1
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024; 63:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Wen X, Wang F, Du S, Jiang Y, Zhang L, Liu M. Achiral Solvent Inversed Helical Pathway and Cosolvent Controlled Excited-State "Majority Rule" in Enantiomeric Dansulfonamide Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401954. [PMID: 38733233 DOI: 10.1002/smll.202401954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Achiral solvents are commonly utilized to induce the self-assembly of chiral molecules. This study demonstrates that achiral solvents can trigger helicity inversion in the assemblies of dansyl amphiphiles and control the excited-state "majority rule" in assemblies composed of pure enantiomers, through variation of the cosolvent ratio. Specifically, enantiomers of dansyl amphiphiles self-assemble into helical structures with opposite handedness in methanol (MeOH) and acetonitrile (MeCN), together with inversed circular dichroism and circularly polarized luminescence (CPL) signals. When a mixture of MeOH and MeCN is employed, the achiral cosolvents collectively affect the CPL of the assemblies in a way similar to that of "mixed enantiomers". The dominant cosolvent governs the CPL signal. As the cosolvent composition shifts from pure MeCN to MeOH, the CPL signals undergo a significant inversion and amplification, with two maxima observed at ≈20% MeOH and 20% MeCN. This study deepens the comprehension of how achiral solvents modulate helical nanostructures and their excited-state chiroptical properties.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fulin Wang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Ma H, Cheng X, Zhang G, Miao T, He Z, Zhang W. Revealing Pathway Complexity and Helical Inversion in Supramolecular Assemblies Through Solvent-Induced Radical Disparities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308371. [PMID: 38311583 PMCID: PMC11005740 DOI: 10.1002/advs.202308371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/06/2024] [Indexed: 02/06/2024]
Abstract
New insights are raised to interpret pathway complexity in the supramolecular assembly of chiral triarylamine tris-amide (TATA) monomer. In cosolvent systems, the monomer undergoes entirely different assembly processes depending on the chemical feature of the two solvents. Specifically, 1,2-dichloroethane (DCE) and methylcyclohexane (MCH) cosolvent trigger the cooperative growth of monomers with M helical arrangement, and hierarchical thin nanobelts are further formed. But in DCE and hexane (HE) combination, a different pathway occurs where monomers go through isodesmic growth to generate twisted nanofibers with P helical arrangement. Moreover, the two distinct assemblies exhibit opposite excited-state chirality. The driving force for both assemblies is the formation of intermolecular hydrogen bonds between amide moieties. However, the mechanistic investigation indicates that radical and neutral triarylamine species go through distinct assembly phases by changing solvent structures. The neutralization of radicals in MCH plays a critical role in pathway complexity, which significantly impacts the overall supramolecular assembly process, giving rise to inversed supramolecular helicity and distinct morphologies. This differentiation in pathways affected by radicals provides a new approach to manipulate chiral supramolecular assembly process by facile solvent-solute interactions.
Collapse
Affiliation(s)
- Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsSuzhou Key Laboratory of Macromolecular Design and Precision SynthesisCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsSuzhou Key Laboratory of Macromolecular Design and Precision SynthesisCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsSuzhou Key Laboratory of Macromolecular Design and Precision SynthesisCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Tengfei Miao
- Jiangsu Key Laboratory for Chemistry of Low‐Dimensional MaterialsSchool of Chemistry and Chemical EngineeringHuaiyin Normal UniversityHuaian223300China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsSuzhou Key Laboratory of Macromolecular Design and Precision SynthesisCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric MaterialsJiangsu Engineering Laboratory of Novel Functional Polymeric MaterialsSuzhou Key Laboratory of Macromolecular Design and Precision SynthesisCollege of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhou215123China
- School of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000China
| |
Collapse
|
4
|
Pál D, Lacour J. Pfeiffer effect on configurationally labile dyes within ternary complexes with metal ions and enantiopure macrocycles. Dalton Trans 2024; 53:2665-2669. [PMID: 38224291 PMCID: PMC10845008 DOI: 10.1039/d3dt04098d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
A configurationally-labile helical dye, 2,4,5,7-tetranitrofluorenone oximate, is used to probe complexes made of enantiopure macrocycles and mono/divalent metal ions. Induced electronic circular dichroism (ECD) and 1H NMR responses are amplified at room temperature only in the presence of K+ and Na+ ions despite larger binding efficiency with alkaline earth metal ions.
Collapse
Affiliation(s)
- Dávid Pál
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland.
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Yao Q, Liu R, Yang Z, Wei J. Using a molecular additive to control chiral supramolecular assembly and the subsequent chirality transfer process. SOFT MATTER 2023; 19:8680-8683. [PMID: 37916423 DOI: 10.1039/d3sm01211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Hierarchical assembly of chiral molecules is achieved through the introduction of molecular additives, which enables the chiral assembly of nanosheets into helical nanorods with inverted chirality. Moreover, the hierarchical assembly of chiral molecules in the presence of a molecular additive can lead to the subsequent chirality transfer from a molecular system to nanoparticle assemblies.
Collapse
Affiliation(s)
- Qingyuan Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China.
