1
|
Falanga A, Bellavita R, Braccia S, Galdiero S. Hydrophobicity: The door to drug delivery. J Pept Sci 2024; 30:e3558. [PMID: 38115215 DOI: 10.1002/psc.3558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The engineering of intracellular delivery systems with the goal of achieving personalized medicine has been encouraged by advances in nanomaterial science as well as a greater understanding of diseases and of the biochemical pathways implicated in many disorders. The development of vectors able to transport the drug to a target location and release it only on demand is undoubtedly the primary issue. From a molecular perspective, the topography of drug carrier surfaces is directly related to the design of an effective drug carrier because it provides a physical hint to modifying its interactions with biological systems. For instance, the initial ratio of hydrophilic to hydrophobic surfaces and the changes brought about by external factors enable the release or encapsulation of a therapeutic molecule and the ability of the nanosystem to cross biological barriers and reach its target without causing systemic toxicity. The first step in creating new materials with enhanced functionality is to comprehend and characterize the interplay between hydrophilic and hydrophobic molecules at the molecular level. Therefore, the focus of this review is on the function of hydrophobicity, which is essential for matching the complexity of biological environments with the intended functionality.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
| | - Rosa Bellavita
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Stefania Galdiero
- CiRPEB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Naples, Italy
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
3
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
4
|
Engineering surface amphiphilicity of polymer nanostructures. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Franco-Ulloa S, Guarnieri D, Riccardi L, Pompa PP, De Vivo M. Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. J Chem Theory Comput 2021; 17:4512-4523. [PMID: 34077229 PMCID: PMC8280734 DOI: 10.1021/acs.jctc.1c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) hold great promise as innovative tools in nanomedicine. However, one of the main challenges is how to optimize their association with the cell membrane, which is critical for their effective delivery. Recent findings show high cellular uptake rates for NPs coated with the polycationic cell-penetrating peptide gH625-644 (gH), although the underlying internalization mechanism is poorly understood. Here, we use extended coarse-grained simulations and free energy calculations to study systems that simultaneously include metal NPs, peptides, lipids, and sterols. In particular, we investigate the first encounter between multicomponent model membranes and 2.5 nm metal NPs coated with gH (gHNPs), based on the evidence from scanning transmission electron microscopy. By comparing multiple membrane and (membranotropic) NP models, we found that gHNP internalization occurs by forming an intermediate state characterized by specific stabilizing interactions formed by peptide-coated nanoparticles with multicomponent model membranes. This association mechanism is mainly characterized by interactions of gH with the extracellular solvent and the polar membrane surface. At the same time, the NP core interacts with the transmembrane (cholesterol-rich) fatty phase.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, l-84084 Salerno, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
6
|
Falanga A, Del Genio V, Kaufman EA, Zannella C, Franci G, Weck M, Galdiero S. Engineering of Janus-Like Dendrimers with Peptides Derived from Glycoproteins of Herpes Simplex Virus Type 1: Toward a Versatile and Novel Antiviral Platform. Int J Mol Sci 2021; 22:6488. [PMID: 34204295 PMCID: PMC8234430 DOI: 10.3390/ijms22126488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Novel antiviral nanotherapeutics, which may inactivate the virus and block it from entering host cells, represent an important challenge to face viral global health emergencies around the world. Using a combination of bioorthogonal copper-catalyzed 1,3-dipolar alkyne/azide cycloaddition (CuAAC) and photoinitiated thiol-ene coupling, monofunctional and bifunctional peptidodendrimer conjugates were obtained. The conjugates are biocompatible and demonstrate no toxicity to cells at biologically relevant concentrations. Furthermore, the orthogonal addition of multiple copies of two different antiviral peptides on the surface of a single dendrimer allowed the resulting bioconjugates to inhibit Herpes simplex virus type 1 at both the early and the late stages of the infection process. The presented work builds on further improving this attractive design to obtain a new class of therapeutics.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, Portici, 80055 Naples, Italy;
| | - Valentina Del Genio
- Department of Pharmacy and CIRPEB, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy;
| | - Elizabeth A. Kaufman
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA; (E.A.K.); (M.W.)
| | - Carla Zannella
- Department of Experimental Medicine, Second University of Naples, Via de Crecchio 7, 80138 Naples, Italy;
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA; (E.A.K.); (M.W.)
| | - Stefania Galdiero
- Department of Pharmacy and CIRPEB, University of Naples “Federico II”, Via Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
7
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Folliero V, Zannella C, Chianese A, Stelitano D, Ambrosino A, De Filippis A, Galdiero M, Franci G, Galdiero M. Application of Dendrimers for Treating Parasitic Diseases. Pharmaceutics 2021; 13:343. [PMID: 33808016 PMCID: PMC7998910 DOI: 10.3390/pharmaceutics13030343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/02/2023] Open
Abstract
Despite advances in medical knowledge, parasitic diseases remain a significant global health burden and their pharmacological treatment is often hampered by drug toxicity. Therefore, drug delivery systems may provide useful advantages when used in combination with conventional therapeutic compounds. Dendrimers are three-dimensional polymeric structures, characterized by a central core, branches and terminal functional groups. These nanostructures are known for their defined structure, great water solubility, biocompatibility and high encapsulation ability against a wide range of molecules. Furthermore, the high ratio between terminal groups and molecular volume render them a hopeful vector for drug delivery. These nanostructures offer several advantages compared to conventional drugs for the treatment of parasitic infection. Dendrimers deliver drugs to target sites with reduced dosage, solving side effects that occur with accepted marketed drugs. In recent years, extensive progress has been made towards the use of dendrimers for therapeutic, prophylactic and diagnostic purposes for the management of parasitic infections. The present review highlights the potential of several dendrimers in the management of parasitic diseases.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Anna De Filippis
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy;
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.F.); (C.Z.); (A.C.); (D.S.); (A.A.); (M.G.)
