1
|
Bellini C, Mancin F, Papini E, Tavano R. Nanotechnological Approaches to Enhance the Potential of α-Lipoic Acid for Application in the Clinic. Antioxidants (Basel) 2024; 13:706. [PMID: 38929145 PMCID: PMC11201002 DOI: 10.3390/antiox13060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
α-lipoic acid is a naturally occurring compound with potent antioxidant properties that helps protect cells and tissues from oxidative stress. Its incorporation into nanoplatforms can affect factors like bioavailability, stability, reactivity, and targeted delivery. Nanoformulations of α-lipoic acid can significantly enhance its solubility and absorption, making it more bioavailable. While α-lipoic acid can be prone to degradation in its free form, encapsulation within nanoparticles ensures its stability over time, and its release in a controlled and sustained manner to the targeted tissues and cells. In addition, α-lipoic acid can be combined with other compounds, such as other antioxidants, drugs, or nanomaterials, to create synergistic effects that enhance their overall therapeutic benefits or hinder their potential cytotoxicity. This review outlines the advantages and drawbacks associated with the use of α-lipoic acid, as well as various nanotechnological approaches employed to enhance its therapeutic effectiveness, whether alone or in combination with other bioactive agents. Furthermore, it describes the engineering of α-lipoic acid to produce poly(α-lipoic acid) nanoparticles, which hold promise as an effective drug delivery system.
Collapse
Affiliation(s)
- Chiara Bellini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35121 Padova, Italy;
| | - Emanuele Papini
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy; (C.B.); (E.P.)
| |
Collapse
|
2
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Ņikitjuka A, Žalubovskis R. Asparagusic Acid - A Unique Approach toward Effective Cellular Uptake of Therapeutics: Application, Biological Targets, and Chemical Properties. ChemMedChem 2023; 18:e202300143. [PMID: 37366073 DOI: 10.1002/cmdc.202300143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
The synthetic approaches towards unique asparagusic acid and its analogues as well as its chemical use, the breadth of its biological properties and their relevant applications have been explored. The significance of the 1,2-dithiolane ring tension in dithiol-mediated uptake and its use for the intracellular transport of molecular cargoes is discussed alongside some of the challenges that arise from the fast thiolate-disulfide interchange. The short overview with the indication of the available literature on natural 1,2-dithiolanes synthesis and biological activities is also included. The general review structure is based on the time-line perspective of the application of asparagusic acid moiety as well as its primitive derivatives (4-amino-1,2-dithiolane-4-carboxylic acid and 4-methyl-1,2-dithiolane-4-carboxilic acid) used in clinics/cosmetics, focusing on the recent research in this area and including international patents applications.
Collapse
Affiliation(s)
- Anna Ņikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| |
Collapse
|
4
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
5
|
Wan Y, Wang W, Lai Q, Wu M, Feng S. Advances in cell-penetrating poly(disulfide)s for intracellular delivery of therapeutics. Drug Discov Today 2023:103668. [PMID: 37321318 DOI: 10.1016/j.drudis.2023.103668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Efficient intracellular delivery is essential for most therapeutic agents; however, existing delivery vectors face a dilemma between efficiency and toxicity, and always encounter the challenge of endolysosomal trapping. The cell-penetrating poly(disulfide) (CPD) is an effective tool for intracellular delivery, as it is taken up through thiol-mediated cellular uptake, thus avoiding endolysosomal entrapment and ensuring efficient cytosolic availability. Upon cellular uptake, CPD undergoes reductive depolymerization by glutathione inside cells and has minimal cytotoxicity. This review summarizes CPD's chemical synthesis approaches, cellular uptake mechanism, and recent advances in the intracellular delivery of proteins, antibodies, nucleic acids, and other nanoparticles. Overall, CPD is a promising candidate carrier for efficient intracellular delivery.
