1
|
Hill SK, England RM, Perrier S. Modular design of cyclic peptide - polymer conjugate nanotubes for delivery and tunable release of anti-cancer drug compounds. J Control Release 2024; 367:687-696. [PMID: 38262487 DOI: 10.1016/j.jconrel.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
High aspect-ratio nanomaterials have recently emerged as promising drug delivery vehicles due to evidence of strong cellular association and prolonged in vivo circulation times. Cyclic peptide - polymer conjugate nanotubes are excellent candidates due to their elongated morphology, their supramolecular composition and high degree of pliability due to the versatility in manipulating amino acid sequence and polymer type. In this work, we explore the use of a nanotube structure on which a potent anti-cancer drug, camptothecin, is attached alongside hydrophilic or amphiphilic RAFT polymers, which shield the cargo. We show that subtle modifications to the cleavable linker type and polymer architecture have a dramatic influence over the rate of drug release in biological conditions. In vitro studies revealed that multiple cancer cell lines in 2D and 3D models responded effectively to the nanotube treatment, and analogous fluorescently labelled materials revealed key mechanistic information regarding the degree of cellular uptake and intracellular fate. Importantly, the ability to instruct specific drug release profiles indicates a potential for these nanomaterials as vectors which can provide sustained drug concentrations for a maximal therapeutic effect.
Collapse
Affiliation(s)
- Sophie K Hill
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard M England
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
2
|
Aqueous Self-assembly of Extracted Cyclotides from Viola odorata into Novel Stable Supramolecular Structures. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
A Review of Polymeric Micelles and Their Applications. Polymers (Basel) 2022; 14:polym14122510. [PMID: 35746086 PMCID: PMC9230755 DOI: 10.3390/polym14122510] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/21/2022] Open
Abstract
Self-assembly of amphiphilic polymers with hydrophilic and hydrophobic units results in micelles (polymeric nanoparticles), where polymer concentrations are above critical micelle concentrations (CMCs). Recently, micelles with metal nanoparticles (MNPs) have been utilized in many bio-applications because of their excellent biocompatibility, pharmacokinetics, adhesion to biosurfaces, targetability, and longevity. The size of the micelles is in the range of 10 to 100 nm, and different shapes of micelles have been developed for applications. Micelles have been focused recently on bio-applications because of their unique properties, size, shape, and biocompatibility, which enhance drug loading and target release in a controlled manner. This review focused on how CMC has been calculated using various techniques. Further, micelle importance is explained briefly, different types and shapes of micelles are discussed, and further extensions for the application of micelles are addressed. In the summary and outlook, points that need focus in future research on micelles are discussed. This will help researchers in the development of micelles for different applications.
Collapse
|
4
|
Beattie DL, Deane OJ, Mykhaylyk OO, Armes SP. RAFT aqueous dispersion polymerization of 4-hydroxybutyl acrylate: effect of end-group ionization on the formation and colloidal stability of sterically-stabilized diblock copolymer nanoparticles. Polym Chem 2022. [DOI: 10.1039/d1py01562a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(2-hydroxyethyl acrylate)-poly(4-hydroxybutyl acrylate) nano-objects are prepared by aqueous polymerization-induced self-assembly (PISA) using an ionic RAFT agent.
Collapse
Affiliation(s)
- Deborah L. Beattie
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Oliver J. Deane
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Oleksandr O. Mykhaylyk
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Steven P. Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|
5
|
Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem Rev 2021; 121:13936-13995. [PMID: 33938738 PMCID: PMC8824434 DOI: 10.1021/acs.chemrev.0c01291] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/19/2023]
Abstract
This Review focuses on the establishment and development of self-assemblies governed by the supramolecular interactions between cyclic peptides. The Review first describes the type of cyclic peptides able to assemble into tubular structures to form supramolecular cyclic peptide nanotubes. A range of cyclic peptides have been identified to have such properties, including α-peptides, β-peptides, α,γ-peptides, and peptides based on δ- and ε-amino acids. The Review covers the design and functionalization of these cyclic peptides and expands to a recent advance in the design and application of these materials through their conjugation to polymer chains to generate cyclic peptide-polymer conjugates nanostructures. The Review, then, concentrates on the challenges in characterizing these systems and presents an overview of the various analytical and characterization techniques used to date. This overview concludes with a critical survey of the various applications of the nanomaterials obtained from supramolecular cyclic peptide nanotubes, with a focus on biological and medical applications, ranging from ion channels and membrane insertion to antibacterial materials, anticancer drug delivery, gene delivery, and antiviral applications.
