1
|
Drev M, Brodnik H, Grošelj U, Perdih F, Svete J, Štefane B, Požgan F. 2-Bromopyridines as Versatile Synthons for Heteroarylated 2-Pyridones via Ru(II)-Mediated Domino C-O/C-N/C-C Bond Formation Reactions. Molecules 2024; 29:4418. [PMID: 39339413 PMCID: PMC11433726 DOI: 10.3390/molecules29184418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A novel methodology for the synthesis of 2-pyridones bearing a 2-pyridyl group on nitrogen and carbon atoms, starting from 2-bromopyridines, was developed employing a simple Ru(II)-KOPiv-Na2CO3 catalytic system. Unsubstituted 2-bromopyridine was successfully converted to the penta-heteroarylated 2-pyridone product using this method. Preliminary mechanistic studies revealed a possible synthetic pathway leading to the multi-heteroarylated 2-pyridone products, involving consecutive oxygen incorporation, a Buchwald-Hartwig-type reaction, and C-H bond activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia (F.P.); (J.S.)
| |
Collapse
|
2
|
Jiang C, Wu Y, Zhang Y, Zong J, Wang N, Liu G, Liu R, Yu H. Supramolecular Modulation for Selective Mechanochemical Iron-Catalyzed Olefin Oxidation. Angew Chem Int Ed Engl 2024:e202413901. [PMID: 39221519 DOI: 10.1002/anie.202413901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The development of a mechanochemical Fe-catalyzed Wacker oxidation of olefins with a sustainable and benign procedure holds significant promise for industrial applications. However, navigating the intricate interactions inherent in ball-milling conditions to fine-tune reaction selectivity remains a formidable challenge. Herein, leveraging the dispersive and/or trapping properties of cyclodextrins, an innovative mechanochemical approach is developed through the integration of cyclodextrins into a Fe-catalyzed system, enabling a streamlined Wacker oxidation process from simple and/or commercially available alkenes. Our efforts have yielded optimized mechanochemical conditions demonstrating exceptional reactivity and selectivity in generating a diverse array of ketone products, markedly enhancing catalytic efficiency compared to conventional batch methods. Mechanistic investigations have revealed a predominantly Markovnikov-selective catalytic cycle, effectively minimizing undesired alcohol formation, hydrogenation, and the other competing pathways, boosting both reaction yield and selectivity.
Collapse
Affiliation(s)
- Chuan Jiang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Ye Wu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Yongjin Zhang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Jiawei Zong
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Ning Wang
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Rui Liu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| | - Han Yu
- International Joint Laboratory on Resource Chemistry, Shanghai Normal University, 200234, Shanghai, P. R. China
| |
Collapse
|
3
|
Di Matteo M, Gagliardi A, Pradal A, Veiros LF, Gallou F, Poli G. Pd-Catalyzed C(sp 2)-H/C(sp 2)-H Coupling of Limonene. J Org Chem 2024; 89:10451-10461. [PMID: 39025478 DOI: 10.1021/acs.joc.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Limonene undergoes a regioselective Pd(II)-catalyzed C(sp2)-H/C(sp2)-H coupling with acrylic acid esters and amides, α,β-unsaturated ketones, styrenes, and allyl acetate, affording novel 1,3-dienes. DFT computations gave results in accord with the experimental results and allowed for the formulation of a plausible mechanism. The postfunctionalization of one of the coupled products was achieved via a large-scale Sonogashira reaction conducted under micellar catalysis.
Collapse
Affiliation(s)
- Marco Di Matteo
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Anna Gagliardi
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Alexandre Pradal
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | | | - Giovanni Poli
- Institut Parisien de Chimie Moléculaire (IPCM), Faculté des Sciences et Ingénierie, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
4
|
Bennett MT, Park KA, Musgrave CB, Brubaker JW, Dickie DA, Goddard WA, Gunnoe TB. Hexa-Fe(III) Carboxylate Complexes Facilitate Aerobic Hydrocarbon Oxidative Functionalization: Rh Catalyzed Oxidative Coupling of Benzene and Ethylene to Form Styrene. ACS Catal 2024; 14:10295-10316. [PMID: 38988649 PMCID: PMC11232027 DOI: 10.1021/acscatal.4c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Fe(II) carboxylates react with dioxygen and carboxylic acid to form Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 (X = acetate or pivalate), which is an active oxidant for Rh-catalyzed arene alkenylation. Heating (150-200 °C) the catalyst precursor [(η2-C2H4)2Rh(μ-OAc)]2 with ethylene, benzene, Fe(II) carboxylate, and dioxygen yields styrene >30-fold faster than the reaction with dioxygen in the absence of the Fe(II) carboxylate additive. It is also demonstrated that Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 is an active oxidant under anaerobic conditions, and the reduced material can be reoxidized to Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 by dioxygen. At optimized conditions, a turnover frequency of ∼0.2 s-1 is achieved. Unlike analogous reactions with Cu(II) carboxylate oxidants, which undergo stoichiometric Cu(II)-mediated production of phenyl esters (e.g., phenyl acetate) as side products at temperatures ≥150 °C, no phenyl ester side product is observed when Fe carboxylate additives are used. Kinetic isotope effect experiments using C6H6 and C6D6 give k H/k D = 3.5(3), while the use of protio or monodeutero pivalic acid reveals a small KIE with k H/k D = 1.19(2). First-order dependencies on Fe(II) carboxylate and dioxygen concentration are observed in addition to complicated kinetic dependencies on the concentration of carboxylic acid and ethylene, both of which inhibit the reaction rate at a high concentration. Mechanistic studies are consistent with irreversible benzene C-H activation, ethylene insertion into the formed Rh-Ph bond, β-hydride elimination, and reaction of Rh-H with Fe6(μ-OH)2(μ3-O)2(μ-X)12(HX)2 to regenerate a Rh-carboxylate complex.