Collapse
Affiliation(s)
- Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Wangxia Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qiuyue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Mingyu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Felber JG, Poczka L, Scholzen KC, Zeisel L, Maier MS, Busker S, Theisen U, Brandstädter C, Becker K, Arnér ESJ, Thorn-Seshold J, Thorn-Seshold O. Cyclic 5-membered disulfides are not selective substrates of thioredoxin reductase, but are opened nonspecifically. Nat Commun 2022; 13:1754. [PMID: 35365603 PMCID: PMC8975869 DOI: 10.1038/s41467-022-29136-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
The cyclic five-membered disulfide 1,2-dithiolane has been widely used in chemical biology and in redox probes. Contradictory reports have described it either as nonspecifically reduced in cells, or else as a highly specific substrate for thioredoxin reductase (TrxR). Here we show that 1,2-dithiolane probes, such as "TRFS" probes, are nonspecifically reduced by thiol reductants and redox-active proteins, and their cellular performance is barely affected by TrxR inhibition or knockout. Therefore, results of cellular imaging or inhibitor screening using 1,2-dithiolanes should not be interpreted as reflecting TrxR activity, and previous studies may need re-evaluation. To understand 1,2-dithiolanes' complex behaviour, probe localisation, environment-dependent fluorescence, reduction-independent ring-opening polymerisation, and thiol-dependent cellular uptake must all be considered; particular caution is needed when co-applying thiophilic inhibitors. We present a general approach controlling against assay misinterpretation with reducible probes, to ensure future TrxR-targeted designs are robustly evaluated for selectivity, and to better orient future research.
Collapse
Affiliation(s)
- Jan G Felber
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lena Poczka
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Karoline C Scholzen
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Lukas Zeisel
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Martin S Maier
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Sander Busker
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
- Pelago Bioscience AB, 171 48, Solna, Sweden
| | - Ulrike Theisen
- Zoological Institute, Cellular and Molecular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Christina Brandstädter
- Interdisciplinary Research Centre (IFZ), Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Katja Becker
- Interdisciplinary Research Centre (IFZ), Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Elias S J Arnér
- Department of Medical Biochemistry, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
- Department of Selenoprotein Research, National Institute of Oncology, 1122, Budapest, Hungary
| | - Julia Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
7
|
Soars SM, Bongiardina NJ, Fairbanks BD, Podgórski M, Bowman CN. Spatial and Temporal Control of Photomediated Disulfide–Ene and Thiol–Ene Chemistries for Two-Stage Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shafer M. Soars
- Department of Chemistry, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| | - Nicholas J. Bongiardina
- Materials Science and Engineering Program, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| | - Benjamin D. Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| | - Maciej Podgórski
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado 80303, United States
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 5, Lublin 20-031, Poland
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
8
|
Silva F, D’Onofrio A, Mendes C, Pinto C, Marques A, Campello MPC, Oliveira MC, Raposinho P, Belchior A, Di Maria S, Marques F, Cruz C, Carvalho J, Paulo A. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int J Mol Sci 2022; 23:ijms23020617. [PMID: 35054798 PMCID: PMC8775581 DOI: 10.3390/ijms23020617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite some progress, the overall survival of patients with glioblastoma (GBM) remains extremely poor. In this context, there is a pressing need to develop innovative therapy strategies for GBM, namely those based on nanomedicine approaches. Towards this goal, we have focused on nanoparticles (AuNP-SP and AuNP-SPTyr8) with a small gold core (ca. 4 nm), carrying DOTA chelators and substance P (SP) peptides. These new SP-containing AuNPs were characterized by a variety of analytical techniques, including TEM and DLS measurements and UV-vis and CD spectroscopy, which proved their high in vitro stability and poor tendency to interact with plasma proteins. Their labeling with diagnostic and therapeutic radionuclides was efficiently performed by DOTA complexation with the trivalent radiometals 67Ga and 177Lu or by electrophilic radioiodination with 125I of the tyrosyl residue in AuNP-SPTyr8. Cellular studies of the resulting radiolabeled AuNPs in NKR1-positive GBM cells (U87, T98G and U373) have shown that the presence of the SP peptides has a crucial and positive impact on their internalization by the tumor cells. Consistently, 177Lu-AuNP-SPTyr8 showed more pronounced radiobiological effects in U373 cells when compared with the non-targeted congener 177Lu-AuNP-TDOTA, as assessed by cell viability and clonogenic assays and corroborated by Monte Carlo microdosimetry simulations.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Correspondence: (F.S.); (A.P.)
| | - Alice D’Onofrio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Carolina Mendes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Catarina Pinto
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Ana Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Paula Raposinho
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Ana Belchior
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Salvatore Di Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.C.); (J.C.)
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (C.C.); (J.C.)