Collapse
Affiliation(s)
- Qiao Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Zihe Cheng
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Sophie K. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Rho JY, Perrier S. 100th Anniversary of Macromolecular Science Viewpoint: User's Guide to Supramolecular Peptide-Polymer Conjugates. ACS Macro Lett 2021; 10:258-271. [PMID: 35570781 DOI: 10.1021/acsmacrolett.0c00734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This Viewpoint highlights the design principles and development of peptide-based supramolecular polymers. Here we delve deep into the practicalities of synthesizing and characterizing these macromolecular structures and provide a thorough overview of the benefits and challenges that come with these systems. This Viewpoint emphasizes to beginners and experts alike the importance of understanding the fundamental behavior and self-assembly processes when designing these complex and dynamic functional materials.
Collapse
Affiliation(s)
- Julia Y Rho
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville Victoria 3052, Australia.,Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Tarvirdipour S, Huang X, Mihali V, Schoenenberger CA, Palivan CG. Peptide-Based Nanoassemblies in Gene Therapy and Diagnosis: Paving the Way for Clinical Application. Molecules 2020; 25:E3482. [PMID: 32751865 PMCID: PMC7435460 DOI: 10.3390/molecules25153482] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanotechnology approaches play an important role in developing novel and efficient carriers for biomedical applications. Peptides are particularly appealing to generate such nanocarriers because they can be rationally designed to serve as building blocks for self-assembling nanoscale structures with great potential as therapeutic or diagnostic delivery vehicles. In this review, we describe peptide-based nanoassemblies and highlight features that make them particularly attractive for the delivery of nucleic acids to host cells or improve the specificity and sensitivity of probes in diagnostic imaging. We outline the current state in the design of peptides and peptide-conjugates and the paradigms of their self-assembly into well-defined nanostructures, as well as the co-assembly of nucleic acids to form less structured nanoparticles. Various recent examples of engineered peptides and peptide-conjugates promoting self-assembly and providing the structures with wanted functionalities are presented. The advantages of peptides are not only their biocompatibility and biodegradability, but the possibility of sheer limitless combinations and modifications of amino acid residues to induce the assembly of modular, multiplexed delivery systems. Moreover, functions that nature encoded in peptides, such as their ability to target molecular recognition sites, can be emulated repeatedly in nanoassemblies. Finally, we present recent examples where self-assembled peptide-based assemblies with "smart" activity are used in vivo. Gene delivery and diagnostic imaging in mouse tumor models exemplify the great potential of peptide nanoassemblies for future clinical applications.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (X.H.); (V.M.)
| |
Collapse
|
8
|
|
9
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
10
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
11
|
Han S, Mellot G, Pensec S, Rieger J, Stoffelbach F, Nicol E, Colombani O, Jestin J, Bouteiller L. Crucial Role of the Spacer in Tuning the Length of Self-Assembled Nanorods. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01928] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuaiyuan Han
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Gaëlle Mellot
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Sandrine Pensec
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - François Stoffelbach
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Olivier Colombani
- Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Jacques Jestin
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Bât. 563, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Laurent Bouteiller
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 75252 Paris, France
| |
Collapse
|
12
|
Brendel JC, Catrouillet S, Sanchis J, Jolliffe KA, Perrier S. Shaping block copolymer micelles by supramolecular polymerization: making ‘tubisomes’. Polym Chem 2019. [DOI: 10.1039/c9py00179d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to the respective block copolymers, amphiphilic cyclic peptide conjugates self-assemble into cylindrical micelles independent of the polymer compositions.
