000482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiufeng Shi
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P. R. China
| | - Bin Xing
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P. R. China
| | - Dahai Pan
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P. R. China
| | - Binbin Fan
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P. R. China
| | - Ruifeng Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 P. R. China
- Key Laboratory of Coal Science and Technology MOETaiyuan University of Technology Taiyuan 030024 P. R. China
| |
Collapse
|
7
|
An immobilized vanadium-binaphthylbishydroxamic acid complex as a reusable catalyst for the asymmetric epoxidation of allylic alcohols. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M. Catalytic Applications of Vanadium: A Mechanistic Perspective. Chem Rev 2018; 119:2128-2191. [PMID: 30296048 DOI: 10.1021/acs.chemrev.8b00245] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chemistry of vanadium has seen remarkable activity in the past 50 years. In the present review, reactions catalyzed by homogeneous and supported vanadium complexes from 2008 to 2018 are summarized and discussed. Particular attention is given to mechanistic and kinetics studies of vanadium-catalyzed reactions including oxidations of alkanes, alkenes, arenes, alcohols, aldehydes, ketones, and sulfur species, as well as oxidative C-C and C-O bond cleavage, carbon-carbon bond formation, deoxydehydration, haloperoxidase, cyanation, hydrogenation, dehydrogenation, ring-opening metathesis polymerization, and oxo/imido heterometathesis. Additionally, insights into heterogeneous vanadium catalysis are provided when parallels can be drawn from the homogeneous literature.
Collapse
Affiliation(s)
- Ryan R Langeslay
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - David M Kaphan
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Christopher L Marshall
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Peter C Stair
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Alfred P Sattelberger
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Massimiliano Delferro
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
9
|
Vanadium complexes supported on organic polymers as sustainable systems for catalytic oxidations. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Rehder D. Implications of vanadium in technical applications and pharmaceutical issues. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.06.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Sutradhar M, Martins LM, Guedes da Silva MFC, Pombeiro AJ. Vanadium complexes: Recent progress in oxidation catalysis. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.01.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Li C, Wei M, Evans DG, Duan X. Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
|
14
|
Fan G, Li F, Evans DG, Duan X. Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem Soc Rev 2014; 43:7040-66. [DOI: 10.1039/c4cs00160e] [Citation(s) in RCA: 1136] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Zhao LW, Shi HM, An Z, Wang JZ, He J. Validity of Inorganic Nanosheets as an Efficient Planar Substituent To Enhance the Enantioselectivity of Transition-Metal-Catalyzed Asymmetric Synthesis. Chemistry 2013; 19:12350-5. [DOI: 10.1002/chem.201301150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 11/11/2022]
|
16
|
Multilple host–guest interactions in heterogeneous vanadium catalysts: Inorganic nanosheets modified alpha-amino acids as ligands. J Catal 2013. [DOI: 10.1016/j.jcat.2012.11.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
He S, An Z, Wei M, Evans DG, Duan X. Layered double hydroxide-based catalysts: nanostructure design and catalytic performance. Chem Commun (Camb) 2013; 49:5912-20. [DOI: 10.1039/c3cc42137f] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|