| |
Collapse
|
9
|
Falanga A, Del Genio V, Galdiero S. Peptides and Dendrimers: How to Combat Viral and Bacterial Infections. Pharmaceutics 2021; 13:101. [PMID: 33466852 PMCID: PMC7830367 DOI: 10.3390/pharmaceutics13010101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming growth of antimicrobial resistance and recent viral pandemic events have enhanced the need for novel approaches through innovative agents that are mainly able to attach to the external layers of bacteria and viruses, causing permanent damage. Antimicrobial molecules are potent broad-spectrum agents with a high potential as novel therapeutics. In this context, antimicrobial peptides, cell penetrating peptides, and antiviral peptides play a major role, and have been suggested as promising solutions. Furthermore, dendrimers are to be considered as suitable macromolecules for the development of advanced nanosystems that are able to complement the typical properties of dendrimers with those of peptides. This review focuses on the description of nanoplatforms constructed with peptides and dendrimers, and their applications.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via dell’Università 100, 80100 Portici, Italy
| | - Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| |
Collapse
|
10
|
Abstract
Cell-penetrating peptides present huge biomedical applications in a variety of pathologies, thanks to their ability to penetrate membranes and carry a variety of cargoes inside cells. Progress in peptide synthesis has produced a greater availability of virtually any synthetic peptide, increasing their attractiveness. Most molecules when associated to a cell-penetrating peptides can be delivered into a cell, however, understanding of the critical factors influencing the uptake mechanism is of paramount importance to construct nanoplatforms for effective delivery in vitro and in vivo in medical applications. Focus is now on the state-of-art of the mechanisms enabling therapeutics/diagnostics to reach the site target of their activities, and in support of scientists developing platforms for drug delivery and personalized therapies.
Collapse
|
11
|
Galdiero E, Siciliano A, Lombardi L, Falanga A, Galdiero S, Martucci F, Guida M. Quantum dots functionalized with gH625 attenuate QDs oxidative stress and lethality in Caenorhabditis elegans: a model system. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:156-162. [PMID: 31927676 DOI: 10.1007/s10646-019-02158-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Nanomaterials have revolutionized many scientific fields and are widely applied to address environmental problems and to develop novel health care strategies. However, their mechanism of action is still poorly understood. Several nanomaterials for medical applications are based on quantum dots (QDs). Despite their amazing physico-chemical properties, quantum dots display significant adverse effects. In the present study, the effects of QDs on the motor nervous system of nematodes Caenorhabditis elegans have been investigated as a non-mammalian alternative model. We also explored the possibility of modifying the toxicity of QDs by coating with a cell-penetrating peptide gH625 and thus we analysed the effects determined by QDs-gH625 complexes on the nematodes. With this work, we have demonstrated, by in vivo experiments, that the peptide gH625 is able to reduce the side effects of metallic nanoparticle making them more suitable for medical applications.
Collapse
Affiliation(s)
- Emilia Galdiero
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy.
| | - Lucia Lombardi
- Department of Pharmacy, CiRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, via Università 100, 80055, Portici, Napoli, Italy
| | - Stefania Galdiero
- Department of Pharmacy, CiRPEB-University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Francesca Martucci
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy
| | - Marco Guida
- Department of Biology, University of Naples "Federico II"- Monte Sant'Angelo, 80126, Napoli, Italy
| |
Collapse
|
12
|
Ben Djemaa S, Hervé-Aubert K, Lajoie L, Falanga A, Galdiero S, Nedellec S, Soucé M, Munnier E, Chourpa I, David S, Allard-Vannier E. gH625 Cell-Penetrating Peptide Promotes the Endosomal Escape of Nanovectorized siRNA in a Triple-Negative Breast Cancer Cell Line. Biomacromolecules 2019; 20:3076-3086. [PMID: 31305991 DOI: 10.1021/acs.biomac.9b00637] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of small interfering RNA (siRNA) to regulate oncogenes appears as a promising strategy in the context of cancer therapy, especially if they are vectorized by a smart delivery system. In this study, we investigated the cellular trafficking of a siRNA nanovector (called CS-MSN) functionalized with the cell-penetrating peptide gH625 in a triple-negative breast cancer model. With complementary techniques, we showed that siRNA nanovectors were internalized by both clathrin- and caveolae-mediated endocytosis. The presence of gH625 at the surface of the siRNA nanovector did not modify the entry pathway of CS-MSN, but it increased the amount of siRNA found inside the cells. Results suggested an escape of siRNA from endosomes, which is enhanced by the presence of the peptide gH625, whereas nanoparticles continued their trafficking into lysosomes. The efficiency of CS-MSN to inhibit the GFP in MDA-MB-231 cells was 1.7-fold higher than that of the nanovectors without gH625.
Collapse
Affiliation(s)
- Sanaa Ben Djemaa
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Laurie Lajoie
- EA7501 Groupe Innovation et Ciblage Cellulaire, Equipe Fc Récepteurs, Anticorps et MicroEnvironnement, University of Tours , 37032 Tours , France.,Plateforme Scientifique et Technique, Analyse des systèmes biologiques département des cytométries, University of Tours , 37032 Tours , France
| | - Annarita Falanga
- Department of Agricultural Sciences , University of Naples "Federico II" , Via Università 100 , 80055 Portici , Italy
| | - Stefania Galdiero
- Department of Pharmacy , CIRPEB-University of Naples "Federico II" , Via Mezzocannone 16 , 80134 Napoli , Italy
| | - Steven Nedellec
- Plateforme microPICell, SFR santé François Bonamy-IRSUN , 8 quai Moncousu , BP 70721, 44007 Nantes Cedex, France
| | - Martin Soucé
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Emilie Munnier
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, University of Tours , 37200 Tours , France
| | | |
Collapse
|
13
|
Advances in drug delivery, gene delivery and therapeutic agents based on dendritic materials. Future Med Chem 2019; 11:1791-1810. [DOI: 10.4155/fmc-2018-0452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are synthetic polymers that grow in three dimensions into well-defined structures. Their morphological appearance resembles a number of trees connected by a common point. Dendritic nanoparticles have been studied for a large number of pharmaceutical and biomedical applications including gene and drug delivery, clinical diagnosis and MRI. Despite the application of dendrimers, research is still in its childhood in comparison with liposomes and other nanomaterials. They are now playing a key role in several therapeutic strategies, with dendrimer-based products in clinical trials. The aim of this review is to describe the state-of-the-art of biomedical applications of dendrimers – and dendrimer conjugates – such as drug and gene delivery and antiviral activity.