| |
Collapse
|
6
|
Wang L, Cheng Q, Hao A, Xing P. Biogenetic Chiral Deep Eutectic Solvents that Produce Self-Assembled Chiroptical Materials. Angew Chem Int Ed Engl 2023; 62:e202313536. [PMID: 37750571 DOI: 10.1002/anie.202313536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Deep eutectic solvents (DESs) show particular properties compared to ionic liquids and other traditional organic solvents. Controlled synthesis of chiral materials in DESs is unprecedented due to the complex interplays between DESs and solutes. In this work, all bio-derived chiral DESs were prepared using choline chloride or cyclodextrin as hydrogen bonding acceptors and natural chiral acids as donors, which performed as chiral matrices for the rational synthesis of chiroptical materials by taking advantage of the efficient chirality transfer between the DESs and solutes. In a very selective manner, building units with molecular pockets could facilitate strong binding affinity towards chiral acid components of DESs disregarding the presence of competitive hydrogen bonding acceptors. Chirality transfer from DESs to nanoassemblies leads to chirality amplification in the presence of minimal amounts of entrapped chiral acids, thanks to the spontaneous symmetry breaking of solutes during aggregation. This work utilizes chiral DESs to control supramolecular chirality, and illustrates the structural basis for the fabrication of DES-based chiral materials.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
7
|
Abstract
As an active branch within the field of supramolecular polymers, chiral supramolecular polymers (SPs) are an excellent benchmark to generate helical structures that can clarify the origin of homochirality in Nature or help determine new exciting functionalities of organic materials. Herein, we highlight the most utilized strategies to build up chiral SPs by using chiral monomeric units or external stimuli. Selected examples of transfer of asymmetry, in which the point or axial chirality contained by the monomeric units is efficiently transferred to the supramolecular scaffold yielding enantioenriched helical structures, will be presented. The importance of the thermodynamics and kinetics associated with those processes is stressed, especially the influence that parameters such as the helix reversal and mismatch penalties exert on the achievement of amplification of asymmetry in co-assembled systems will also be considered. Remarkable examples of breaking symmetry, in which chiral supramolecular polymers can be attained from achiral self-assembling units by applying external stimuli like stirring, solvent or light, are highlighted. Finally, the specific and promising applications of chiral supramolecular polymers are presented with recent relevant examples.
Collapse
Affiliation(s)
- Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| |
Collapse
|
8
|
Naranjo C, Doncel-Giménez A, Gómez R, Aragó J, Ortí E, Sánchez L. Solvent-dependent self-assembly of N-annulated perylene diimides. From dimers to supramolecular polymers. Chem Sci 2023; 14:9900-9909. [PMID: 37736635 PMCID: PMC10510848 DOI: 10.1039/d3sc03372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
The synthesis and self-assembling features of the N-annulated perylene diimide (NPBI) 1 in different solvents are reported. Compound 1 possesses two chiral linkers, derived from (S)-(+)-alaninol, that connect the central aromatic NPBI segment and the peripheral trialkoxybenzamide units. The Ala-based linker has been demonstrated to strongly favor the formation of intramolecularly H-bonded seven-membered pseudocycles. NPBI 1 shows a strong tendency to self-assemble even in a good solvent like CHCl3 and the formation of chiral dimers is detected in this good solvent. Both experimental techniques and theoretical calculations reveal that the intramolecular H-bonded pseudocycles are very robust and the formation of chiral dimers is driven by the π-stacking of two units of the NPBI core. Unexpectedly, an efficient transfer of the asymmetry of the point chirality at the linker to the aromatic moiety is observed in the molecularly dissolved state. Changing the solvent to more apolar methylcyclohexane modifies the self-assembly process and the formation of chiral supramolecular polymers is detected. The supramolecular polymerization of 1 is demonstrated to follow an isodesmic mechanism unlike previous referable systems. In the formation of the supramolecular polymers of 1, the combination of experimental and computational data indicates that the H-bonded pseudocycles are also present in the aggregated state and the rope-like, columnar aggregates formed by the self-assembly of 1 rely on the π-stacking of the NPBI backbones.
Collapse
Affiliation(s)
- Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Azahara Doncel-Giménez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
9
|
Hirao T, Kishino S, Haino T. Supramolecular chiral sensing by supramolecular helical polymers. Chem Commun (Camb) 2023; 59:2421-2424. [PMID: 36727639 DOI: 10.1039/d2cc06502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A tetrakis(porphyrin) with branched side chains self-assembled to form supramolecular helical polymers both in solution and in the solid state. The helicity of the supramolecular polymers was determined by the chirality of solvent molecules, which permitted the polymer chains to be used in chiral sensing.
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Sei Kishino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan. .,International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
10
|
Sang Y, Zhu Q, Zhou X, Jiang Y, Zhang L, Liu M. Ultrasound-Directed Symmetry Breaking and Spin Filtering of Supramolecular Assemblies from only Achiral Building Blocks. Angew Chem Int Ed Engl 2023; 62:e202215867. [PMID: 36522559 DOI: 10.1002/anie.202215867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Herein we describe the self-assembly of an achiral molecule into macroscopic helicity as well as the emergent chiral-selective spin-filtering effect. It was found that a benzene-1,3,5-tricarboxamide (BTA) motif with an aminopyridine group in each arm could coordinate with AgI and self-assemble into nanospheres. Upon sonication, symmetry breaking occurred and the nanospheres transferred into helical nanofibers with strong CD signals. Although the sign of the CD signals appeared randomly, it could be controlled by using the as-made chiral assemblies as a seed. Furthermore, it was found that the charge transport of the helical nanofibers was highly selective with a spin-polarization transport of up to 45 %, although the chiral nanofibers are composed exclusively from achiral building blocks. This work demonstrates symmetry breaking under sonication and the chiral-selective spin-filtering effect.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qirong Zhu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xiaoqin Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences Department, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Moharana P, Santosh G. Self‐assembled supramolecular organogels of Perylene diimide derivatives. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prajna Moharana
- Division of Chemistry, School of Advanced Sciences Vellore Institute of Technology Chennai INDIA
| | - G. Santosh
- Division of Chemistry, School of Advanced Sciences Vellore Institute of Technology Chennai INDIA
| |
Collapse
|
12
|
Zhang XJ, Morishita D, Aoki T, Itoh Y, Yano K, Araoka F, Aida T. Anomalous Chiral Transfer: Supramolecular Polymerization in a Chiral Medium of a Mesogenic Molecule. Chem Asian J 2022; 17:e202200223. [PMID: 35338598 DOI: 10.1002/asia.202200223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Here, we report a medium-to-polymer anomalous chiral transfer in supramolecular polymerization of a tetraphenylporphyrinbased achiral hydrogen-bonding monomer ( TPP ) in a chiral medium of 5-cyanobiphenyl CB* . A mixture of TPP in ( R )- CB* ([ TPP ] = 7.7 mol%) at 40 °C gave a columnar oblique LC mesophase, where the individual columns were composed of an optically active helical supramolecular polymer of TPP as a consequence of a successful medium-to-polymer chiral transfer. Meanwhile, upon dilution of CB* with achiral 5-cyanobiphenyl CB , the optical activity of the system showed an anomalous bell-shaped dependency on the composition of CB* / CB , where the g abs value of 0.049 at CB* / CB = 50/50 was 6.0 times larger than the g abs value of CB* alone. Such anomalous chiroptical amplification in CD is most likely due to a change in the stacking geometry of TPP in the oblique columnar LC upon lateral compression.