Collapse
Affiliation(s)
- Johannes C. Brendel
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | | | - Joaquin Sanchis
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| | | | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry CV4 7AL
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
13
|
Silk MR, Mohanty B, Sampson JB, Scanlon MJ, Thompson PE, Chalmers DK. Controlled Construction of Cyclic d
/ l
Peptide Nanorods. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mitchell R. Silk
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Joanne B. Sampson
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Martin J. Scanlon
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - Philip E. Thompson
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| | - David K. Chalmers
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| |
Collapse
|
14
|
Silk MR, Mohanty B, Sampson JB, Scanlon MJ, Thompson PE, Chalmers DK. Controlled Construction of Cyclic d / l Peptide Nanorods. Angew Chem Int Ed Engl 2018; 58:596-601. [PMID: 30452108 DOI: 10.1002/anie.201811910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/10/2022]
Abstract
Cyclic d / l peptides (CPs) assemble spontaneously via backbone H-bonding to form extended nanostructures. These modular materials have great potential as versatile bionanomaterials. However, the useful development of CP nanomaterials requires practical methods to direct and control their assembly. In this work, we present novel, heterogeneous, covalently linked CP tetramers that achieve local control over the CP subunit order and composition through coupling of amino acid side-chains using copper-activated azide-alkyne cycloaddition and disulfide bond formation. Cryo-transmission electron microscopy revealed the formation of highly ordered, fibrous nanostructures, while NMR studies showed that these systems have strong intramolecular H-bonding in solution. The introduction of inter-CP tethers is expected to enable the development of complex nanomaterials with controllable chemical properties, facilitating the development of precisely functionalized or "decorated" peptide nanostructures.
Collapse
Affiliation(s)
- Mitchell R Silk
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Joanne B Sampson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| |
Collapse
|
15
|
Li Q, Zhang J, Wang Y, Qi W, Su R, He Z. Peptide‐Templated Synthesis of TiO2Nanofibers with Tunable Photocatalytic Activity. Chemistry 2018; 24:18123-18129. [DOI: 10.1002/chem.201804514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
- Collaborative Innovation Centre of Chemical Science, and Engineering (Tianjin) Tianjin 300072 P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination TechnologyTianjin University Tianjin 300072 P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical EngineeringSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 P. R. China
| |
Collapse
|
16
|
Fuertes A, Juanes M, Granja JR, Montenegro J. Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites. Chem Commun (Camb) 2018. [PMID: 28636028 DOI: 10.1039/c7cc02997g] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fabrication of functional molecular devices constitutes one of the most important current challenges for chemical sciences. The complex processes accomplished by living systems continuously demand the assistance of non-covalent interactions between molecular building blocks. Additionally, these building blocks (proteins, membranes, nucleotides) are also constituted by self-assembled structures. Therefore, supramolecular chemistry is the discipline required to understand the properties of the minimal self-assembled building blocks of living systems and to develop new functional smart materials. In the first part of this feature article, we highlight selected examples of the preparation of supramolecular membrane transporters with special emphasis on the application of dynamic covalent bonds. In the second section of the paper we review recent breakthroughs in the preparation of peptide nanotube hybrids with functional applications. The development of these devices constitutes an exciting process from where we can learn how to understand and manipulate supramolecular functional assemblies.
Collapse
Affiliation(s)
- Alberto Fuertes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|
17
|
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170424] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
18
|
Novelli F, De Santis S, Diociaiuti M, Giordano C, Morosetti S, Punzi P, Sciubba F, Viali V, Masci G, Scipioni A. Curcumin loaded nanocarriers obtained by self-assembly of a linear d,l-octapeptide-poly(ethylene glycol) conjugate. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Mikhalevich V, Craciun I, Kyropoulou M, Palivan CG, Meier W. Amphiphilic Peptide Self-Assembly: Expansion to Hybrid Materials. Biomacromolecules 2017; 18:3471-3480. [DOI: 10.1021/acs.biomac.7b00764] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoria Mikhalevich
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Ioana Craciun
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Myrto Kyropoulou
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Cornelia G. Palivan
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Wolfgang Meier
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
20
|
Silk MR, Newman J, Ratcliffe JC, White JF, Caradoc-Davies T, Price JR, Perrier S, Thompson PE, Chalmers DK. Parallel and antiparallel cyclic d/l peptide nanotubes. Chem Commun (Camb) 2017; 53:6613-6616. [PMID: 28581562 DOI: 10.1039/c7cc00846e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanotubes made from H-bonded cyclic d/l peptide (CP) subunits have great potential for the construction of nanomaterials of wide chemical and structural diversity but, to date, difficulties in structural characterisation have restricted development of these materials. We present the first crystal structures of continuous CP nanotubes with antiparallel and parallel stacking arrangements, assembled separately from two peptides; cyclo[(Asp-d-Leu-Lys-d-Leu)2] and cyclo[(Asp-d-Ala-Lys-d-Ala)2].