Collapse
Affiliation(s)
- Marc T. Bennett
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kwanwoo A. Park
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Jack W. Brubaker
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Diane A. Dickie
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Li X, Luo H, Song R, Zhang Y, Gong X, Cai H, Luo X. Selective Cross-Dehydrogenative Coupling of Various Acyclic Enamides with Heteroarenes via Rh(III)-Catalyzed C-H Activation. Org Lett 2023; 25:5262-5267. [PMID: 37417807 DOI: 10.1021/acs.orglett.3c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The developed methodology describes an efficient Rh(III)-catalyzed oxidative C-H/C-H cross-coupling between acyclic enamides and heteroarenes. This cross dehydrogenative coupling (CDC) reaction offers advantages, including excellent regioselectivity and stereoselectivity, good functional group compatibility, and a broad substrate scope. Mechanistically, Rh(III)-catalyzed β-C(sp2)-H activation of acyclic enamides is proposed to be the critical step.
Collapse
Affiliation(s)
- Xiaolan Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ruixin Song
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yuting Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xian Gong
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xuzhong Luo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Maikhuri VK, Maity J, Srivastava S, Prasad AK. Transition metal-catalyzed double C vinyl-H bond activation: synthesis of conjugated dienes. Org Biomol Chem 2022; 20:9522-9588. [PMID: 36412483 DOI: 10.1039/d2ob01646j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Conjugated dienes have occupied a pivotal position in the field of synthetic organic chemistry and medicinal chemistry. They act as important synthons for the synthesis of various biologically important molecules and therefore, gain tremendous attention worldwide. A wide range of synthetic routes to access these versatile molecules have been developed in the past decades. Transition metal-catalyzed cross-dehydrogenative coupling (CDC) has emerged as one of the utmost front-line research areas in current synthetic organic chemistry due to its high atom economy, efficiency, and viability. In this review, an up-to-date summary including scope, limitations, mechanistic studies, stereoselectivities, and synthetic applications of transition metal-catalyzed double Cvinyl-H bond activation for the synthesis of conjugated dienes has been reported since 2013. The literature reports mentioned in this review have been classified into three different categories, i.e. (a) Cvinyl-Cvinyl bond formation via oxidative homo-coupling of terminal alkenes; (b) Cvinyl-Cvinyl bond formation via non-directed oxidative cross-coupling of linear/cyclic alkenes and terminal/internal alkenes, and (c) Cvinyl-Cvinyl bond formation via oxidative cross-coupling of directing group bearing alkenes and terminal/internal alkenes. Overall, this review aims to provide a concise overview of the current status of the considerable development in this field and is expected to stimulate further innovation and research in the future.
Collapse
Affiliation(s)
- Vipin K Maikhuri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi-110007, India
| | - Smriti Srivastava
- Department of Chemistry, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
8
|
Barboza AA, Dantas JA, Jardim GADM, Ferreira MAB, Costa MO, Chiavegatti A. Recent Advances in Palladium-Catalyzed Oxidative Couplings in the Synthesis/Functionalization of Cyclic Scaffolds Using Molecular Oxygen as the Sole Oxidant. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1701-7397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOver the past years, Pd(II)-catalyzed oxidative couplings have enabled the construction of molecular scaffolds with high structural diversity via C–C, C–N and C–O bond-forming reactions. In contrast to the use of stoichiometric amounts of more common oxidants, such as metal salts (Cu and Ag) and benzoquinone derivatives, the use of molecular oxygen for the direct or indirect regeneration of Pd(II) species presents itself as a more viable alternative in terms of economy and sustainability. In this review, we describe recent advances on the development of Pd-catalyzed oxidative cyclizations/functionalizations, where molecular oxygen plays a pivotal role as the sole stoichiometric oxidant.1 Introduction2 Oxidative C–C and C–Nu Coupling2.1 Intramolecular Oxidative C–Nu Heterocyclization Reactions2.1.1 C–H Activation2.1.2 Wacker/Aza-Wacker-Type Cyclization2.1.3 Tandem Wacker/Aza-Wacker and Cyclization/Cross-Coupling Reactions2.2 Intermolecular Oxidative C–Nu Heterocoupling Reactions2.3 Intramolecular Oxidative (C–C) Carbocyclization Reactions2.4 Intermolecular Oxidative C–C Coupling Reactions2.4.1 Cyclization Reactions2.4.2 Cross-Coupling Reactions2.4.3 Homo-Coupling Reactions3 Aerobic Dehydrogenative Coupling/Functionalization4 Oxidative C–H Functionalization5 Summary
Collapse
|
9
|
Zargar IA, Hussain N, Mukherjee D. Conversion of Glycals to 2,3-Di-Substituted-3-Deoxy-Glycals via N-(Glycosyloxy) Acetamides Assisted C-2-Alkenylation and C-3-Nucleophilic Substitution. Chem Asian J 2022; 17:e202200350. [PMID: 35485806 DOI: 10.1002/asia.202200350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/08/2022]
Abstract
Transformation of glycals to 2,3-di-substituted-3-dexoy-glycals were achieved by sequential C2 alkenylation of pseudoglycals followed by capture of nucleophiles at C3 position. Anomeric linked N-(glycosyloxy) acetamides group assisted innate C2-H activation of pseudoglycals under palladium catalysis is achieved. The synthesized C2 alkenylated products were further attacked by thio/amino nucleophiles at C3 position under basic conditions in stereo-selective fashion to generate 2,3-branched glycals with the elimination of directing groups and translocation of double bond. Different control experiments were conducted to establish the role of directing groups in C-H functionalization of pseudoglycals and reason for selectivity.