Collapse
Affiliation(s)
- Xu-Jie Zhang
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Daiki Morishita
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Tsubasa Aoki
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Yoshimitsu Itoh
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | - Keiichi Yano
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry and Biotechnology, JAPAN
| | | | - Takuzo Aida
- School of Engineering, U. Tokyo, Dept. Chemistry and Biotechnology, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, JAPAN
| |
Collapse
|
13
|
Wilson‐Kovacs RS, Fang X, Hagemann MJL, Symons HE, Faul CFJ. Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry 2022; 28:e202103443. [PMID: 34595777 PMCID: PMC9298417 DOI: 10.1002/chem.202103443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 12/13/2022]
Abstract
The number and type of new supramolecular polymer (SMP) systems have increased rapidly in recent years. Some of the key challenges faced for these novel systems include gaining full control over the mode of self-assembly, the creation of novel architectures and exploring functionality. Here, we provide a critical overview of approaches related to perylene-based SMPs and discuss progress to exert control over these potentially important SMPs through chemical modification of the imide substituents. Imide substitutions affect self-assembly behaviour orthogonally to the intrinsic optoelectronic properties of the perylene core, making for a valuable approach to tune SMP properties. Several recent approaches are therefore highlighted, with a focus on controlling 1) morphology, 2) H- or J- aggregation, and 3) mechanism of growth and degree of aggregation using thermodynamic and kinetic control. Areas of potential future exploration and application of these functional SMPs are also explored.
Collapse
Affiliation(s)
| | - Xue Fang
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Henry E. Symons
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Charl F. J. Faul
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| |
Collapse
|
14
|
Ding J, Pan H, Wang H, Ren XK, Chen Z. Asymmetric living supramolecular polymerization of an achiral aza-BODIPY dye by solvent-mediated chirality induction and memory. Org Chem Front 2022. [DOI: 10.1039/d2qo00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic self-assembly properties of an achiral aza-BODIPY dye 1 bearing two hydrophobic fan-shaped tridodecyloxybenzamide pendants through 1,2,3-triazole linkages was investigated in detail in chiral solvents (S)- and (R)-limonene by...
Collapse
|
15
|
Miao T, Cheng X, Qian Y, Zhuang Y, Zhang W. Engineering Achiral Liquid Crystalline Polymers for Chiral Self-Recovery. Int J Mol Sci 2021; 22:11980. [PMID: 34769412 PMCID: PMC8584346 DOI: 10.3390/ijms222111980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/30/2023] Open
Abstract
Flexible construction of permanently stored supramolecular chirality with stimulus-responsiveness remains a big challenge. Herein, we describe an efficient method to realize the transfer and storage of chirality in intrinsically achiral films of a side-chain polymeric liquid crystal system by combining chiral doping and cross-linking strategy. Even the helical structure was destroyed by UV light irradiation, the memorized chiral information in the covalent network enabled complete self-recovery of the original chiral superstructure. These results allowed the building of a novel chiroptical switch without any additional chiral source in multiple types of liquid crystal polymers, which may be one of the competitive candidates for use in stimulus-responsive chiro-optical devices.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; (T.M.); (X.C.); (Y.Q.); (Y.Z.)
| |
Collapse
|
16
|
Mondal AK, Preuss MD, Ślęczkowski ML, Das TK, Vantomme G, Meijer EW, Naaman R. Spin Filtering in Supramolecular Polymers Assembled from Achiral Monomers Mediated by Chiral Solvents. J Am Chem Soc 2021; 143:7189-7195. [PMID: 33926182 PMCID: PMC8297732 DOI: 10.1021/jacs.1c02983] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
In past studies,
spin selective transport was observed in polymers
and supramolecular structures that are based on homochiral building
blocks possessing stereocenters. Here we address the question to what
extent chiral building blocks are required for observing the chiral
induced spin selectivity (CISS) effect. We demonstrate the CISS effect
in supramolecular polymers exclusively containing achiral monomers,
where the supramolecular chirality was induced by chiral solvents
that were removed from the fibers before measuring. Spin-selective
transport was observed for electrons transmitted perpendicular to
the fibers’ long axis. The spin polarization correlates with
the intensity of the CD spectra of the polymers, indicating that the
effect is nonlocal. It is found that the spin polarization increases
with the samples’ thickness and the thickness dependence is
the result of at least two mechanisms: the first is the CISS effect,
and the second reduces the spin polarization due to scattering. Temperature
dependence studies provide the first support for theoretical work
that suggested that phonons may contribute to the spin polarization.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marco D Preuss
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marcin L Ślęczkowski
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tapan Kumar Das
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Liao L, Jia X, Lou H, Zhong J, Liu H, Ding S, Chen C, Hong S, Luo X. Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Adv 2021; 11:11519-11528. [PMID: 35423629 PMCID: PMC8695936 DOI: 10.1039/d1ra00647a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
As one of the most important and fruitful methods, supramolecular self-assembly has a significant advantage in designing and fabricating functional soft materials with various nanostructures. In this research, a low-molecular-weight gelator, N,N'-di(pyridin-4-yl)-pyridine-3,5-dicarboxamide (PDA-N4), was synthesized and used to construct self-assembled gels via a solvent-mediated strategy. It was found that PDA-N4 could form supramolecular gels in mixed solvents of water and DMSO (or DMF) at high water fraction (greater than or equal to 50%). By decreasing the water fraction from 50% to 30%, the gel, suspension and solution phases appeared successively, indicating that self-assembled aggregates could be efficiently modulated via water content in organic solvents. Moreover, the as-prepared PDA-N4 supramolecular gels not only displayed solid-like behavior, and pH- and thermo-reversible characteristics, but also showed a solution-gel-crystal transition with the extension of aging time. Further analyses suggested that both the crystal and gel had similar assembled structures. The intermolecular hydrogen bonding between amide groups and the π-π stacking interactions between pyridine groups played key roles in gel formation. Additionally, the release behavior of vitamin B12 (VB12) from PDA-N4 gel (H2O/DMSO, v/v = 90/10) was evaluated, and the drug controlled release process was consistent with a first-order release mechanism. The human umbilical venous endothelial cell culture results showed that the PDA-N4 xerogel has good cytocompatibility, which implied that the gels have potential biological application in tissue engineering and controlled drug release.