Collapse
Affiliation(s)
- Mitchell R Silk
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Koh ML, FitzGerald PA, Warr GG, Jolliffe KA, Perrier S. Study of (Cyclic Peptide)-Polymer Conjugate Assemblies by Small-Angle Neutron Scattering. Chemistry 2016; 22:18419-18428. [PMID: 27862384 DOI: 10.1002/chem.201603091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 11/06/2022]
Abstract
We present a fundamental study into the self-assembly of (cyclic peptide)-polymer conjugates as a versatile supramolecular motif to engineer nanotubes with defined structure and dimensions, as characterised in solution using small-angle neutron scattering (SANS). This work demonstrates the ability of the grafted polymer to stabilise and/or promote the formation of unaggregated nanotubes by the direct comparison to the unconjugated cyclic peptide precursor. This ideal case permitted a further study into the growth mechanism of self-assembling cyclic peptides, allowing an estimation of the cooperativity. Furthermore, we show the dependency of the nanostructure on the polymer and peptide chemical functionality in solvent mixtures that vary in the ability to compete with the intermolecular associations between cyclic peptides and ability to solvate the polymer shell.
Collapse
Affiliation(s)
- Ming Liang Koh
- School of Chemistry, The University of Sydney, NSW 2006, Australia.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Gregory G Warr
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | - Sébastien Perrier
- School of Chemistry, The University of Sydney, NSW 2006, Australia.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, VIC 3052, Australia
| |
Collapse
|
22
|
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular Polymers in Aqueous Media. Chem Rev 2016; 116:2414-77. [DOI: 10.1021/acs.chemrev.5b00369] [Citation(s) in RCA: 527] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Pol Besenius
- Institute
of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Boris Rybtchinski
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Günay KA, Klok HA. Synthesis of cyclic peptide disulfide–PHPMA conjugates via sequential active ester aminolysis and CuAAC coupling. Polym Chem 2016. [DOI: 10.1039/c5py01817j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic strategy for the preparation of cyclic peptide disulfide–polymer conjugates that does not require peptide protecting groups is reported.
Collapse
Affiliation(s)
- Kemal Arda Günay
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL)
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques
- Laboratoire des Polymères
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
24
|
Larnaudie SC, Brendel JC, Jolliffe KA, Perrier S. Cyclic peptide-polymer conjugates: Grafting-to vs grafting-from. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27937] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sophie C. Larnaudie
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| | - Johannes C. Brendel
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
| | - Katrina A. Jolliffe
- School of Chemistry; The University of Sydney; Building F11 New South Wales Sydney 2006 Australia
| | - Sébastien Perrier
- Department of Chemistry; University of Warwick; Gibbet Hill Road Coventry CV4 7AL United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences; Monash University; 381 Royal Parade Parkville Victoria 3052 Australia
| |
Collapse
|
25
|
Marine JE, Liang X, Song S, Rudick JG. Azide-rich peptides via an on-resin diazotransfer reaction. Biopolymers 2015; 104:419-26. [PMID: 25753459 PMCID: PMC4516611 DOI: 10.1002/bip.22634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Azide-containing amino acids are valuable building blocks in peptide chemistry, because azides are robust partners in several bioorthogonal reactions. Replacing polar amino acids with apolar, azide-containing amino acids in solid-phase peptide synthesis can be tricky, especially when multiple azide residues are to be introduced in the amino acid sequence. We present a strategy for effectively incorporating multiple azide-containing residues site-specifically.