Collapse
|
14
|
Iachetta G, Falanga A, Molino Y, Masse M, Jabès F, Mechioukhi Y, Laforgia V, Khrestchatisky M, Galdiero S, Valiante S. gH625-liposomes as tool for pituitary adenylate cyclase-activating polypeptide brain delivery. Sci Rep 2019; 9:9183. [PMID: 31235716 PMCID: PMC6591382 DOI: 10.1038/s41598-019-45137-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB) regulates the traffic of molecules into the central nervous system (CNS) and also limits the drug delivery. Due to their flexible properties, liposomes are an attractive tool to deliver drugs across the BBB. We previously characterized gH625, a peptide derived from Herpes simplex virus 1. The present study investigates the efficiency of liposomes functionalized on their surface with gH625 to promote the brain uptake of neuroprotective peptide PACAP (pituitary adenylate cyclase-activating polypeptide). Using a rat in vitro BBB model, we showed that the liposomes preparations were non-toxic for the endothelial cells, as assessed by analysis of tight junction protein ZO1 organization and barrier integrity. Next, we found that gH625 improves the transfer of liposomes across endothelial cell monolayers, resulting in both low cellular uptake and increased transport of PACAP. Finally, in vivo results demonstrated that gH625 ameliorates the efficiency of liposomes to deliver PACAP to the mouse brain after intravenous administration. gH625-liposomes improve both PACAP reaching and crossing the BBB, as showed by the higher number of brain cells labelled with PACAP. gH625-liposomes represent a promising strategy to deliver therapeutic agents to CNS and to provide an effective imaging and diagnostic tool for the brain.
Collapse
Affiliation(s)
- Giuseppina Iachetta
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80126, Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università, 100, 80055, Portici, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | - Vincenza Laforgia
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80126, Naples, Italy
| | | | - Stefania Galdiero
- CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy.,Department of Pharmacy - University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80126, Naples, Italy. .,National Institute of Biostructures and Biosystems (INBB), V. le Medaglie d'Oro, 00136, Rome, Italy.
| |
Collapse
|
15
|
Falanga A, Iachetta G, Lombardi L, Perillo E, Lombardi A, Morelli G, Valiante S, Galdiero S. Enhanced uptake of gH625 by blood brain barrier compared to liver in vivo: characterization of the mechanism by an in vitro model and implications for delivery. Sci Rep 2018; 8:13836. [PMID: 30218088 PMCID: PMC6138628 DOI: 10.1038/s41598-018-32095-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
We have investigated the crossing of the blood brain barrier (BBB) by the peptide gH625 and compared to the uptake by liver in vivo. We clearly observed that in vivo administration of gH625 allows the crossing of the BBB, although part of the peptide is sequestered by the liver. Furthermore, we used a combination of biophysical techniques to gain insight into the mechanism of interaction with model membranes mimicking the BBB and the liver. We observed a stronger interaction for membranes mimicking the BBB where gH625 clearly undergoes a change in secondary structure, indicating the key role of the structural change in the uptake mechanism. We report model studies on liposomes which can be exploited for the optimization of delivery tools.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Giuseppina Iachetta
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy
| | - Lucia Lombardi
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Emiliana Perillo
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Assunta Lombardi
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy.,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples "Federico II", Via Mezzocannone 8, 80134, Napoli, Italy.,National Institute of Biostructures and Biosystems (INBB), V. le Medaglie d'Oro, 00136, Rome, Italy
| | - Stefania Galdiero
- Department of Pharmacy, Via Mezzocannone 16, 80134, Napoli, Italy. .,CiRPEB- University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
16
|
Falanga A, Galdiero M, Morelli G, Galdiero S. Membranotropic peptides mediating viral entry. Pept Sci (Hoboken) 2018; 110:e24040. [PMID: 32328541 PMCID: PMC7167733 DOI: 10.1002/pep2.24040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023]
Abstract
The means used by enveloped viruses to bypass cellular membranes are well characterized; however, the mechanisms used by non-enveloped viruses to deliver their genome inside the cell remain unresolved and poorly defined. The discovery of short, membrane interacting, amphipathic or hydrophobic sequences (known as membranotropic peptides) in both enveloped and non-enveloped viruses suggests that these small peptides are strongly involved in breaching the host membrane and in the delivery of the viral genome into the host cell. Thus, in spite of noticeable differences in entry, this short stretches of membranotropic peptides are probably associated with similar entry-related events. This review will uncover the intrinsic features of viral membranotropic peptides involved in viral entry of both naked viruses and the ones encircled with a biological membrane with the objective to better elucidate their different functional properties and possible applications in the biomedical field.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Massimiliano Galdiero
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli,” Via de CrecchioNaples80134Italy
| | - Giancarlo Morelli
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of MedicineNaples80134Italy
- CIRPEB University of Naples Federico II, Via Mezzocannone 16Naples80134Italy
| |
Collapse
|
17
|
Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018; 23:E2205. [PMID: 30200314 PMCID: PMC6225509 DOI: 10.3390/molecules23092205] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
18
|
Ouyang T, Liu X, Ouyang H, Ren L. Recent trends in click chemistry as a promising technology for virus-related research. Virus Res 2018; 256:21-28. [PMID: 30081058 PMCID: PMC7173221 DOI: 10.1016/j.virusres.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Click chemistry involves reactions that were originally introduced and used in organic chemistry to generate substances by joining small units together with heteroatom linkages (C-X-C). Over the last few decades, click chemistry has been widely used in virus-related research. Using click chemistry, the virus particle as well as viral protein and nucleic acids can be labeled. Subsequently, the labeled virions or molecules can be tracked in real time. Here, we reviewed the recent applications of click reactions in virus-related research, including viral tracking, the design of antiviral agents, the diagnosis of viral infection, and virus-based delivery systems. This review provides an overview of the general principles and applications of click chemistry in virus-related research.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Xiaohui Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
19
|
Peptide chemistry encounters nanomedicine: recent applications and upcoming scenarios in cancer. Future Med Chem 2018; 10:1877-1880. [PMID: 29921135 DOI: 10.4155/fmc-2018-0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017; 22:molecules22111929. [PMID: 29117144 PMCID: PMC6150340 DOI: 10.3390/molecules22111929] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient intracellular drug delivery and target specificity are often hampered by the presence of biological barriers. Thus, compounds that efficiently cross cell membranes are the key to improving the therapeutic value and on-target specificity of non-permeable drugs. The discovery of cell-penetrating peptides (CPPs) and the early design approaches through mimicking the natural penetration domains used by viruses have led to greater efficiency of intracellular delivery. Following these nature-inspired examples, a number of rationally designed CPPs has been developed. In this review, a variety of CPP designs will be described, including linear and flexible, positively charged and often amphipathic CPPs, and more rigid versions comprising cyclic, stapled, or dimeric and/or multivalent, self-assembled peptides or peptido-mimetics. The application of distinct design strategies to known physico-chemical properties of CPPs offers the opportunity to improve their penetration efficiency and/or internalization kinetics. This led to increased design complexity of new CPPs that does not always result in greater CPP activity. Therefore, the transition of CPPs to a clinical setting remains a challenge also due to the concomitant involvement of various internalization routes and heterogeneity of cells used in the in vitro studies.