Collapse
Affiliation(s)
- Lieqiang Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Haoxiang Lou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Jinlian Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Shunming Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Sanguo Hong
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
18
|
Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nat Chem 2021; 13:200-207. [PMID: 33257888 DOI: 10.1038/s41557-020-00583-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Solute-solvent interactions are key for the assembly and proper functioning of biomacromolecules and play important roles in many fields of organic and polymer chemistry. Despite numerous reports describing the effects of (chiral) solvents on helical conformations of (supramolecular) polymers, the combination of chiral solvents and chiral monomers is unexplored. Here we report diastereomeric differences in the supramolecular polymerization of enantiomers of chiral triphenylene-2,6,10-tricarboxamides in chiral chlorinated solvents. Competition between the preferences induced by the stereocentres of the assembled monomers and those present in the solvent molecules results in unforeseen temperature-dependent solvation effects. By combining experiments and mathematical modelling, we show that the observed differences between enantiomers originate from the combined additive entropic effects of stereocentres present in the monomer and in the solvent. Remarkably, copolymerizations show that the chiral solvent can bias the copolymer helicity and thereby overrule the helical preference of the monomers. Our results highlight the importance of cumulative solvation effects in supramolecular polymerizations.
Collapse
|
19
|
Mabesoone MJ, Palmans ARA, Meijer EW. Solute-Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. J Am Chem Soc 2020; 142:19781-19798. [PMID: 33174741 PMCID: PMC7705892 DOI: 10.1021/jacs.0c09293] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Interactions between solvents and solutes are a cornerstone of physical organic chemistry and have been the subject of investigations over the last century. In recent years, a renewed interest in fundamental aspects of solute-solvent interactions has been sparked in the field of supramolecular chemistry in general and that of supramolecular polymers in particular. Although solvent effects in supramolecular chemistry have been recognized for a long time, the unique opportunities that supramolecular polymers offer to gain insight into solute-solvent interactions have become clear relatively recently. The multiple interactions that hold the supramolecular polymeric structure together are similar in strength to those between solute and solvent. The cooperativity found in ordered supramolecular polymers leads to the possibility of amplifying these solute-solvent effects and will shed light on extremely subtle solvation phenomena. As a result, many exciting effects of solute-solvent interactions in modern physical organic chemistry can be studied using supramolecular polymers. Our aim is to put the recent progress into a historical context and provide avenues toward a more comprehensive understanding of solvents in multicomponent supramolecular systems.
Collapse
Affiliation(s)
- Mathijs
F. J. Mabesoone
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and the Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
20
|
Langmuir-Blodgett films of two chiral perylene bisimide-based molecules: Aggregation and supramolecular chirality. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124563] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Schmidt H, Würthner F. A Periodic System of Supramolecular Elements. Angew Chem Int Ed Engl 2020; 59:8766-8775. [DOI: 10.1002/anie.201915643] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hans‐Werner Schmidt
- Makromolekulare Chemie Universität Bayreuth Universitätsstrasse 30 95447 Bayreuth Germany
- Bavarian Polymer Institute (BPI) Universität Bayreuth & Universität Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
- Bavarian Polymer Institute (BPI) Universität Bayreuth & Universität Würzburg Germany
| |
Collapse
|
22
|
Affiliation(s)
- Hans‐Werner Schmidt
- Makromolekulare Chemie Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Deutschland
- Bayerisches Polymerinstitut (BPI) Universität Bayreuth & Universität Würzburg Deutschland
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Bayerisches Polymerinstitut (BPI) Universität Bayreuth & Universität Würzburg Deutschland
| |
Collapse
|
23
|
Nair VS, Vedhanarayanan B, Ajayaghosh A. Controlling the Supramolecular Polymerization of Donor‐Acceptor π‐Systems through Hydrogen Bond Intervention. Chempluschem 2019; 84:1405-1412. [DOI: 10.1002/cplu.201900276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Vishnu Sukumaran Nair
- Photosciences and Photonics Section Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram- 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Balaraman Vedhanarayanan
- Photosciences and Photonics Section Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram- 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram- 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
24
|
Ling W, Cheng X, Miao T, Zhang S, Zhang W, Zhu X. Synthesis and Photocontrolled Supramolecular Self-Assembly of Azobenzene-Functionalized Perylene Bisimide Derivatives. Polymers (Basel) 2019; 11:polym11071143. [PMID: 31277350 PMCID: PMC6681406 DOI: 10.3390/polym11071143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/28/2022] Open
Abstract
Azobenzene (Azo) units were successfully introduced into perylene bisimide (PBI) structures in order to realize the photocontrolling of the morphology of the supramolecular assembly of PBI by a photoisomerization process. A total of three Azo-functionalized perylene bisimide derivatives (PBI1, PBI2, and PBI3) with different alkyl chain lengths were designed and synthesized by imidization of 3,4,9,10-perylene tetracarboxylic dianhydride with the corresponding amines. The structures of these compounds were characterized by proton nuclear magnetic resonance (1H NMR) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The photoisomerization behaviors of Azo units in PBIs were investigated using ultraviolet-visible (UV-VIS) absorption spectroscopy, which were obviously effected by solvents and the alkyl chain length. Furthermore, the photoisomerization of Azo units has the obviously regulatory effect on the morphology of supramolecular assembly of PBIs, especially for the medium-length alkyl chain-linked Azo-functionalized PBI derivative (PBI2). This research realized the photocontrolling of the morphology of the supramolecular assembly of PBI derivatives by photoisomerization of Azo units.