Collapse
Affiliation(s)
- Jeannette E. Marine
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Xiaoli Liang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuang Song
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
26
|
Catrouillet S, Bouteiller L, Nicol E, Nicolai T, Pensec S, Jacquette B, Le Bohec M, Colombani O. Self-Assembly and Critical Solubility Temperature of Supramolecular Polystyrene Bottle-Brushes in Cyclohexane. Macromolecules 2015. [DOI: 10.1021/ma5024022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sylvain Catrouillet
- IMMM−UMR
CNRS 6283, LUNAM Université, Université du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Laurent Bouteiller
- UMR
8232, IPCM, Chimie des Polymères, Sorbonne Université, UPMC Université Paris 06, F-75005 Paris, France
- UMR
8232, IPCM, Chimie des Polymères, CNRS, 75005 Paris, France
| | - Erwan Nicol
- IMMM−UMR
CNRS 6283, LUNAM Université, Université du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Taco Nicolai
- IMMM−UMR
CNRS 6283, LUNAM Université, Université du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Sandrine Pensec
- UMR
8232, IPCM, Chimie des Polymères, Sorbonne Université, UPMC Université Paris 06, F-75005 Paris, France
- UMR
8232, IPCM, Chimie des Polymères, CNRS, 75005 Paris, France
| | - Boris Jacquette
- IMMM−UMR
CNRS 6283, LUNAM Université, Université du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Maël Le Bohec
- IMMM−UMR
CNRS 6283, LUNAM Université, Université du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Olivier Colombani
- IMMM−UMR
CNRS 6283, LUNAM Université, Université du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| |
Collapse
|
27
|
Cobo I, Li M, Sumerlin BS, Perrier S. Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. NATURE MATERIALS 2015; 14:143-59. [PMID: 25401924 DOI: 10.1038/nmat4106] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
The chemical structure and function of biomacromolecules has evolved to fill many essential roles in biological systems. More specifically, proteins, peptides, nucleic acids and polysaccharides serve as vital structural components, and mediate chemical transformations and energy/information storage processes required to sustain life. In many cases, the properties and applications of biological macromolecules can be further expanded by attaching synthetic macromolecules. The modification of biomacromolecules by attaching a polymer that changes its properties in response to environmental variations, thus affecting the properties of the biomacromolecule, has led to the emergence of a new family of polymeric biomaterials. Here, we summarize techniques for conjugating responsive polymers to biomacromolecules and highlight applications of these bioconjugates reported so far. In doing so, we aim to show how advances in synthetic tools could lead to rapid expansion in the variety and uses of responsive bioconjugates.
Collapse
Affiliation(s)
- Isidro Cobo
- Key Centre for Polymers &Colloids, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Ming Li
- Tyco Fire Protection Products, Mansfield, Texas 76063, USA
| | - Brent S Sumerlin
- George &Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | - Sébastien Perrier
- 1] Department of Chemistry, The University of Warwick, Coventry CV4 7AL, UK [2] Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
28
|
Koh ML, Jolliffe KA, Perrier S. Hierarchical Assembly of Branched Supramolecular Polymers from (Cyclic Peptide)–Polymer Conjugates. Biomacromolecules 2014; 15:4002-11. [DOI: 10.1021/bm501062d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming Liang Koh
- Key Centre
for Polymers and Colloids, School of Chemistry, and ‡School of Chemistry, University of Sydney, Building F11, Sydney, New
South Wales 2006, Australia
| | - Katrina A. Jolliffe
- Key Centre
for Polymers and Colloids, School of Chemistry, and ‡School of Chemistry, University of Sydney, Building F11, Sydney, New
South Wales 2006, Australia
| | - Sébastien Perrier
- Key Centre
for Polymers and Colloids, School of Chemistry, and ‡School of Chemistry, University of Sydney, Building F11, Sydney, New
South Wales 2006, Australia
| |
Collapse
|
29
|
Blunden BM, Chapman R, Danial M, Lu H, Jolliffe KA, Perrier S, Stenzel MH. Drug conjugation to cyclic peptide-polymer self-assembling nanotubes. Chemistry 2014; 20:12745-9. [PMID: 25146103 DOI: 10.1002/chem.201403130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 12/26/2022]
Abstract
We show for the first time how polymeric nanotubes (NTs) based on self-assembled conjugates of polymers and cyclic peptides can be used as an efficient drug carrier. RAPTA-C, a ruthenium-based anticancer drug, was conjugated to a statistical co-polymer based on poly(2-hydroxyethyl acrylate) (pHEA) and poly(2-chloroethyl methacrylate) (pCEMA), which formed the shell of the NTs. Self-assembly into nanotubes (length 200-500 nm) led to structures exhibiting high activity against cancer cells.