Collapse
Affiliation(s)
- Irshad Ahmad Zargar
- CSIR-Indian Institute of Integrative Medicine: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Product chemistry, INDIA
| | - Nazar Hussain
- Banaras Hindu University, Medicinal Chemistry, INDIA
| | | |
Collapse
|
10
|
Design, synthesis, and applications of stereospecific 1,3-diene carbonyls. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Azeem Z, Mandal PK. Recent advances in palladium-catalyzed C(sp 3)/C(sp 2)-H bond functionalizations: access to C-branched glycosides. Org Biomol Chem 2022; 20:264-281. [PMID: 34904995 DOI: 10.1039/d1ob02142g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the recent decades, tremendous interest has developed in the transformation of complex substrates by C-H activation and functionalization. In particular, palladium-catalyzed directing and non-directing group-assisted C-H functionalization has emerged as a powerful avenue to access C-branched glycosides. Due to the extreme complexity, delicate functionalities, and high stability of C-H bonds, site-selective functionalization of carbohydrate under mild conditions is highly desirable. The purpose of this review is to cover most of the recent advances in palladium-catalyzed C(sp3) and C(sp2)-H bond functionalizations for the synthesis of C-branched glycosides along with future directions.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
12
|
Kumar H, Dubey A, Prajapati G, Kant R, Ampapathi RS, Mandal PK. Regioselective direct sulfenylation of glycals using arylsulfonyl chlorides in the presence of triphenylphosphine: access to C2-thioaryl glycosides. NEW J CHEM 2022. [DOI: 10.1039/d1nj05228d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cheap and easily available arylsulfonyl chlorides as a sulfur source reductively couple with glycals in the presence of triphenylphosphine to afford C2-thioaryl glycosides.
Collapse
Affiliation(s)
- Harikesh Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Atul Dubey
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Gurudayal Prajapati
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi S. Ampapathi
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
13
|
Hussain N, Hussain A. Advances in Pd-catalyzed C-C bond formation in carbohydrates and their applications in the synthesis of natural products and medicinally relevant molecules. RSC Adv 2021; 11:34369-34391. [PMID: 35497292 PMCID: PMC9042403 DOI: 10.1039/d1ra06351k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Advances in the Pd-catalyzed synthesis of C-glycosides and branched sugars are summarized herein and the strategies are categorized based on named reactions or types of sugar moieties involved in the reactions. These include cross-coupling reactions, C-H activations, and carbonylative cross-coupling reactions. Applications of Pd-catalyzed C-glycosylation reactions are discussed in the synthesis of natural products and biologically active molecules such as bergenin, papulacandin D, and SGLT2-inhibitors. Important mechanistic cycles are drawn and the mechanisms for how Pd-activates the sugar moieties for various coupling partners are discussed. The directing group-assisted C-glycosylation and some intramolecular C-H activation reactions are also included.
Collapse
Affiliation(s)
- Nazar Hussain
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU Varanasi-221005 India
| | - Altaf Hussain
- Department of Chemistry, Govt. Degree College Poonch J&K India 185101
| |
Collapse
|
14
|
Zanetti A, Schwertz G, de Oliveira MN, Gomez Fernandez MA, Amara Z, Cossy J. Palladium-Catalyzed Regioselective Allylic Oxidation of Amorphadiene, a Precursor of Artemisinin. J Org Chem 2021; 86:7603-7608. [PMID: 33983733 DOI: 10.1021/acs.joc.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A regioselective Pd-catalyzed allylic oxidation of amorphadiene, a key precursor to the antimalarial drug artemisinin, is described. Amorphadiene can be obtained in high yields by fermentation, but it is currently treated as a waste in the industrial semisynthetic artemisinin process. The catalytic step described here is a substitute for the P450 enzymes involved in the artemisinin biosynthesis and opens up new opportunities to supplement a critical step in the current semisynthetic route and increase the potential of the fermentation process.