Collapse
Affiliation(s)
- Weikang Ling
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuangshuang Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Global Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China
| |
Collapse
|
25
|
Xue S, Xing P, Zhang J, Zeng Y, Zhao Y. Diverse Role of Solvents in Controlling Supramolecular Chirality. Chemistry 2019; 25:7426-7437. [PMID: 30791175 DOI: 10.1002/chem.201900714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shixin Xue
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Pengyao Xing
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jingbo Zhang
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yongfei Zeng
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
26
|
Maiti B, Bhattacharjee S, Bhattacharya S. Perfluoroarene induces a pentapeptidic hydrotrope into a pH-tolerant hydrogel allowing naked eye sensing of Ca 2+ ions. NANOSCALE 2019; 11:2223-2230. [PMID: 30656328 DOI: 10.1039/c8nr08126c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembly of a novel thermoresponsive, pyrene-appended oligopeptide sequence VPGKP (PyP) leads to the formation of spherical aggregates in water. The sizes of the globular aggregates of the peptide, PyP, strongly depend on the temperature of its suspension in water and decrease with the decrease in temperature showing a lower critical solution temperature (LCST) phenomenon. Furthermore, a pyrene-octafluoronaphthalene (OFN) 'pair' has been used as a supramolecular synthon to induce hydrogelation of PyP in the presence of an equimolar amount of OFN via complementary quadrupole-quadrupole interactions. The gel shows excellent pH tolerance and thixotropic behavior. Detailed studies suggest the existence of lamellar packing of the gelators in a right-handed helical fashion which yields globular aggregates. The globular aggregates are sticky in nature and form a gel via inter-globular interactions. Addition of Ca2+ ions reinforces the mechanical strength and also reduces the critical gelator concentration of the native gel through coordination with the free -COO- group of the gelator. Therefore, the present hydrogel system could further be used as a naked eye sensor of Ca2+ ions.
Collapse
Affiliation(s)
- Bappa Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | | | | |
Collapse
|
27
|
Go M, Choi H, Kim KY, Moon CJ, Choi Y, Miyake H, Lee SS, Jung SH, Choi MY, Jung JH. Temperature-controlled helical inversion of asymmetric triphenylamine-based supramolecular polymers; difference of handedness at the micro- and macroscopic levels. Org Chem Front 2019. [DOI: 10.1039/c9qo00051h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The M-helicity of asymmetric N-triphenylamine-based supramolecular polymers was inverted to the P-helicity during heating.
Collapse
Affiliation(s)
- Misun Go
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Cheol Joo Moon
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Yeonweon Choi
- Accident Prevention and Assessment Division 2
- National Institute of Chemical Safety
- Daejeon 34111
- South Korea
| | - Hiroyuki Miyake
- Department of Chemistry
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Sung Ho Jung
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Myong Yong Choi
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences
- Gyeongsang National University
- Jinju 52828
- South Korea
| |
Collapse
|
28
|
Li S, Miao T, Cheng X, Zhao Y, Zhang W, Zhu X. Different phase-dominated chiral assembly of polyfluorenes induced by chiral solvation: axial and supramolecular chirality. RSC Adv 2019; 9:38257-38264. [PMID: 35541783 PMCID: PMC9075892 DOI: 10.1039/c9ra08354e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
The introduction of chirality in an achiral system will not only help avoid the tedious and expensive synthesis of chiral substances or catalysts but also greatly expand the ranges of chiral compounds. Herein, the induction of chirality in achiral polyfluorene (PF2/6 and PF8) with different alkyl chains at the C9 position of fluorene was achieved using a binary solvent system, in which ethanol was used as a poor solvent and chiral limonene was employed simultaneously as a good solvent and chiral solvent. The circular dichroism (CD), UV-vis and photoluminescence (PL) spectra demonstrated that the structures of PFs with linear/branched alkyl side chains and the volume fractions of the cosolvents had an obvious effect on the generation of chirality driven by chiral solvation. During the chiral assembly processes of PFs, PF8 with a linear alkyl side chain demonstrated the obvious chiral β phase, while PF2/6 with a branched alkyl side chain only showed the chiral α phase. WAXD data also confirmed the existence of quite different phases of PF8 and PF2/6. The first induced chirality of PF with a branched alkyl side chain (PF2/6) will help the further understanding of the chiral assembly mechanism of PFs driven by chiral solvation. The induced chirality of PF2/6 was axial chirality of the PF chain but the chirality of PF8 was from the supramolecular chiral assembly of the PF chains. The linear dependence of the maximum CD and gCD values on the enantiomeric purity of chiral limonene demonstrated that the achiral PFs have a potential application as chiral sensors to detect the ee value of limonene. The chiral solvation induced chirality in achiral polyfluorenes showed the axial chirality for PF2/6 with branched side alkyl chain, but supramolecular chirality for PF8 with linear side alkyl chain.![]()
Collapse
Affiliation(s)
- Shuai Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Yin Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
29
|
Greenfield JL, Evans EW, Di Nuzzo D, Di Antonio M, Friend RH, Nitschke JR. Unraveling Mechanisms of Chiral Induction in Double-Helical Metallopolymers. J Am Chem Soc 2018; 140:10344-10353. [PMID: 30024156 PMCID: PMC6114842 DOI: 10.1021/jacs.8b06195] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 12/18/2022]
Abstract
Self-assembled helical polymers hold great promise as new functional materials, where helical handedness controls useful properties such as circularly polarized light emission or electron spin. The technique of subcomponent self-assembly can generate helical polymers from readily prepared monomers. Here we present three distinct strategies for chiral induction in double-helical metallopolymers prepared via subcomponent self-assembly: (1) employing an enantiopure monomer, (2) polymerization in a chiral solvent, (3) using an enantiopure initiating group. Kinetic and thermodynamic models were developed to describe the polymer growth mechanisms and quantify the strength of chiral induction, respectively. We found the degree of chiral induction to vary as a function of polymer length. Ordered, rod-like aggregates more than 70 nm long were also observed in the solid state. Our findings provide a basis to choose the most suitable method of chiral induction based on length, regiochemical, and stereochemical requirements, allowing stereochemical control to be established in easily accessible ways.