Collapse
Affiliation(s)
- Bianca M Blunden
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Cooperative Research Centre (CRC) for Polymers, 8 Redwood Drive, Notting Hill, Victoria 3618 (Australia)
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).
| |
Collapse
|
32
|
Danial M, Tran CMN, Jolliffe KA, Perrier S. Thermal gating in lipid membranes using thermoresponsive cyclic peptide-polymer conjugates. J Am Chem Soc 2014; 136:8018-26. [PMID: 24810461 DOI: 10.1021/ja5024699] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The partition and self-assembly of a new generation of cyclic peptide-polymer conjugates into well-defined phospholipid trans-bilayer channels is presented. By varying the structural parameters of the cyclic peptide-polymer conjugates through the ligation of hydrophobic and hydrophilic polymers, both the structure of the artificial channels using large unilamellar vesicle assays and the structural parameters required for phospholipid bilayer partitioning are elucidated. In addition, temperature was used as an external stimulus for the modulation of transbilayer channel formation without requiring the redesign and synthesis of the cyclic peptide core. The thermoresponsive character of the cyclic peptide-polymer conjugates lays the foundation for on-demand control over phospholipid transmembrane transport, which could lead to viable alternatives to current transport systems that traditionally rely on endocytic pathways.
Collapse
Affiliation(s)
- Maarten Danial
- Key Centre for Polymers & Colloids, ‡School of Chemistry, The University of Sydney , Building F11, Sydney NSW 2006, Australia
| | | | | | | |
Collapse
|
33
|
Janus cyclic peptide–polymer nanotubes. Nat Commun 2013; 4:2780. [DOI: 10.1038/ncomms3780] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/16/2013] [Indexed: 12/23/2022] Open
|
34
|
Catrouillet S, Fonteneau C, Bouteiller L, Delorme N, Nicol E, Nicolai T, Pensec S, Colombani O. Competition Between Steric Hindrance and Hydrogen Bonding in the Formation of Supramolecular Bottle Brush Polymers. Macromolecules 2013. [DOI: 10.1021/ma401167n] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sylvain Catrouillet
- LUNAM Université,
Université du Maine, IMMM−UMR CNRS 6283, Université
du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Cécile Fonteneau
- UPMC Univ Paris
6, UMR 7610, Chimie des Polymères, and CNRS, UMR 7610, Chimie
des Polymères, 75005 Paris, France
| | - Laurent Bouteiller
- UPMC Univ Paris
6, UMR 7610, Chimie des Polymères, and CNRS, UMR 7610, Chimie
des Polymères, 75005 Paris, France
| | - Nicolas Delorme
- LUNAM Université,
Université du Maine, IMMM−UMR CNRS 6283, Université
du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Erwan Nicol
- LUNAM Université,
Université du Maine, IMMM−UMR CNRS 6283, Université
du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Taco Nicolai
- LUNAM Université,
Université du Maine, IMMM−UMR CNRS 6283, Université
du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Sandrine Pensec
- UPMC Univ Paris
6, UMR 7610, Chimie des Polymères, and CNRS, UMR 7610, Chimie
des Polymères, 75005 Paris, France
| | - Olivier Colombani
- LUNAM Université,
Université du Maine, IMMM−UMR CNRS 6283, Université
du Maine, av. O. Messiaen, 72085 Le Mans Cedex 9, France
| |
Collapse
|
35
|
Royal Australian Chemical Institute National Awards / WATOC Schrödinger Medal: S. Grimme / Vice-President of the Académie des Sciences: B. Meunier / Rutherford Medal, MacDiarmid Medal, and Hector Medal: M. Brimble. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Royal Australian Chemical Institute National Awards / WATOC-Schrödinger-Medaille: S. Grimme / / Vizepräsident der Académie des Sciences: B. Meunier / Rutherford-Medaille, MacDiarmid-Medaille und Hector-Medaille: M. Brimble. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Chapman R, Bouten PJM, Hoogenboom R, Jolliffe KA, Perrier S. Thermoresponsive cyclic peptide – poly(2-ethyl-2-oxazoline) conjugate nanotubes. Chem Commun (Camb) 2013; 49:6522-4. [DOI: 10.1039/c3cc42327a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Chapman R, Koh ML, Warr GG, Jolliffe KA, Perrier S. Structure elucidation and control of cyclic peptide-derived nanotube assemblies in solution. Chem Sci 2013. [DOI: 10.1039/c3sc00064h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|