Collapse
Affiliation(s)
- Andrea Zanetti
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, Paris 75005 Cedex 5, France
| | - Geoffrey Schwertz
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, Paris 75005 Cedex 5, France
| | - Marllon Nascimento de Oliveira
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris Cedex 03, France
| | - Mario Andrés Gomez Fernandez
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris Cedex 03, France
| | - Zacharias Amara
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris Cedex 03, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, Paris 75005 Cedex 5, France
| |
Collapse
|
15
|
Guðmundsson A, Manna S, Bäckvall J. Iron(II)‐Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Srimanta Manna
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University 85170 Sundsvall Sweden
| |
Collapse
|
16
|
Guðmundsson A, Manna S, Bäckvall J. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of Amines using a Hybrid Hydroquinone/Cobalt Catalyst as Electron Transfer Mediator. Angew Chem Int Ed Engl 2021; 60:11819-11823. [PMID: 33725364 PMCID: PMC8252094 DOI: 10.1002/anie.202102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Herein we report the first FeII -catalyzed aerobic biomimetic oxidation of amines. This oxidation reaction involves several electron transfer steps and is inspired by biological oxidation in the respiratory chain. The electron transfer from the amine to molecular oxygen is aided by two coupled catalytic redox systems, which lower the energy barrier and improve the selectivity of the oxidation reaction. An iron hydrogen transfer complex was utilized as the substrate-selective dehydrogenation catalyst along with a bifunctional hydroquinone/cobalt Schiff base complex as a hybrid electron transfer mediator. Various primary and secondary amines were oxidized in air to their corresponding aldimines or ketimines in good to excellent yield.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Srimanta Manna
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Department of Natural SciencesMid Sweden University85170SundsvallSweden
| |
Collapse
|
17
|
Gu Q, Wang Q, Dai W, Wang X, Ban Y, Liu T, Zhao Y, Zhang Y, Ling Y, Zeng X. K 2S 2O 8-mediated regio- and stereo-selective thiocyanation of enamides with NH 4SCN. Org Biomol Chem 2021; 19:2512-2516. [PMID: 33662088 DOI: 10.1039/d1ob00156f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A direct and straightforward thiocyanation of enamides with NH4SCN under metal-free conditions has been accomplished. A variety of (E)-β-thiocyanoenamides are readily produced in a regio- and stereo-selective manner. The protocol features mild reaction conditions, good functional group tolerance and operational simplicity. The potential utility of this strategy was further demonstrated by transformation of thiocyanate into thiotetrazole-containing compounds and a Pd-catalyzed cross-coupling reaction to afford six- or seven-membered sulfur-containing heterocycles. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang RH, Li JF, Li Y, Qi SL, Zhang T, Luan YX, Ye M. Selective C(sp3)–H Cleavage of Enamides for Synthesis of 2-Pyridones via Ligand-Enabled Ni–Al Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Liu J, Bäckvall J. Efficient Palladium-Catalyzed Aerobic Oxidative Carbocyclization to Seven-Membered Heterocycles. Chemistry 2020; 26:15513-15518. [PMID: 32960479 PMCID: PMC7894550 DOI: 10.1002/chem.202004265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Indexed: 11/09/2022]
Abstract
The use of molecular oxygen in palladium-catalyzed oxidation reactions is highly widespread in organic chemistry. However, the direct reoxidation of palladium by O2 is often kinetically unfavored, thus leading the deactivation of the palladium catalyst during the catalytic cycle. In the present work, we report a highly selective palladium-catalyzed carbocyclization of bisallenes to seven-membered heterocycles under atmospheric pressure of O2 . The use of a homogenous hybrid catalyst (Co(salophen)-HQ, HQ=hydroquinone) significantly promotes efficient electron transfer between the palladium catalyst and O2 through a low-energy pathway. This aerobic oxidative transformation shows broad substrate scope and functional group compatibility and allowed the preparation of O-containing seven-membered rings in good yields in most cases.
Collapse
Affiliation(s)
- Jie Liu
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- College of Chemistry and Chemical EngineeringHunan University410082ChangshaP. R. China
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 1085170SundsvallSweden
| |
Collapse
|
20
|
Ghouilem J, de Robichon M, Le Bideau F, Ferry A, Messaoudi S. Emerging Organometallic Methods for the Synthesis of C-Branched (Hetero)aryl, Alkenyl, and Alkyl Glycosides: C-H Functionalization and Dual Photoredox Approaches. Chemistry 2020; 27:491-511. [PMID: 32813294 DOI: 10.1002/chem.202003267] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Transition-metal-catalyzed C-H functionalization and photoredox nickel dual catalysis have emerged as innovative and powerful avenues for the synthesis of C-branched glycosides. These two concepts have been recently established and provide efficient and mild methods for accessing a series of valuable complex C-branched glycosides of great interest. Herein, recent developments in the synthesis of C-branched aryl/alkenyl/alkyl glycosides through these two approaches are highlighted.