Collapse
|
21
|
Function Oriented Molecular Design: Dendrimers as Novel Antimicrobials. Molecules 2017; 22:molecules22101581. [PMID: 28934169 PMCID: PMC6151464 DOI: 10.3390/molecules22101581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/03/2022] Open
Abstract
In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and this is probably due to their multi-valency and to the fact that several other chemicals can be coupled to them to obtain desired compounds. In this review we will describe the different production strategies and the tools and technologies for the study of their characteristics. Finally, we provide a panoramic overview of their applications to meet biomedical needs, especially their use as novel antimicrobials.
Collapse
|
22
|
Dimerization in tailoring uptake efficacy of the HSV-1 derived membranotropic peptide gH625. Sci Rep 2017; 7:9434. [PMID: 28842580 PMCID: PMC5572722 DOI: 10.1038/s41598-017-09001-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/14/2017] [Indexed: 01/24/2023] Open
Abstract
gH625 constitutes a promising delivery vehicle for the transport of therapeutic biomacromolecules across membrane barriers. We report an application of multivalency to create a complex nanosystem for delivery and to elucidate the mechanism of peptide-lipid bilayer interactions. Multivalency may offer a route to enhance gH625 cellular uptake as demonstrated by results obtained on dimers of gH625 by fluorescence spectroscopy, circular dichroism, and surface plasmon resonance. Moreover, using both phase contrast and light sheet fluorescence microscopy we were able to characterize and visualize for the first time the fusion of giant unilamellar vesicles caused by a membranotropic peptide.
Collapse
|
23
|
Guarnieri D, Melone P, Moglianetti M, Marotta R, Netti PA, Pompa PP. Particle size affects the cytosolic delivery of membranotropic peptide-functionalized platinum nanozymes. NANOSCALE 2017; 9:11288-11296. [PMID: 28758654 DOI: 10.1039/c7nr02350b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Delivery of therapeutic agents inside the cytosol, avoiding the confinement in endo-lysosomal compartments and their degradative environment, is one of the key targets of nanomedicine to gain the maximum remedial effects. Current approaches based on cell penetrating peptides (CPPs), despite improving the cellular uptake efficiency of nanocarriers, have shown controversial results in terms of intracellular localization. To elucidate the delivery potential of CPPs, in this work we analyzed the role of the particle size in influencing the ability of a membranotropic peptide, namely gH625, to escape the endo-lysosomal pathway and deliver the particles in the cytosol. To this aim, we carried out a systematic assessment of the cellular uptake and distribution of monodisperse platinum nanoparticles (PtNPs), having different diameters (2.5, 5 and 20 nm) and citrate capping or gH625 peptide functionalization. The presence of gH625 significantly increased the amount of internalized NPs in human cervix epithelioid carcinoma cells, as a function of particle size. However, scanning transmission electron microscopy (STEM) and electron tomography (ET) revealed a prevalent confinement of PtNPs within vesicular structures, regardless of the particle size and surface functionalization. Only in the case of the smallest 2.5 nm particles, the membranotropic peptide was able to partly maintain its functionality, enabling cytosolic delivery of a small fraction of internalized PtNPs, though particle agglomeration in culture medium limited single-particle transport across the cell membrane. Interestingly, membrane crossing by 2.5 nm functionalized-PtNPs seemed to occur by diffusion through the lipid bilayer, with no apparent membrane damage. For larger particle sizes (≥5 nm), their hindrance likely blocked the membranotropic mechanism. Combining the enhanced uptake and partial cytosolic delivery promoted by gH625, we were able to achieve a strong improvement of the antioxidant nanozyme function of 2.5 nm PtNPs, decreasing both the endogenous ROS level and its overproduction following an external oxidative insult.