Collapse
Affiliation(s)
- Jake L. Greenfield
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Emrys W. Evans
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Daniele Di Nuzzo
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Marco Di Antonio
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| | - Richard H. Friend
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United
Kingdom
| |
Collapse
|
30
|
Dhiman S, George SJ. Temporally Controlled Supramolecular Polymerization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170433] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shikha Dhiman
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India-560064
| | - Subi J. George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, India-560064
| |
Collapse
|
31
|
Dhiman S, Sarkar A, George SJ. Bioinspired temporal supramolecular polymerization. RSC Adv 2018; 8:18913-18925. [PMID: 35539685 PMCID: PMC9080672 DOI: 10.1039/c8ra03225d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Thriving natural systems precisely regulate their complex chemical organizations in space and time by recruitment of a complex network of fuel-driven, kinetically controlled, out-of-equilibrium transformations. Indeed this provides an active, adaptive and autonomous smart actions & functions. In contrast, synthetic systems exhibit simpler behavior owing to thermodynamically driven supramolecular polymerization with no temporal modulation of spatial organization. Stimulated by an outstanding control that nature demonstrates, a drive towards artificial out-of-equilibrium systems with the ambition to program activation and duration of structural transformations has emerged. To realize this vision, overwhelming efforts across the globe have been initiated to design temporally programmed synthetic supramolecular polymers. In an attempt to contribute to this trending field, our supramolecular chemistry group has thoroughly investigated a structure–property relationship that determines the mechanism of supramolecular polymerization. Exploiting these mechanistic insights, along with a bio-inspired fuel-driven enzyme mediated approach, we further attempted to program supramolecular polymers in both structural and temporal regimes. We believe, nature is the inspiration to the current era challenges and it also provides with the solution, a fuel-driven approach to address these. In this account, we shall discuss the efforts made by our group to build generic concept to create temporally programmable supramolecular polymers. Nature's fuel-driven approach as a generic concept for structural and temporal regulation over biomimetic synthetic supramolecular polymerization.![]()
Collapse
Affiliation(s)
- Shikha Dhiman
- Supramolecular Chemistry Laboratory
- New Chemistry Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore
| | - Aritra Sarkar
- Supramolecular Chemistry Laboratory
- New Chemistry Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore
| | - Subi J. George
- Supramolecular Chemistry Laboratory
- New Chemistry Unit
- School of Advanced Materials (SAMat)
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)
- Bangalore
| |
Collapse
|
32
|
Liu M, Ouyang G, Niu D, Sang Y. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front 2018. [DOI: 10.1039/c8qo00620b] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of supramolecular gelatons for the design of gels was proposed and described.
Collapse
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dian Niu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
33
|
Wagner W, Wehner M, Stepanenko V, Ogi S, Würthner F. Living Supramolecular Polymerization of a Perylene Bisimide Dye into Fluorescent J-Aggregates. Angew Chem Int Ed Engl 2017; 56:16008-16012. [PMID: 29035005 DOI: 10.1002/anie.201709307] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 01/07/2023]
Abstract
The self-assembly of a new perylene bisimide (PBI) organogelator with 1,7-dimethoxy substituents in the bay position affords non-fluorescent H-aggregates at high cooling rates and fluorescent J-aggregates at low cooling rates. Under properly adjusted conditions, the kinetically trapped "off-pathway" H-aggregates are transformed into the thermodynamically favored J-aggregates, a process that can be accelerated by the addition of J-aggregate seeds. Spectroscopic studies revealed a subtle interplay of π-π interactions and intra- and intermolecular hydrogen bonding for monomeric, H-, and J-aggregated PBIs. Multiple polymerization cycles initiated from the seed termini demonstrate the living character of this chain-growth supramolecular polymerization process.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Marius Wehner
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Vladimir Stepanenko
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany.,Universität Würzburg, Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Soichiro Ogi
- Universität Würzburg, Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany.,Universität Würzburg, Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
34
|
Wagner W, Wehner M, Stepanenko V, Ogi S, Würthner F. Living Supramolecular Polymerization of a Perylene Bisimide Dye into Fluorescent J-Aggregates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709307] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wolfgang Wagner
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
| | - Marius Wehner
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
| | - Vladimir Stepanenko
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Universität Würzburg; Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Soichiro Ogi
- Universität Würzburg; Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Universität Würzburg; Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI); Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
35
|
Guo Z, Wang K, Yu P, Wang X, Lan S, Sun K, Yi Y, Li Z. Impact of Linear Alkyl Length on the Assembly of Twisted Perylene Bisimides: From Molecular Arrangement to Nanostructures. Chem Asian J 2017; 12:2827-2833. [DOI: 10.1002/asia.201700984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/18/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zongxia Guo
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology (QUST); Qingdao 266042 P.R. China
| | - Kun Wang
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology (QUST); Qingdao 266042 P.R. China
| | - Ping Yu
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology (QUST); Qingdao 266042 P.R. China
| | - Xiangnan Wang
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology (QUST); Qingdao 266042 P.R. China
| | - Shusha Lan
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology (QUST); Qingdao 266042 P.R. China
| | - Kai Sun
- Beijing National Laboratory for Molecular Science (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Science (BNLMS); Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials; Shandong Provincial Education Department; School of Polymer Science and Engineering; Qingdao University of Science and Technology (QUST); Qingdao 266042 P.R. China
| |
Collapse
|
36
|
Yang D, Zhang L, Yin L, Zhao Y, Zhang W, Liu M. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer. SOFT MATTER 2017; 13:6129-6136. [PMID: 28791338 DOI: 10.1039/c7sm00935f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helical polymers are widely found in nature and synthetic functional materials. Although a number of elaborate strategies have been developed to endow polymers with helicity through either covalent bonds or supramolecular techniques, it still remains a challenge to get the desired helical polymers with controlled handedness in an easy but effective manner. In this study, we report an easily accessible gelation-guided self-assembly system where the chirality of a gelator can be easily transferred to an achiral azobenzene-containing polymer during gelation. It is found that during the process of chiral induction, the induced chirality of the polymer was entirely dominated by the molecular chirality of the gelator. Experimentally, achiral azobenzene-containing polymers with different side-chain lengths were doped into a supramolecular gel system formed with amphiphilic N,N'-bis-(octadecyl)-l(d)-Boc-glutamic (LBG-18 or DBG-18 for short). CD spectra and SEM observation confirmed that the co-assembly of polymer/LBG-18 or polymer/DBG-18 in the xerogel state exhibited supramolecular chirality. More importantly, alternate UV and visible light irradiation on the xerogel film caused the induced CD signal to switch between on and off states. Thus a chiroptical switch was fabricated based on the isomerization of the azo-polymer in xerogel films.