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (A.D.); (C.M.); (C.P.); (A.M.); (M.P.C.C.); (M.C.O.); (P.R.); (A.B.); (S.D.M.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Correspondence: (F.S.); (A.P.)
| |
Collapse
|
9
|
Theodosis-Nobelos P, Papagiouvannis G, Tziona P, Rekka EA. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol Biol Rep 2021; 48:6539-6550. [PMID: 34420148 DOI: 10.1007/s11033-021-06643-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Lipoic acid (LA) is globally known and its supplements are widely used. Despite its importance for the organism it is not considered a vitamin any more. The multiple metabolic forms and the differences in kinetics (absorption, distribution and excretion), as well as the actions of its enantiomers are analysed in the present article together with its biosynthetic path. The proteins involved in the transfer, biotransformation and activity of LA are mentioned. Furthermore, the safety and the toxicological profile of the compound are commented, together with its stability issues. Mechanisms of lipoic acid intervention in the human body are analysed considering the antioxidant and non-antioxidant characteristics of the compound. The chelating properties, the regenerative ability of other antioxidants, the co-enzyme activity and the signal transduction by the implication in various pathways will be discussed in order to be elucidated the pleiotropic effects of LA. Finally, lipoic acid integrating analogues are mentioned under the scope of the multiple pharmacological actions they acquire towards degenerative conditions.
Collapse
Affiliation(s)
| | - Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, 1036, Nicosia, Cyprus
| | - Paraskevi Tziona
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eleni A Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
10
|
Bin Rusayyis MA, Torkelson JM. Reprocessable covalent adaptable networks with excellent elevated-temperature creep resistance: facilitation by dynamic, dissociative bis(hindered amino) disulfide bonds. Polym Chem 2021. [DOI: 10.1039/d1py00187f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BiTEMPS dynamic chemistry offers a simple method to prepare reprocessable polymer networks with excellent long-term creep resistance at elevated temperatures and full recovery of cross-link density after recycling.
Collapse
Affiliation(s)
| | - John M. Torkelson
- Department of Materials Science and Engineering
- Northwestern University
- Evanston
- USA
- Department of Chemical and Biological Engineering
| |
Collapse
|
11
|
Trzciński JW, Morillas-Becerril L, Scarpa S, Tannorella M, Muraca F, Rastrelli F, Castellani C, Fedrigo M, Angelini A, Tavano R, Papini E, Mancin F. Poly(lipoic acid)-Based Nanoparticles as Self-Organized, Biocompatible, and Corona-Free Nanovectors. Biomacromolecules 2020; 22:467-480. [PMID: 33347750 PMCID: PMC8016167 DOI: 10.1021/acs.biomac.0c01321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Herein
we present an innovative approach to produce biocompatible,
degradable, and stealth polymeric nanoparticles based on poly(lipoic
acid), stabilized by a PEG-ended surfactant. Taking advantage of the
well-known thiol-induced polymerization of lipoic acid, a universal
and nontoxic nanovector consisted of a solid cross-linked polymeric
matrix of lipoic acid monomers was prepared and loaded with active
species with a one-step protocol. The biological studies demonstrated
a high stability in biological media, the virtual absence of “protein”
corona in biological fluids, the absence of acute toxicity in vitro
and in vivo, complete clearance from the organism, and a relevant
preference for short-term accumulation in the heart. All these features
make these nanoparticles candidates as a promising tool for nanomedicine.
Collapse
Affiliation(s)
- Jakub W Trzciński
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Lucía Morillas-Becerril
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Sara Scarpa
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Marco Tannorella
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Francesco Muraca
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| | - Chiara Castellani
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Marny Fedrigo
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Annalisa Angelini
- Patologia Cardiovascolare e Anatomia Patologica, Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università di Padova, via Giustiniani 2, Padova, I-35128, Italy
| | - Regina Tavano
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Emanuele Papini
- Dipartimento di Scienze Biomediche, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy.,Centre for Innovative Biotechnological Research-CRIBI, Università di Padova, via U. Bassi 58/B1, Padova, I-35131, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, I-35131, Italy
| |
Collapse
|
12
|
Scheutz GM, Rowell JL, Wang FS, Abboud KA, Peng CH, Sumerlin BS. Synthesis of functional 1,2-dithiolanes from 1,3-bis- tert-butyl thioethers. Org Biomol Chem 2020; 18:6509-6513. [PMID: 32797130 PMCID: PMC9413310 DOI: 10.1039/d0ob01577f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the one-step synthesis of diversely substituted functional 1,2-dithiolanes by reacting readily accessible 1,3-bis-tert-butyl thioethers with bromine. The reaction proceeds to completion within minutes under mild conditions, presumably via a sulfonium-mediated ring closure. Using X-ray crystallography and UV-vis spectroscopy, we demonstrate how substituent size and ring substitution pattern can affect the geometry and photophysical properties of 1,2-dithiolanes.