Collapse
Affiliation(s)
- Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego, 30-16163 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Galdiero E, Falanga A, Siciliano A, Maselli V, Guida M, Carotenuto R, Tussellino M, Lombardi L, Benvenuto G, Galdiero S. Daphnia magna and Xenopus laevis as in vivo models to probe toxicity and uptake of quantum dots functionalized with gH625. Int J Nanomedicine 2017; 12:2717-2731. [PMID: 28435254 PMCID: PMC5388222 DOI: 10.2147/ijn.s127226] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The use of quantum dots (QDs) for nanomedicine is hampered by their potential toxicologic effects and difficulties with delivery into the cell interior. We accomplished an in vivo study exploiting Daphnia magna and Xenopus laevis to evaluate both toxicity and uptake of QDs coated with the membranotropic peptide gH625 derived from the glycoprotein H of herpes simplex virus and widely used for drug delivery studies. We evaluated and compared the effects of QDs and gH625-QDs on the survival, uptake, induction of several responsive pathways and genotoxicity in D. magna, and we found that QDs coating plays a key role. Moreover, studies on X. laevis embryos allowed to better understand their cell/tissue localization and delivery efficacy. X. laevis embryos raised in Frog Embryo Teratogenesis Assay-Xenopus containing QDs or gH625-QDs showed that both nanoparticles localized in the gills, lung and intestine, but they showed different distributions, indicating that the uptake of gH625-QDs was enhanced; the functionalized QDs had a significantly lower toxic effect on embryos’ survival and phenotypes. We observed that D. magna and X. laevis are useful in vivo models for toxicity and drug delivery studies.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy and CiRPEB, University of Naples Federico II
| | | | | | | | | | | | - Lucia Lombardi
- Department of Experimental Medicine, Second University of Naples
| | | | | |
Collapse
|
25
|
Kaufman EA, Tarallo R, Falanga A, Galdiero S, Weck M. Generation effect of Newkome dendrimers on cellular uptake. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Falanga A, Lombardi L, Tarallo R, Franci G, Perillo E, Palomba L, Galdiero M, Pontoni D, Fragneto G, Weck M, Galdiero S. The intriguing journey of gH625-dendrimers. RSC Adv 2017. [DOI: 10.1039/c6ra28405a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The knowledge of the mechanism used by vectors to gain access to cell interiors is key to the development of effective drug delivery tools for different pathologies.
Collapse
|
27
|
Perillo E, Porto S, Falanga A, Zappavigna S, Stiuso P, Tirino V, Desiderio V, Papaccio G, Galdiero M, Giordano A, Galdiero S, Caraglia M. Liposome armed with herpes virus-derived gH625 peptide to overcome doxorubicin resistance in lung adenocarcinoma cell lines. Oncotarget 2016; 7:4077-92. [PMID: 26554306 PMCID: PMC4826191 DOI: 10.18632/oncotarget.6013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
New delivery systems including liposomes have been developed to circumvent drug resistance. To enhance the antitumor efficacy of liposomes encapsulating anti-cancer agents, we used liposomes externally conjugated to the 20 residue peptide gH625. Physicochemical characterization of the liposome system showed a size of 140 nm with uniform distribution and high doxorubicin encapsulation efficiency. We evaluated the effects of increasing concentrations of liposomes encapsulating Doxo (LipoDoxo), liposomes encapsulating Doxo conjugated to gH625 (LipoDoxo-gH625), empty liposomes (Lipo) or free Doxo on growth inhibition of either wild type (A549) or doxorubicin-resistant (A549 Dx) human lung adenocarcinoma. After 72 h, we found that the growth inhibition induced by LipoDoxo-gH625 was higher than that caused by LipoDoxo with an IC50 of 1 and 0.3 μM in A549 and A549 Dx cells, respectively. The data on cell growth inhibition were paralleled by an higher oxidative stress and an increased uptake of Doxo induced by LipoDoxo-gH625 compared to LipoDoxo, above all in A549 Dx cells. Cytometric analysis showed that the antiproliferative effects of each drug treatment were mainly due to the induction of apoptosis. In conclusion, liposomes armed with gH625 are able to overcome doxorubicin resistance in lung adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Emiliana Perillo
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Annarita Falanga
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Stiuso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefania Galdiero
- Department of Pharmacy and DFM Scarl - University of Naples "Federico II", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
28
|
Wronska MA, O'Connor IB, Tilbury MA, Srivastava A, Wall JG. Adding Functions to Biomaterial Surfaces through Protein Incorporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5485-5508. [PMID: 27164952 DOI: 10.1002/adma.201504310] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The concept of biomaterials has evolved from one of inert mechanical supports with a long-term, biologically inactive role in the body into complex matrices that exhibit selective cell binding, promote proliferation and matrix production, and may ultimately become replaced by newly generated tissues in vivo. Functionalization of material surfaces with biomolecules is critical to their ability to evade immunorecognition, interact productively with surrounding tissues and extracellular matrix, and avoid bacterial colonization. Antibody molecules and their derived fragments are commonly immobilized on materials to mediate coating with specific cell types in fields such as stent endothelialization and drug delivery. The incorporation of growth factors into biomaterials has found application in promoting and accelerating bone formation in osteogenerative and related applications. Peptides and extracellular matrix proteins can impart biomolecule- and cell-specificities to materials while antimicrobial peptides have found roles in preventing biofilm formation on devices and implants. In this progress report, we detail developments in the use of diverse proteins and peptides to modify the surfaces of hard biomaterials in vivo and in vitro. Chemical approaches to immobilizing active biomolecules are presented, as well as platform technologies for isolation or generation of natural or synthetic molecules suitable for biomaterial functionalization.
Collapse
Affiliation(s)
- Małgorzata A Wronska
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Iain B O'Connor
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Maura A Tilbury
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - Akshay Srivastava
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - J Gerard Wall
- Microbiology and Center for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| |
Collapse
|
29
|
Wan J, Alewood PF. Peptide-Decorated Dendrimers and Their Bioapplications. Angew Chem Int Ed Engl 2016; 55:5124-34. [DOI: 10.1002/anie.201508428] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/01/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Jingjing Wan
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| | - Paul F. Alewood
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| |
Collapse
|
30
|
Wan J, Alewood PF. Mit Peptiden dekorierte Dendrimere und ihre biotechnologische Nutzung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingjing Wan
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australien
| | - Paul F. Alewood
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australien
| |
Collapse
|
31
|
Günay KA, Klok HA. Synthesis of cyclic peptide disulfide–PHPMA conjugates via sequential active ester aminolysis and CuAAC coupling. Polym Chem 2016. [DOI: 10.1039/c5py01817j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy for the preparation of cyclic peptide disulfide–polymer conjugates that does not require peptide protecting groups is reported.