Collapse
Affiliation(s)
- Juba Ghouilem
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Morgane de Robichon
- CY Cergy-Paris Université, BioCIS, Equipe de Chimie Biologique, CNRS, 95000, Neuville sur Oise, France
| | - Franck Le Bideau
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Angélique Ferry
- CY Cergy-Paris Université, BioCIS, Equipe de Chimie Biologique, CNRS, 95000, Neuville sur Oise, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| |
Collapse
|
21
|
Rawat R, Verma SM. Advancements in chemical methodologies for the synthesis of 3-aroylimidazo[1,2-a]pyridines: an update of the decade. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ravi Rawat
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| | - Saurabh M. Verma
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
22
|
Biswas A, Maity S, Pan S, Samanta R. Transition Metal‐Catalysed Direct C−H Bond Functionalizations of 2‐Pyridone Beyond C3‐Selectivity. Chem Asian J 2020; 15:2092-2109. [PMID: 32500612 DOI: 10.1002/asia.202000506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Saurabh Maity
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
- Current Address: Institute of Organic and Biomolecular ChemistryGeorg-August University Goettingen 37077 Germany
| | - Subarna Pan
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| |
Collapse
|
23
|
Guðmundsson A, Schlipköter KE, Bäckvall J. Iron(II)-Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angew Chem Int Ed Engl 2020; 59:5403-5406. [PMID: 31999013 PMCID: PMC7154773 DOI: 10.1002/anie.202000054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 12/16/2022]
Abstract
We report the first FeII -catalyzed biomimetic aerobic oxidation of alcohols. The principle of this oxidation, which involves several electron-transfer steps, is reminiscent of biological oxidation in the respiratory chain. The electron transfer from the alcohol to molecular oxygen occurs with the aid of three coupled catalytic redox systems, leading to a low-energy pathway. An iron transfer-hydrogenation complex was utilized as a substrate-selective dehydrogenation catalyst, along with an electron-rich quinone and an oxygen-activating Co(salen)-type complex as electron-transfer mediators. Various primary and secondary alcohols were oxidized in air to the corresponding aldehydes or ketones with this method in good to excellent yields.
Collapse
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Kim Elisabeth Schlipköter
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
- Current address: Institute of Technical BiocatalysisHamburg University of Technology TUHH21071HamburgGermany
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| |
Collapse
|
24
|
Zhu C, Liu J, Mai BK, Himo F, Bäckvall JE. Efficient Stereoselective Carbocyclization to cis-1,4-Disubstituted Heterocycles Enabled by Dual Pd/Electron Transfer Mediator (ETM) Catalysis. J Am Chem Soc 2020; 142:5751-5759. [PMID: 32101690 PMCID: PMC7307908 DOI: 10.1021/jacs.9b13700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
An efficient Pd/ETM
(ETM = electron transfer mediator)-cocatalyzed
stereoselective oxidative carbocyclization of dienallenes under aerobic
oxidation conditions has been developed to afford six-membered heterocycles.
The use of a bifunctional cobalt complex [Co(salophen)-HQ] as hybrid
ETM gave a faster aerobic oxidation than the use of separated ETMs,
indicating that intramolecular electron transfer between the hydroquinone
unit and the oxidized metal macrocycle occurs. In this way, a class
of important cis-1,4-disubstituted six-membered heterocycles,
including dihydropyran and tetrahydropyridine derivatives were obtained
in high diastereoselectivity with good functional group compatibility.
The experimental and computational (DFT) studies reveal that the pendent
olefin does not only act as an indispensable element for the initial
allene attack involving allenic C(sp3)–H
bond cleavage, but it also induces a face-selective reaction of the
olefin of the allylic group, leading to a highly diastereoselective
formation of the product. Finally, the deuterium kinetic isotope effects
measured suggest that the initial allenic C(sp3)–H bond cleavage is the rate-limiting step, which
was supported by DFT calculations.