Collapse
Affiliation(s)
- Georg M Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Jonathan L Rowell
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Fu-Sheng Wang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Khalil A Abboud
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Chi-How Peng
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Liu Y, van Steenbergen MJ, Zhong Z, Oliveira S, Hennink WE, van Nostrum CF. Dithiolane-Crosslinked Poly(ε-caprolactone)-Based Micelles: Impact of Monomer Sequence, Nature of Monomer, and Reducing Agent on the Dynamic Crosslinking Properties. Macromolecules 2020; 53:7009-7024. [PMID: 32884159 PMCID: PMC7458473 DOI: 10.1021/acs.macromol.0c01031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Dithiolanes are used to obtain dynamic and reversible crosslinks between polymer chains. Copolymers of two different dithiolane-containing cyclic carbonate monomers and ε-caprolactone (CL) were synthesized by ring-opening polymerization using a methoxy-poly(ethylene glycol) (mPEG) initiator and different catalysts (diphenyl phosphate (DPP), methanesulfonic acid (MSA), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), or Sn(Oct)2). Each catalyst required a different temperature, which had a pronounced influence on the reactivity ratio of the monomers and occurrence of transesterification reactions and, therefore, the monomer sequence. Self-crosslinkable copolymers were obtained when the dithiolane units were connected closely to the polymer backbone, whereas the presence of a linker unit between the dithiolane and the backbone prevented self-crosslinking. The former amphiphilic PEGylated block copolymers formed micelles by nanoprecipitation in the aqueous environment and crosslinked spontaneously by disulfide exchange during subsequent dialysis. These dithiolane-crosslinked micelles showed reduction-responsive dissociation in the presence of 10 mM glutathione, making them promising drug delivery systems for the intracellularly triggered cargo release.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Zhiyuan Zhong
- Biomedical
Polymers Laboratory, College of Chemistry, Chemical Engineering and
Materials Science, and State Key Laboratory of Radiation Medicine
and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Sabrina Oliveira
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Division of Cell Biology, Neurobiology
and Biophysics, Department of Biology, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
14
|
Scheutz GM, Rowell JL, Ellison ST, Garrison JB, Angelini TE, Sumerlin BS. Harnessing Strained Disulfides for Photocurable Adaptable Hydrogels. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jonathan L. Rowell
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
15
|
Tu J, Xu H, Liang L, Li P, Guo X. Preparation of high self-healing efficient crosslink HTPB adhesive for improving debonding of propellant interface. NEW J CHEM 2020. [DOI: 10.1039/d0nj04085a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A high self-healing efficient HTPB-based adhesive containing disulfide bonds, which can improve propellant interface debonding defects at a safe temperature.
Collapse
Affiliation(s)
- Jing Tu
- National Special Superfine Powder Engineering Technology Research Center
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Heng Xu
- National Special Superfine Powder Engineering Technology Research Center
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Li Liang
- National Special Superfine Powder Engineering Technology Research Center
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Pingyun Li
- National Special Superfine Powder Engineering Technology Research Center
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xiaode Guo
- National Special Superfine Powder Engineering Technology Research Center
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
16
|
Hildebrandt J, Trautwein R, Kritsch D, Häfner N, Görls H, Dürst M, Runnebaum IB, Weigand W. Synthesis, characterization and biological investigation of platinum(ii) complexes with asparagusic acid derivatives as ligands. Dalton Trans 2019; 48:936-944. [PMID: 30565617 DOI: 10.1039/c8dt02553c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After more than 50 years of platinum-based anticancer research only three compounds are in clinical use worldwide. The use of the well-known lead compound of this class of anticancer agents, cisplatin, is limited by its side effects and varying resistance mechanisms. Therefore, we report on platinum(ii) compounds with asparagusic acid derivatives as ligands which show interesting anticancer results on cisplatin resistant cell lines.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldstraße 8, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P. Sulfur Chemistry in Polymer and Materials Science. Macromol Rapid Commun 2018; 40:e1800650. [DOI: 10.1002/marc.201800650] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Hatice Mutlu
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Ezgi Berfin Ceper
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Xiaohui Li
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Jingmei Yang
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
- Institute of Fundamental Science and Frontiers; University of Electronic Science and Technology of China; Chengdu 610054 China
| | - Wenyuan Dong
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Mehmet Murat Ozmen
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Patrick Theato
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| |
Collapse
|
18
|
Chuard N, Poblador-Bahamonde AI, Zong L, Bartolami E, Hildebrandt J, Weigand W, Sakai N, Matile S. Diselenolane-mediated cellular uptake. Chem Sci 2018; 9:1860-1866. [PMID: 29675232 PMCID: PMC5892345 DOI: 10.1039/c7sc05151d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Selenophilicity, minimized dihedral angles, acidic selenols, multitarget hopping: cytosolic delivery with 1,2-diselenolanes outperforms 1,2-dithiolanes, by far.