Collapse
Affiliation(s)
- Kemal Arda Günay
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
32
|
Ornelas C. Brief Timelapse on Dendrimer Chemistry: Advances, Limitations, and Expectations. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500393] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Catia Ornelas
- Institute of Chemistry; University of Campinas - Unicamp; Campinas SP 13083-970 Brazil
| |
Collapse
|
33
|
Oueis E, Adamson C, Mann G, Ludewig H, Redpath P, Migaud M, Westwood NJ, Naismith JH. Derivatisable Cyanobactin Analogues: A Semisynthetic Approach. Chembiochem 2015; 16:2646-50. [PMID: 26507241 PMCID: PMC4736454 DOI: 10.1002/cbic.201500494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/24/2022]
Abstract
Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine‐tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger‐scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.
Collapse
Affiliation(s)
- Emilia Oueis
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Catherine Adamson
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Greg Mann
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Hannes Ludewig
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK
| | - Philip Redpath
- John King Medicinal Chemistry Laboratory, School of Pharmacy, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Marie Migaud
- John King Medicinal Chemistry Laboratory, School of Pharmacy, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nicholas J Westwood
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK.
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, KY16 9ST, UK. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Falanga A, Galdiero M, Galdiero S. Membranotropic Cell Penetrating Peptides: The Outstanding Journey. Int J Mol Sci 2015; 16:25323-37. [PMID: 26512649 PMCID: PMC4632803 DOI: 10.3390/ijms161025323] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] Open
Abstract
The membrane bilayer delimits the interior of individual cells and provides them with the ability to survive and function properly. However, the crossing of cellular membranes constitutes the principal impediment to gaining entry into cells, and the potential therapeutic application of many drugs is predominantly dependent on the development of delivery tools that should take the drug to target cells selectively and efficiently with only minimal toxicity. Cell-penetrating peptides are short and basic peptides are widely used due to their ability to deliver a cargo across the membrane both in vitro and in vivo. It is widely accepted that their uptake mechanism involves mainly the endocytic pathway, the drug is catched inside endosomes and lysosomes, and only a small quantity is able to reach the intracellular target. In this wide-ranging scenario, a fascinating novel hypothesis is that membranotropic peptides that efficiently cross biological membranes, promote lipid-membrane reorganizing processes and cause a local and temporary destabilization and reorganization of the membrane bilayer, may also be able to enter cells circumventing the endosomal entrapment; in particular, by either favoring the escape from the endosome or by direct translocation. This review summarizes current data on membranotropic peptides for drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Massimiliano Galdiero
- CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy.
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
- CiRPEB, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
35
|
Guarnieri D, Muscetti O, Falanga A, Fusco S, Belli V, Perillo E, Battista E, Panzetta V, Galdiero S, Netti PA. Surface decoration with gH625-membranotropic peptides as a method to escape the endo-lysosomal compartment and reduce nanoparticle toxicity. NANOTECHNOLOGY 2015; 26:415101. [PMID: 26403519 DOI: 10.1088/0957-4484/26/41/415101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The membranotropic peptide gH625 is able to transport different cargos (i.e., liposomes, quantum dots, polymeric nanoparticles) within and across cells in a very efficient manner. However, a clear understanding of the detailed uptake mechanism remains elusive. In this work, we investigate the journey of gH625-functionalized polystyrene nanoparticles in mouse-brain endothelial cells from their interaction with the cell membrane to their intracellular final destination. The aim is to elucidate how gH625 affects the behavior of the nanoparticles and their cytotoxic effect. The results indicate that the mechanism of translocation of gH625 dictates the fate of the nanoparticles, with a relevant impact on the nanotoxicological profile of positively charged nanoparticles.
Collapse
Affiliation(s)
- D Guarnieri
- Center for Advanced Biomaterials for health Care (CABHC), Istituto Italiano di Tecnologia, Largo Barsanti, Napoli, Italy and Interdisciplinary Research Centre on Biomaterials (CRIB), Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Notomista E, Falanga A, Fusco S, Pirone L, Zanfardino A, Galdiero S, Varcamonti M, Pedone E, Contursi P. The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules. Microb Cell Fact 2015; 14:126. [PMID: 26338197 PMCID: PMC4559164 DOI: 10.1186/s12934-015-0302-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/22/2015] [Indexed: 12/03/2022] Open
Abstract
Background Pathogenic bacteria easily develop resistance to c
onventional antibiotics so that even relatively new molecules are quickly losing efficacy. This strongly encourages the quest of new antimicrobials especially for the treatment of chronic infections. Cationic antimicrobial peptides (CAMPs) are small positively charged peptides with an amphipathic structure, active against Gram-positive and Gram-negative bacteria, fungi, as well as protozoa. Results A novel (CAMP)-like peptide (VLL-28) was identified in the primary structure of a transcription factor, Stf76, encoded by pSSVx, a hybrid plasmid–virus from the archaeon Sulfolobus islandicus. VLL-28 displays chemical, physical and functional properties typical of CAMPs. Indeed, it has a broad-spectrum antibacterial activity and acquires a defined structure in the presence of membrane mimetics. Furthermore, it exhibits selective leakage and fusogenic capability on vesicles with a lipid composition similar to that of bacterial membranes. VLL-28 localizes not only on the cell membrane but also in the cytoplasm of Escherichia coli and retains the ability to bind nucleic acids. These findings suggest that this CAMP-like peptide could exert its antimicrobial activity both on membrane and intra cellular targets. Conclusions VLL-28 is the first CAMP-like peptide identified in the archaeal kingdom, thus pointing to archaeal microorganisms as cell factories to produce antimicrobial molecules of biotechnological interest. Furthermore, results from this work show that DNA/RNA-binding proteins could be used as sources of CAMPs. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0302-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugenio Notomista
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | - Annarita Falanga
- Istituto di Biostrutture Bioimmagini, CNR, 80134, Naples, Italy.
| | - Salvatore Fusco
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | - Luciano Pirone
- Istituto di Biostrutture Bioimmagini, CNR, 80134, Naples, Italy. .,C.I.R.C.M.S.B. (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), via Celso Ulpiani, 27, 70125, Bari, Italy.
| | - Anna Zanfardino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | - Stefania Galdiero
- Istituto di Biostrutture Bioimmagini, CNR, 80134, Naples, Italy. .,Department of Pharmacy and CiRPEB, University of Naples Federico II, 80100, Naples, Italy.
| | - Mario Varcamonti
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| | - Emilia Pedone
- Istituto di Biostrutture Bioimmagini, CNR, 80134, Naples, Italy.