Collapse
Affiliation(s)
- Can Zhu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jie Liu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Binh Khanh Mai
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,Department of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-851 79 Sundsvall, Sweden
| |
Collapse
|
25
|
Guðmundsson A, Schlipköter KE, Bäckvall J. Iron(II)‐Catalyzed Biomimetic Aerobic Oxidation of Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000054] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arnar Guðmundsson
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Kim Elisabeth Schlipköter
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
- Current address: Institute of Technical BiocatalysisHamburg University of Technology TUHH 21071 Hamburg Germany
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
26
|
Zhu T, Xie S, Rojsitthisak P, Wu J. Recent advances in the direct β-C(sp2)–H functionalization of enamides. Org Biomol Chem 2020; 18:1504-1521. [DOI: 10.1039/c9ob02649e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in the direct β-C(sp2)–H functionalization of enamides, mainly including arylation, alkenylation, alkynylation, alkylation, acylation, sulfonylation, phosphorylation, and others, are reported.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Shimin Xie
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Patumwan
- Thailand
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
27
|
Liu J, Han P, Liao JX, Tu YH, Zhou H, Sun JS. Palladium-Catalyzed Cross-Coupling of 2-Iodoglycals with N-Tosylhydrazones: Access to 2-C-Branched Glycoconjugates and Oxadecalins. J Org Chem 2019; 84:9344-9352. [DOI: 10.1021/acs.joc.9b01056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianchao Liu
- The National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Puren Han
- The National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jin-Xi Liao
- The National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuan-Hong Tu
- The National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Huiwen Zhou
- The National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- The National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
28
|
de Robichon M, Bordessa A, Lubin-Germain N, Ferry A. “CO” as a Carbon Bridge to Build Complex C2-Branched Glycosides Using a Palladium-Catalyzed Carbonylative Suzuki–Miyaura Reaction from 2-Iodoglycals. J Org Chem 2019; 84:3328-3339. [DOI: 10.1021/acs.joc.8b03248] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Morgane de Robichon
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise Cedex, France
| | - Andrea Bordessa
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise Cedex, France
| | - Nadège Lubin-Germain
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise Cedex, France
| | - Angélique Ferry
- Laboratoire de Chimie Biologique (LCB), Université de Cergy-Pontoise, EA 4505, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise Cedex, France
| |
Collapse
|
29
|
Toledo A, Funes-Ardoiz I, Maseras F, Albéniz AC. Palladium-Catalyzed Aerobic Homocoupling of Alkynes: Full Mechanistic Characterization of a More Complex Oxidase-Type Behavior. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01540] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alberto Toledo
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Ignacio Funes-Ardoiz
- Institute of Chemical Research of Catalonia (ICIQ). The Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ). The Barcelona Institute of Science and Technology, Avda. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana C. Albéniz
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
30
|
Aleksić J, Stojanović M, Baranac-Stojanović M. Silica Gel as a Promoter of Sequential Aza-Michael/Michael Reactions of Amines and Propiolic Esters: Solvent- and Metal-Free Synthesis of Polyfunctionalized Conjugated Dienes. Chem Asian J 2018; 13:1811-1835. [PMID: 29757499 DOI: 10.1002/asia.201800645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 01/19/2023]
Abstract
We present an efficient, simple, metal- and solvent-free silica-gel-promoted synthesis of functionalized conjugated dienes by sequential aza-Michael/Michael reactions by starting from commercially available primary amines and propiolic esters. The scope and usefulness of the method is demonstrated for 31 examples, including a range of propiolic esters, aliphatic amines, and differently substituted aromatic amines. For aliphatic amines, the products were obtained within 0.5 to 4 h in 52 to 85 % yield, compared with 3.5 to 22 h under classical solution-phase synthesis, which proceeds with similar or lower yields. The method was found to be particularly useful for weakly nucleophilic aromatic amines, which provided products in 21 to 73 % yield over 2.5 to 9.5 h compared with yields of 0 to 49 % over 1 to 6 d under standard solution-phase conditions, and for more hydrophobic esters that gave products in yields of 47 to 79 % over 1 to 3 h compared with 0 to 45 % over 4 to 114 h in solvent.
Collapse
Affiliation(s)
- Jovana Aleksić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy-Center for Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| | - Milovan Stojanović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy-Center for Chemistry, Njegoševa 12, 11000, Belgrade, Serbia
| | | |
Collapse
|
31
|
Hu TJ, Li MY, Zhao Q, Feng CG, Lin GQ. Highly Stereoselective Synthesis of 1,3-Dienes through an Aryl to Vinyl 1,4-Palladium Migration/Heck Sequence. Angew Chem Int Ed Engl 2018; 57:5871-5875. [PMID: 29573527 DOI: 10.1002/anie.201801963] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 12/24/2022]
Abstract
An efficient aryl to vinyl 1,4-palladium migration/Heck sequence was developed for the stereoselective synthesis of 1,3-dienes. High stereoselectivity was observed not only for 1,3-dienes bearing two similar aryl groups at terminal positions, but also for those with configurations shown to be unfavorable with previous methods.
Collapse
Affiliation(s)
- Tian-Jiao Hu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development, Jiangsu Aosaikang Pharmaceutical CO., LTD., Nanjing, 211112, China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
32
|
Begum Z, Shankar G, Sirisha K, Reddy BS. Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids. Carbohydr Res 2018; 461:1-3. [DOI: 10.1016/j.carres.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/04/2018] [Accepted: 03/04/2018] [Indexed: 01/17/2023]
|
33
|
Hu TJ, Li MY, Zhao Q, Feng CG, Lin GQ. Highly Stereoselective Synthesis of 1,3-Dienes through an Aryl to Vinyl 1,4-Palladium Migration/Heck Sequence. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801963] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tian-Jiao Hu
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Qian Zhao
- Jiangsu Key Laboratory of Chiral Drug Development; Jiangsu Aosaikang Pharmaceutical CO., LTD.; Nanjing 211112 China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
- Innovation Research Institute of Traditional Chinese Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
34
|
Anil Kumar K, Kannaboina P, Das P. Ruthenium-catalyzed site-selective C-H arylation of 2-pyridones and 1-isoquinolinones. Org Biomol Chem 2018. [PMID: 28621792 DOI: 10.1039/c7ob01277b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient Ru(ii)-catalyzed site-selective C-H arylation of 2-pyridones and 1-isoquinolinones was achieved with boronic acids by using pyridine as a directing group. The developed protocol is general and provides rapid access to an array of C6-arylated 2-pyridones and C3-arylated 1-isoquinolinones in excellent yields. These designed arylated 2-pyridones and 1-isoquinolinones can serve as key structural motifs for accessing functionalized pyridines and isoquinolines.