Collapse
Affiliation(s)
- Dong Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.
| | | | | | | | | | | |
Collapse
|
37
|
Liu Y, Gao X, Lu F, Hu M, Shi L, Zheng L. Reversible helical chirality of perylene bisimide aggregates: amino acid-directed chiral transfer and chiral inversion. SOFT MATTER 2017; 13:3072-3075. [PMID: 28418050 DOI: 10.1039/c7sm00414a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Through the formation of dynamic covalent bonds, we succeeded, for the first time, in achieving a reversible chiral transfer from amino acids to perylene bisimide aggregates in aqueous solutions. Two opposite helical aggregations are induced with l-phenylalanine and l-tyrosine, respectively. It is possible that the change in configurations of phenyl groups in amino acids leads to the chiral inversion of BAPBI arrangements.
Collapse
Affiliation(s)
- Yizhi Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.
| | | | | | | | | | | |
Collapse
|
38
|
Lin X, Suzuki M, Gushiken M, Yamauchi M, Karatsu T, Kizaki T, Tani Y, Nakayama KI, Suzuki M, Yamada H, Kajitani T, Fukushima T, Kikkawa Y, Yagai S. High-fidelity self-assembly pathways for hydrogen-bonding molecular semiconductors. Sci Rep 2017; 7:43098. [PMID: 28225029 PMCID: PMC5320534 DOI: 10.1038/srep43098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/18/2017] [Indexed: 01/04/2023] Open
Abstract
The design of molecular systems with high-fidelity self-assembly pathways that include several levels of hierarchy is of primary importance for the understanding of structure-function relationships, as well as for controlling the functionality of organic materials. Reported herein is a high-fidelity self-assembly system that comprises two hydrogen-bonding molecular semiconductors with regioisomerically attached short alkyl chains. Despite the availability of both discrete cyclic and polymeric linear hydrogen-bonding motifs, the two regioisomers select one of the two motifs in homogeneous solution as well as at the 2D-confined liquid-solid interface. This selectivity arises from the high directionality of the involved hydrogen-bonding interactions, which renders rerouting to other self-assembly pathways difficult. In thin films and in the bulk, the resulting hydrogen-bonded assemblies further organize into the expected columnar and lamellar higher-order architectures via solution processing. The contrasting organized structures of these regioisomers are reflected in their notably different miscibility with soluble fullerene derivatives in the solid state. Thus, electron donor-acceptor blend films deliver a distinctly different photovoltaic performance, despite their virtually identical intrinsic optoelectronic properties. Currently, we attribute this high-fidelity control via self-assembly pathways to the molecular design of these supramolecular semiconductors, which lacks structure-determining long aliphatic chains.
Collapse
Affiliation(s)
- Xu Lin
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Mika Suzuki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Marina Gushiken
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Mitsuaki Yamauchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Karatsu
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takahiro Kizaki
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuki Tani
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ken-Ichi Nakayama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuharu Suzuki
- Graduate School of Material Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Graduate School of Material Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Takashi Kajitani
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
| | - Shiki Yagai
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
39
|
Wang WZ, Gao C, Zhang Q, Ye XH, Qu DH. Supramolecular Helical Nanofibers Formed by Achiral Monomers and Their Reversible Sol-Gel Transition. Chem Asian J 2017; 12:410-414. [PMID: 28098435 DOI: 10.1002/asia.201601733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/14/2017] [Indexed: 11/11/2022]
Abstract
Well-defined supramolecular helical nanofibers have been constructed by a rationally designed achiral monomer in aqueous solution based on the 1:2 host-guest combination between cucurbit[8]uril and a 4,4'-bipyridin-1-ium chloride (BPY+ ) salt derivative. The formed nanostructures could be adjusted by varying the concentration of monomer from helical nanofibers to a pH-responsive hydrogel.
Collapse
Affiliation(s)
- Wen-Zhi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Xu-Hao Ye
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| |
Collapse
|
40
|
Lasitha P, Prasad E. Host-Guest Chemistry between Perylene Diimide (PDI) Derivatives and 18-Crown-6: Enhancement in Luminescence Quantum Yield and Electrical Conductivity. Chemistry 2016; 22:10558-64. [DOI: 10.1002/chem.201600709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/21/2022]
Affiliation(s)
- P. Lasitha
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| | - Edamana Prasad
- Department of Chemistry; Indian Institute of Technology Madras; Chennai 600036 India
| |
Collapse
|
41
|
Zhong J, Ma M, Li W, Zhou J, Yan Z, He D. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures. Biopolymers 2016; 101:1181-92. [PMID: 25088327 DOI: 10.1002/bip.22532] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
In this work, we studied the effects of incubation concentration and time on the self-assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration-dependent and there were four self-assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β-sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β-sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead-like oligomers (random coil), and then assembled into protofibrils (antiparallel β-sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid-like micelles (random coil), and finally self-arranged to form smooth and clear cuboid-like micelles (antiparallel β-sheet). These results provide useful insights into the process by which the RSF molecules self-assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk-based biomaterials.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Zhang L, Wang T, Shen Z, Liu M. Chiral Nanoarchitectonics: Towards the Design, Self-Assembly, and Function of Nanoscale Chiral Twists and Helices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1044-59. [PMID: 26385875 DOI: 10.1002/adma.201502590] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/13/2015] [Indexed: 05/23/2023]
Abstract
Helical structures such as double helical DNA and the α-helical proteins found in biological systems are among the most beautiful natural structures. Chiral nanoarchitectonics, which is used here to describe the hierarchical formation and fabrication of chiral nanoarchitectures that can be observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), or transmission electron microscopy (TEM), is one of the most effective ways to mimic those natural chiral nanostructures. This article focuses on the formation, structure, and function of the most common chiral nanoarchitectures: nanoscale chiral twists and helices. The types of molecules that can be designed and how they can form hierarchical chiral nanoarchitectures are explored. In addition, new and unique functions such as amplified chiral sensing, chiral separation, biological effects, and circularly polarized luminescence associated with the chiral nanoarchitectures are discussed.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Zhaocun Shen
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| |
Collapse
|
43
|
Yang D, Zhao Y, Lv K, Wang X, Zhang W, Zhang L, Liu M. A strategy for tuning achiral main-chain polymers into helical assemblies and chiral memory systems. SOFT MATTER 2016; 12:1170-1175. [PMID: 26602882 DOI: 10.1039/c5sm02547h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A general strategy to tune the achiral main chain polymers into helical nanoassemblies was proposed based on the co-gelation approach. As an example, two achiral main chain polymers, PCz8 and PSi8, were selected, and their co-assembly with an amphiphilic l- or d-glutamide gelator was investigated. Although the polymers could not form gels individually, they could form co-gels with the gelator and the resultant gels exhibited macroscopic supramolecular chirality, which could be confirmed by CD spectra and SEM observations. Moreover, the supramolecular chirality can be memorized even after the gelator molecules were removed. Remarkably, either the gelator-containing or gelator-free chiral polymer assemblies showed circularly polarized luminescence (CPL), which is usually inherent to intrinsic chiral polymers. It was suggested that during the co-gelation, the chirality of the gelator was transferred to and memorized by the achiral polymers. The approach seems to be general and we provided the first example to tune the achiral polymers into helical assemblies through the co-gelation.