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126, Naples, Italy.
| |
Collapse
|
37
|
Quantitative and qualitative effect of gH625 on the nanoliposome-mediated delivery of mitoxantrone anticancer drug to HeLa cells. Int J Pharm 2015; 488:59-66. [DOI: 10.1016/j.ijpharm.2015.04.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
|
38
|
Arseneault M, Wafer C, Morin JF. Recent advances in click chemistry applied to dendrimer synthesis. Molecules 2015; 20:9263-94. [PMID: 26007183 PMCID: PMC6272213 DOI: 10.3390/molecules20059263] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/12/2015] [Indexed: 11/16/2022] Open
Abstract
Dendrimers are monodisperse polymers grown in a fractal manner from a central point. They are poised to become the cornerstone of nanoscale devices in several fields, ranging from biomedicine to light-harvesting. Technical difficulties in obtaining these molecules has slowed their transfer from academia to industry. In 2001, the arrival of the "click chemistry" concept gave the field a major boost. The flagship reaction, a modified Hüisgen cycloaddition, allowed researchers greater freedom in designing and building dendrimers. In the last five years, advances in click chemistry saw a wider use of other click reactions and a notable increase in the complexity of the reported structures. This review covers key developments in the click chemistry field applied to dendrimer synthesis from 2010 to 2015. Even though this is an expert review, basic notions and references have been included to help newcomers to the field.
Collapse
Affiliation(s)
- Mathieu Arseneault
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Caroline Wafer
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | - Jean-François Morin
- Chimie, Université Laval, 1045 avenue de la Médecine, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| |
Collapse
|
39
|
Valiante S, Falanga A, Cigliano L, Iachetta G, Busiello RA, La Marca V, Galdiero M, Lombardi A, Galdiero S. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood-brain barrier in rats. Int J Nanomedicine 2015; 10:1885-98. [PMID: 25792823 PMCID: PMC4364164 DOI: 10.2147/ijn.s77734] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood-brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Annarita Falanga
- Department of Pharmacy, University of Naples Federico II, Naples, Italy ; DFM Scarl, University of Naples Federico II, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | - Valeria La Marca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | - Assunta Lombardi
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Biology, University of Naples Federico II, Naples, Italy ; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
40
|
Ringhieri P, Diaferia C, Galdiero S, Palumbo R, Morelli G, Accardo A. Liposomal doxorubicin doubly functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J Pept Sci 2015; 21:415-25. [PMID: 25754969 DOI: 10.1002/psc.2759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023]
Abstract
A new dual-ligand liposomal doxorubicin delivery system, which couples targeting to enhanced cellular uptake and may lead to a more efficient drug delivery system, is here designed and synthetized. Liposomes based on the composition 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-Peg2000-R8/(C18)2-L5-SS-CCK8 (87/8/5 mol/mol/mol) were prepared and loaded with doxorubicin. Presence of the two peptides on the external surface is demonstrated by fluorescence resonance energy transfer assay. The combination of the R8 cell-penetrating peptide and of the CCK8 targeting peptide (homing peptide) on the liposome surface is obtained by combining pre-modification and post-modification methods. In the dual-ligand system, the CCK8 peptide is anchored to the liposome surface by using a disulfide bond. This chemical function is inserted in order to promote the selective cleavage of the homing peptide under the reductive conditions expected in proximity of the tumor site, thus allowing targeting and internalization of the liposomal drug.
Collapse
Affiliation(s)
- Paola Ringhieri
- Department of Pharmacy and CIRPeB, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi - University of Naples 'Federico II', Via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Borchmann DE, Tarallo R, Avendano S, Falanga A, Carberry TP, Galdiero S, Weck M. Membranotropic Peptide-Functionalized Poly(lactide)-graft-poly(ethylene glycol) Brush Copolymers for Intracellular Delivery. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dorothee E. Borchmann
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Rossella Tarallo
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Sarha Avendano
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Annarita Falanga
- Department
of Pharmacy, University of Naples “Federico II”, Via Mezzocannone
16, Naples 80134, Italy
| | - Tom P. Carberry
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico II”, Via Mezzocannone
16, Naples 80134, Italy
| | - Marcus Weck
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
42
|
Setaro F, Brasch M, Hahn U, Koay MST, Cornelissen JJLM, de la Escosura A, Torres T. Generation-dependent templated self-assembly of biohybrid protein nanoparticles around photosensitizer dendrimers. NANO LETTERS 2015; 15:1245-1251. [PMID: 25615286 DOI: 10.1021/nl5044055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this article, we show the great potential of dendrimers for driving the self-assembly of biohybrid protein nanoparticles. Dendrimers are periodically branched macromolecules with a perfectly defined and monodisperse structure. Moreover, they allow the possibility to incorporate functional units at predetermined sites, either at their core, branches, or surface. On these bases, we have designed and synthesized negatively charged phthalocyanine (Pc) dendrimers that behave as photosensitizers for the activation of molecular oxygen into singlet oxygen, one of the main reactive species in photodynamic therapy (PDT). The number of surface negative charges depends on dendrimer generation, whereas Pc aggregation can be tuned through the appropriate choice of the Pc metal center and its availability for axial substitution. Remarkably, both parameters determine the outcome and efficiency of the templated self-assembly process by which a virus protein forms 18 nm virus-like particles around these dendritic chromophores. Protein-dendrimer biohybrid nanoparticles of potential interest for therapeutic delivery purposes are obtained in this way. Biohybrid assemblies of this kind will have a central role in future nanomedical and nanotechnology applications.