Collapse
Affiliation(s)
- K Anil Kumar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| | | | | |
Collapse
|
35
|
Wang F, Sun W, Wang Y, Jiang Y, Loh TP. Highly Site-Selective Metal-Free C–H Acyloxylation of Stable Enamines. Org Lett 2018; 20:1256-1260. [DOI: 10.1021/acs.orglett.8b00222] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Fei Wang
- Institute
of Advanced Synthesis, Institute of Advanced Materials, School of
Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation
Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wangbing Sun
- Institute
of Advanced Synthesis, Institute of Advanced Materials, School of
Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation
Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yixin Wang
- Institute
of Advanced Synthesis, Institute of Advanced Materials, School of
Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation
Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Institute
of Advanced Synthesis, Institute of Advanced Materials, School of
Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation
Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute
of Advanced Synthesis, Institute of Advanced Materials, School of
Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation
Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637616, Singapore
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Puls F, Knölker HJ. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Florian Puls
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
37
|
Puls F, Knölker HJ. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant. Angew Chem Int Ed Engl 2017; 57:1222-1226. [DOI: 10.1002/anie.201710370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Florian Puls
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstraße 66 01069 Dresden Germany
| |
Collapse
|
38
|
Liang QJ, Yang C, Meng FF, Jiang B, Xu YH, Loh TP. Chelation versus Non-Chelation Control in the Stereoselective Alkenyl sp 2 C-H Bond Functionalization Reaction. Angew Chem Int Ed Engl 2017; 56:5091-5095. [PMID: 28370972 DOI: 10.1002/anie.201700559] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/10/2022]
Abstract
A hydroxy group chelation-assisted stereospecific oxidative cross-coupling reaction between alkenes was developed under mild reaction conditions. In the presence of palladium catalyst, the alkenes tethered with hydroxy functionality can couple efficiently with electron-deficient alkenes to form the corresponding multi-substituted olefin products. The hydroxy group on the substrate could play dual roles in reaction, acting as the directing group for alkenyl C-H bond activation and controlling the stereoselectivity of the products.
Collapse
Affiliation(s)
- Qiu-Ju Liang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chao Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Fei-Fan Meng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bing Jiang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Teck-Peng Loh
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.,Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu, 210009, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637616, Singapore
| |
Collapse
|
39
|
Liang QJ, Yang C, Meng FF, Jiang B, Xu YH, Loh TP. Chelation versus Non-Chelation Control in the Stereoselective Alkenyl sp2
C−H Bond Functionalization Reaction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiu-Ju Liang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Chao Yang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Fei-Fan Meng
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Bing Jiang
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Yun-He Xu
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
| | - Teck-Peng Loh
- Department of Chemistry; University of Science and Technology of China; 96 Jinzhai Road Hefei, Anhui 230026 China
- Institute of Advanced Synthesis; Jiangsu National Synergetic Innovation Center for Advanced Materials; Nanjing Tech University; 30 South Puzhu Road Nanjing, Jiangsu 210009 China
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore 637616 Singapore
| |
Collapse
|
40
|
Dey A, Pimparkar S, Deb A, Guin S, Maiti D. Chelation-Assisted Palladium-Catalyzed γ-Arylation of Aliphatic Carboxylic Acid Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601121] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai - 400 076 India
| | - Sandeep Pimparkar
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai - 400 076 India
| | - Arghya Deb
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai - 400 076 India
| | - Srimanta Guin
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai - 400 076 India
| | - Debabrata Maiti
- Department of Chemistry; Indian Institute of Technology Bombay, Powai; Mumbai - 400 076 India
| |
Collapse
|
41
|
Meng X, Bi X, Wang Y, Chen G, Chen B, Jing Z, Zhao P. Heterogeneous selective synthesis of 1,2-dihydro-1,3,5-triazines from alcohols and amidines via Cu/OMS-2-catalyzed multistep oxidation. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Fritsche RF, Theumer G, Kataeva O, Knölker HJ. Iron-Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Raphael F. Fritsche
- Department Chemie; Technische Universität Dresden; Bergstrasse 66 01069 Dresden Germany
| | - Gabriele Theumer
- Department Chemie; Technische Universität Dresden; Bergstrasse 66 01069 Dresden Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Russian Academy of Sciences; Arbuzov Str. 8 Kazan 420088 Russia
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
43
|
Fritsche RF, Theumer G, Kataeva O, Knölker HJ. Iron-Catalyzed Oxidative C−C and N−N Coupling of Diarylamines and Synthesis of Spiroacridines. Angew Chem Int Ed Engl 2016; 56:549-553. [DOI: 10.1002/anie.201610168] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Raphael F. Fritsche
- Department Chemie; Technische Universität Dresden; Bergstrasse 66 01069 Dresden Germany
| | - Gabriele Theumer
- Department Chemie; Technische Universität Dresden; Bergstrasse 66 01069 Dresden Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Russian Academy of Sciences; Arbuzov Str. 8 Kazan 420088 Russia
| | - Hans-Joachim Knölker
- Department Chemie; Technische Universität Dresden; Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
44
|
Affiliation(s)
- Tobias Gylling Frihed
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Mikael Bols
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | | |
Collapse
|
45
|
Meng X, Zhang J, Chen B, Jing Z, Zhao P. Copper supported on H+-modified manganese oxide octahedral molecular sieves (Cu/H-OMS-2) as a heterogeneous biomimetic catalyst for the synthesis of imidazo[1,2-a]-N-heterocycles. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01433f] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A combination of Cu and H-OMS-2 is employed to synthesize heterocycles through multistep oxidation under a low-energy pathway.