Collapse
Affiliation(s)
- Dong Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yin Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China.
| | - Kai Lv
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xiufeng Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, China.
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China. and A Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
44
|
Ogi S, Stepanenko V, Thein J, Würthner F. Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. J Am Chem Soc 2016; 138:670-8. [PMID: 26699283 DOI: 10.1021/jacs.5b11674] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have investigated the kinetic and thermodynamic supramolecular polymerizations of a series of amide-functionalized perylene bisimide (PBI) organogelator molecules bearing alkyl spacers of varied lengths (ethylene to pentylene chains, PBI-1-C2 to PBI-1-C5) between the amide and PBI imide groups. These amide-functionalized PBIs form one-dimensional fibrous nanostructures as the thermodynamically favored states in solvents of low polarity. Our in-depth studies revealed, however, that the kinetic behavior of their supramolecular polymerization is dependent on the spacer length. Propylene- and pentylene-tethered PBIs follow a similar polymerization process as previously observed for the ethylene-tethered PBI. Thus, the monomers of these PBIs are kinetically trapped in conformationally restricted states through intramolecular hydrogen bonding between the amide and imide groups. In contrast, the intramolecularly hydrogen-bonded monomers of butylene-tethered PBI spontaneously self-assemble into nanoparticles, which constitute an off-pathway aggregate state with regard to the thermodynamically stable fibrous supramolecular polymers obtained. Thus, for this class of π-conjugated system, an unprecedented off-pathway aggregate with high kinetic stability could be realized for the first time by introducing an alkyl linker of optimum length (C4 chain) between the amide and imide groups. Our current system with an energy landscape of two competing nucleated aggregation pathways is applicable to the kinetic control over the supramolecular polymerization by the seeding approach.
Collapse
Affiliation(s)
- Soichiro Ogi
- Universität Würzburg , Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Vladimir Stepanenko
- Universität Würzburg , Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Thein
- Universität Würzburg , Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie and Center for Nanosystems Chemistry, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
45
|
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem Rev 2015; 116:962-1052. [PMID: 26270260 DOI: 10.1021/acs.chemrev.5b00188] [Citation(s) in RCA: 1001] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Chantu R Saha-Möller
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Benjamin Fimmel
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - Pawaret Leowanawat
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
46
|
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
47
|
Effect of incubation temperature on the self-assembly of regenerated silk fibroin: A study using AFM. Int J Biol Macromol 2015; 76:195-202. [DOI: 10.1016/j.ijbiomac.2015.02.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
|
48
|
Wang KR, Han D, Cao GJ, Li XL. Synthesis and Predetermined Supramolecular Chirality of Carbohydrate-Functionalized Perylene Bisimide Derivatives. Chem Asian J 2015; 10:1204-14. [DOI: 10.1002/asia.201500034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 11/06/2022]
|
49
|
Ogi S, Stepanenko V, Sugiyasu K, Takeuchi M, Würthner F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J Am Chem Soc 2015; 137:3300-7. [PMID: 25689054 DOI: 10.1021/ja511952c] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanism of supramolecular polymerization has been elucidated for an archetype organogelator molecule composed of a perylene bisimide aromatic scaffold and two amide substituents. This molecule self-assembles into elongated one-dimensional nanofibers through a cooperative nucleation-growth process. Thermodynamic and kinetic analyses have been applied to discover conditions (temperature, solvent, concentration) where the spontaneous nucleation can be retarded by trapping of the monomers in an inactive conformation, leading to lag times up to more than 1 h. The unique kinetics in the nucleation process was confirmed as a thermal hysteresis in a cycle of assembly and disassembly processes. Under appropriate conditions within the hysteresis loop, addition of preassembled nanofiber seeds leads to seeded polymerization from the termini of the seeds in a living supramolecular polymerization process. These results demonstrate that seeded polymerizations are not limited to special situations where off-pathway aggregates sequester the monomeric reactant species but may be applicable to a large number of known and to be developed molecules from the large family of molecules that self-assemble into one-dimensional nanofibrous structures. Generalizing from the mechanistic insight into our seeded polymerization, we assert that a cooperative nucleation-growth supramolecular polymerization accompanied by thermal hysteresis can be controlled in a living manner.
Collapse
Affiliation(s)
- Soichiro Ogi
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Echue G, Lloyd‐Jones GC, Faul CFJ. Chiral perylene diimides: building blocks for ionic self-assembly. Chemistry 2015; 21:5118-28. [PMID: 25689392 PMCID: PMC4973615 DOI: 10.1002/chem.201406094] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 12/23/2022]
Abstract
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid l‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.
Collapse
Affiliation(s)
- Geraldine Echue
- School of Chemistry, University of Bristol, Bristol BS8 1TS (UK)
| | | | - Charl F. J. Faul
- School of Chemistry, University of Bristol, Bristol BS8 1TS (UK)
| |
Collapse
|