Collapse
Affiliation(s)
- Francesca Setaro
- Departamento de Química Orgánica (C-I), Universidad Autónoma de Madrid/IMDEA Nanociencia (TT) , Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Falanga A, Tarallo R, Carberry T, Galdiero M, Weck M, Galdiero S. Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PLoS One 2014; 9:e112128. [PMID: 25423477 PMCID: PMC4244103 DOI: 10.1371/journal.pone.0112128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/12/2014] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.
Collapse
Affiliation(s)
- Annarita Falanga
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
| | - Rossella Tarallo
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Thomas Carberry
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | | | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, New York, New York, United States of America
| | - Stefania Galdiero
- Department of Pharmacy & CIRPEB & DFM Scarl, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| |
Collapse
|
44
|
Galdiero S, Falanga A, Morelli G, Galdiero M. gH625: a milestone in understanding the many roles of membranotropic peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:16-25. [PMID: 25305339 PMCID: PMC7124228 DOI: 10.1016/j.bbamem.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/05/2022]
Abstract
Here, we review the current knowledge about viral derived membranotropic peptides, and we discuss how they may be used for many therapeutic applications. While they have been initially discovered in viral fusion proteins and have been involved in the mechanism of viral entry, it is now clear that their features and their mode of interaction with membrane bilayers can be exploited to design viral inhibitors as well as to favor delivery of cargos across the cell membrane and across the blood–brain barrier. The peptide gH625 has been extensively used for all these purposes and provides a significant contribution to the field. We describe the roles of this sequence in order to close the gap between the many functions that are now emerging for membranotropic peptides. Membranotropic peptides and their therapeutic applications Membrane fusion, viral inhibition, drug delivery gH625, a peptide derived from Herpes simplex virus type I: a case study gH625 in vitro and in vivo delivery across the blood–brain barrier
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy.
| | - Annarita Falanga
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy; DFM Scarl, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, II University of Naples, Via De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
45
|
van Dongen M, Dougherty CA, Banaszak Holl MM. Multivalent polymers for drug delivery and imaging: the challenges of conjugation. Biomacromolecules 2014; 15:3215-34. [PMID: 25120091 PMCID: PMC4157765 DOI: 10.1021/bm500921q] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/06/2014] [Indexed: 12/11/2022]
Abstract
Multivalent polymers offer a powerful opportunity to develop theranostic materials on the size scale of proteins that can provide targeting, imaging, and therapeutic functionality. Achieving this goal requires the presence of multiple targeting molecules, dyes, and/or drugs on the polymer scaffold. This critical review examines the synthetic, analytical, and functional challenges associated with the heterogeneity introduced by conjugation reactions as well as polymer scaffold design. First, approaches to making multivalent polymer conjugations are discussed followed by an analysis of materials that have shown particular promise biologically. Challenges in characterizing the mixed ligand distributions and the impact of these distributions on biological applications are then discussed. Where possible, molecular-level interpretations are provided for the structures that give rise to the functional ligand and molecular weight distributions present in the polymer scaffolds. Lastly, recent strategies employed for overcoming or minimizing the presence of ligand distributions are discussed. This review focuses on multivalent polymer scaffolds where average stoichiometry and/or the distribution of products have been characterized by at least one experimental technique. Key illustrative examples are provided for scaffolds that have been carried forward to in vitro and in vivo testing with significant biological results.
Collapse
Affiliation(s)
- Mallory
A. van Dongen
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Casey A. Dougherty
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| | - Mark M. Banaszak Holl
- Chemistry Department, University of Michigan, Ann Arbor, Michigan 48103, United States
| |
Collapse
|
46
|
Humboldt- und Bessel-Forschungspreise. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Humboldt and Bessel Research Awards. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/anie.201405835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Galdiero S, Falanga A, Vitiello M, Grieco P, Caraglia M, Morelli G, Galdiero M. Exploitation of viral properties for intracellular delivery. J Pept Sci 2014; 20:468-78. [PMID: 24889153 PMCID: PMC7168031 DOI: 10.1002/psc.2649] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/23/2023]
Abstract
Nanotechnology is an expanding area of study with potentially pivotal applications in a discipline as medicine where new biomedical active molecules or strategies are continuously developing. One of the principal drawbacks for the application of new therapies is the difficulty to cross membranes that represent the main physiological barrier in our body and in all living cells. Membranes are selectively permeable and allow the selective internalization of substances; generally, they form a highly impermeable barrier to most polar and charged molecules, and represent an obstacle for drug delivery, limiting absorption to specific routes and mechanisms. Viruses provide attracting suggestions for the development of targeted drug carriers as they have evolved naturally to deliver their genomes to host cells with high fidelity. A detailed understanding of virus structure and their mechanisms of entry into mammalian cells will facilitate the development and analysis of virus‐based materials for medical applications. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Via Mezzocannone 16, and Via Domenico Montesano 49, 80100, Napoli, Italy; Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Napoli, Italy; Istituto di Biostrutture e Bioimmagini - CNR, Via Mezzocannone 16, 80134, Napoli, Italy; DFM Scarl, Via Mezzocannone 16, 80134, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Borchmann DE, Carberry TP, Weck M. "Bio"-macromolecules: polymer-protein conjugates as emerging scaffolds for therapeutics. Macromol Rapid Commun 2013; 35:27-43. [PMID: 24323623 DOI: 10.1002/marc.201300792] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/01/2013] [Indexed: 12/26/2022]
Abstract
Polymer-protein conjugates are biohybrid macromolecules derived from covalently connecting synthetic polymers with polypeptides. The resulting materials combine the properties of both worlds: chemists can engineer polymers to stabilize proteins, to add functionality, or to enhance activity; whereas biochemists can exploit the specificity and complexity that Nature has bestowed upon its macromolecules. This has led to a wealth of applications, particularly within the realm of biomedicine. Polymer-protein conjugation has expanded to include scaffolds for drug delivery, tissue engineering, and microbial inhibitors. This feature article reflects upon recent developments in the field and discusses the applications of these hybrids from a biomaterials standpoint.
Collapse
Affiliation(s)
- Dorothee E Borchmann
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Sq. E., New York, New York, 10003, USA
| | | | | |
Collapse
|