Collapse
Affiliation(s)
- Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Jinqi Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou
- China
| | - Zhenqiang Jing
- Suzhou Institute of Nano-Tech and Nano-Bionic (SINANO)
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- Chinese Academy of Sciences
- Lanzhou 730000
| |
Collapse
|
46
|
Dey A, Agasti S, Maiti D. Palladium catalysed meta-C–H functionalization reactions. Org Biomol Chem 2016; 14:5440-53. [DOI: 10.1039/c6ob00395h] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The directing group assisted site selective C–H functionalization approach is having a continuous impact in the field of natural product synthesis, drug discovery and material sciences.
Collapse
Affiliation(s)
- Aniruddha Dey
- Department of Chemistry
- Indian Institute of Technology Bombay
- India
| | - Soumitra Agasti
- Department of Chemistry
- Indian Institute of Technology Bombay
- India
| | - Debabrata Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- India
| |
Collapse
|
47
|
Hong Y, Fang T, Li M, Shen Z, Hu X, Mo W, Hu B, Sun N, Jin L. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone-catalyzed aerobic oxidation reactions via multistep electron transfers with iron(ii) phthalocyanine as an electron-transfer mediator. RSC Adv 2016. [DOI: 10.1039/c6ra08921f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new biomimetic catalytic oxidation system was developed for oxidative deprotection of PMB ethers, alcohol oxidation, aromatization and α,β-unsaturated aldehyde formation.
Collapse
Affiliation(s)
- Yiming Hong
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Tiantian Fang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Meichao Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Zhenlu Shen
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Xinquan Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Weimin Mo
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Baoxiang Hu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Nan Sun
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Liqun Jin
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
48
|
Joseph J, Preethalayam P, Radhakrishnan KV, Jaroschik F, Vasse JL. Titanium and Zirconium Hydride-Catalyzed Regioselective Isomerization of 1,4-Dihydrofulvenes: Access to 1-Substituted 1,2-Dihydrofulvenes. Org Lett 2015; 17:6202-5. [DOI: 10.1021/acs.orglett.5b03195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jomy Joseph
- Institut de Chimie Moléculaire de Reims, CNRS
(UMR 7312), Université de Reims, 51687 Cedex 2 Reims, France
| | - Preethanuj Preethalayam
- National Institute for Interdisciplinary Science and Technology, CSIR-NIIST, Industrial
Estate P.O., Trivandrum 19, Kerala, India
| | - K. V. Radhakrishnan
- National Institute for Interdisciplinary Science and Technology, CSIR-NIIST, Industrial
Estate P.O., Trivandrum 19, Kerala, India
| | - Florian Jaroschik
- Institut de Chimie Moléculaire de Reims, CNRS
(UMR 7312), Université de Reims, 51687 Cedex 2 Reims, France
| | - Jean-Luc Vasse
- Institut de Chimie Moléculaire de Reims, CNRS
(UMR 7312), Université de Reims, 51687 Cedex 2 Reims, France
| |
Collapse
|
49
|
Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. Chem Rev 2015; 115:12138-204. [DOI: 10.1021/cr500431s] [Citation(s) in RCA: 836] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chao Liu
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiwen Yuan
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Meng Gao
- National
Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| | - Shan Tang
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Wu Li
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Renyi Shi
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
| | - Aiwen Lei
- College
of Chemistry and Molecular Sciences, Institute for Advanced Studies
(IAS), Wuhan University, Wuhan 430072, People’s Republic of China
- National
Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, Jiangxi 330022, People’s Republic of China
| |
Collapse
|
50
|
Huang Q, Zhang X, Qiu L, Wu J, Xiao H, Zhang X, Lin S. Palladium-Catalyzed Olefination and Arylation of Polyfluoroarenes Using Molecular Oxygen as the Sole Oxidant. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|