The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.
Collapse
Affiliation(s)
- Nicolas Chuard
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Amalia I Poblador-Bahamonde
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Lili Zong
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Eline Bartolami
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Jana Hildebrandt
- Institute of Inorganic and Analytical Chemistry , Friedrich-Schiller University Jena , Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry , Friedrich-Schiller University Jena , Germany
| | - Naomi Sakai
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; Tel: +41 22 379 6523
| |
Collapse
|
19
|
Yu H, Wang Y, Yang H, Peng K, Zhang X. Injectable self-healing hydrogels formed via thiol/disulfide exchange of thiol functionalized F127 and dithiolane modified PEG. J Mater Chem B 2017; 5:4121-4127. [DOI: 10.1039/c7tb00746a] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An injectable thermo-responsive hydrogel with excellent mechanical properties which can self-heal under mildly acidic to basic conditions was prepared.
Collapse
Affiliation(s)
- Hansen Yu
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Yanan Wang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Kang Peng
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- School of Chemistry and Materials Science
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
20
|
Gasparini G, Bang EK, Montenegro J, Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun (Camb) 2016; 51:10389-402. [PMID: 26030211 DOI: 10.1039/c5cc03472h] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.
Collapse
Affiliation(s)
- Giulio Gasparini
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
21
|
Zhang KD, Matile S. Complex Functional Systems with Three Different Types of Dynamic Covalent Bonds. Angew Chem Int Ed Engl 2015; 54:8980-3. [DOI: 10.1002/anie.201503033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/01/2015] [Indexed: 01/01/2023]
|
22
|
Zhang KD, Matile S. Complex Functional Systems with Three Different Types of Dynamic Covalent Bonds. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Gasparini G, Sargsyan G, Bang EK, Sakai N, Matile S. Ring Tension Applied to Thiol-Mediated Cellular Uptake. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Gasparini G, Sargsyan G, Bang EK, Sakai N, Matile S. Ring Tension Applied to Thiol-Mediated Cellular Uptake. Angew Chem Int Ed Engl 2015; 54:7328-31. [DOI: 10.1002/anie.201502358] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 01/31/2023]
|
25
|
Barcan GA, Zhang X, Waymouth RM. Structurally Dynamic Hydrogels Derived from 1,2-Dithiolanes. J Am Chem Soc 2015; 137:5650-3. [DOI: 10.1021/jacs.5b02161] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gregg A. Barcan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiangyi Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
26
|
Oupický D, Li J. Bioreducible polycations in nucleic acid delivery: past, present, and future trends. Macromol Biosci 2014; 14:908-22. [PMID: 24678057 PMCID: PMC4410047 DOI: 10.1002/mabi.201400061] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Polycations that are degradable by reduction of disulfide bonds are developed for applications in delivery of nucleic acids. This Feature Article surveys methods of synthesis of bioreducible polycations and discusses current understanding of the mechanism of action of bioreducible polyplexes. Emphasis is placed on the relationship between the biological redox environment and toxicity, trafficking, transfection activity, and in vivo behavior of bioreducible polycations and polyplexes.
Collapse
Affiliation(s)
- David Oupický
- Department of Pharmaceutical Sciences, Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Durham Research Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| | | |
Collapse
|
27
|
Ji S, Cao W, Yu Y, Xu H. Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis. Angew Chem Int Ed Engl 2014; 53:6781-5. [DOI: 10.1002/anie.201403442] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/18/2014] [Indexed: 11/07/2022]
|
28
|
Ji S, Cao W, Yu Y, Xu H. Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403442] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Bang EK, Ward S, Gasparini G, Sakai N, Matile S. Cell-penetrating poly(disulfide)s: focus on substrate-initiated co-polymerization. Polym Chem 2014. [DOI: 10.1039/c3py01570j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|