1
|
Porter J, Roberts J, Miller GJ. Benzoylation of Tetrols: A Comparison of Regioselectivity Patterns for O- and S-Glycosides of d-Galactose. J Org Chem 2024; 89:14090-14097. [PMID: 39265180 PMCID: PMC11460728 DOI: 10.1021/acs.joc.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024]
Abstract
Efficient protecting group strategies are important for glycan synthesis and represent a unique synthetic challenge in differentiating sugar ring hydroxyl groups. Direct methods to enable regioselective protecting group installation are thus desirable. Herein, we explore a one-step regioselective benzoylation to deliver 2,3,6-protected d-galactose building blocks from tetrols across a variety of α- and β-, O- and S-glycoside substrates. We focus on benzoyl chloride as the esterifying reagent and a reaction temperature of -40 °C to screen the regioselectivity outcome for twenty-two different glycosides, based on isolated yields. Using this methodology, we demonstrate the capability for α-linked aryl and alkyl glycosides (O- and S- d-galactosides, d-galactosamines, and l-fucose), delivering consistent isolated yields (>65%) for 2,3,6-benzoylated products. We extend to explore β-linked systems, where the observed regioselectivity is not paralleled. We posit that both steric and electronic factors from the anomeric substituent contribute to modulating the reactivity competition between 2-OH and 4-OH, enabling the formation of regioisomeric mixtures. However, a certain balance of these factors within the aglycon can deliver 2,3,6-regioselectivity, notably for β-O-Et and β-O-CH2CF3 glycosides. The methodology contributes toward understanding the peculiarities of regioselective carbohydrate-protecting group installation, exploring the importance of the anomeric substituent upon ring hydroxyl group reactivity.
Collapse
Affiliation(s)
- Jack Porter
- Centre for Glycoscience and
School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Jacob Roberts
- Centre for Glycoscience and
School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Gavin J. Miller
- Centre for Glycoscience and
School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| |
Collapse
|
2
|
Inter-Ligand STD NMR: An Efficient 1D NMR Approach to Probe Relative Orientation of Ligands in a Multi-Subsite Protein Binding Pocket. Pharmaceuticals (Basel) 2022; 15:ph15081030. [PMID: 36015178 PMCID: PMC9415034 DOI: 10.3390/ph15081030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, Saturation Transfer Difference NMR (STD NMR) has been proven to be a powerful and versatile ligand-based NMR technique to elucidate crucial aspects in the investigation of protein-ligand complexes. Novel STD NMR approaches relying on “multi-frequency” irradiation have enabled us to even elucidate specific ligand-amino acid interactions and explore the binding of fragments in previously unknown binding subsites. Exploring multi-subsite protein binding pockets is especially important in Fragment Based Drug Discovery (FBDD) to design leads of increased specificity and efficacy. We hereby propose a novel multi-frequency STD NMR approach based on direct irradiation of one of the ligands in a multi-ligand binding process, to probe the vicinity and explore the relative orientation of fragments in adjacent binding sub-sites, which we called Inter-Ligand STD NMR (IL-STD NMR). We proved its applicability on (i) a standard protein-ligand system commonly used for ligand-observed NMR benchmarking: Naproxen as bound to Bovine Serum Albumin, and (ii) the biologically relevant system of Cholera Toxin Subunit B and two inhibitors adjacently bound within the GM1 binding site. Relative to Inter-Ligand NOE (ILOE), the current state-of-the-art methodology to probe relative orientations of adjacent ligands, IL-STD NMR requires about one tenth of the experimental time and protein consumption, making it a competitive methodology with the potential to be applied in the pharmaceutical industries.
Collapse
|
3
|
Liu KM, Wang PY, Guo ZY, Xiong DC, Qin XJ, Liu M, Liu M, Xue WY, Ye XS. Iterative Synthesis of 2-Deoxyoligosaccharides Enabled by Stereoselective Visible-Light-Promoted Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202114726. [PMID: 35133053 DOI: 10.1002/anie.202114726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 01/02/2023]
Abstract
The photoinitiated intramolecular hydroetherification of alkenols has been used to form C-O bonds, but the intermolecular hydroetherification of alkenes with alcohols remains an unsolved challenge. We herein report the visible-light-promoted 2-deoxyglycosylation of alcohols with glycals. The glycosylation reaction was completed within 2 min in a high quantum yield (ϕ=28.6). This method was suitable for a wide array of substrates and displayed good reaction yields and excellent stereoselectivity. The value of this protocol was further demonstrated by the iterative synthesis of 2-deoxyglycans with α-2-deoxyglycosidic linkages up to a 20-mer in length and digoxin with β-2-deoxyglycosidic linkages. Mechanistic studies indicated that this reaction involved a glycosyl radical cation intermediate and a photoinitiated chain process.
Collapse
Affiliation(s)
- Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhen-Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xian-Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
4
|
Liu K, Wang P, Guo Z, Xiong D, Qin X, Liu M, Liu M, Xue W, Ye X. Iterative Synthesis of 2‐Deoxyoligosaccharides Enabled by Stereoselective Visible‐Light‐Promoted Glycosylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai‐Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Peng‐Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Zhen‐Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - De‐Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
- State Key Laboratory of Pharmaceutical Biotechnology Nanjing University Nanjing 210023 Jiangsu China
| | - Xian‐Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Wan‐Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| | - Xin‐Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Road No. 38 Beijing 100191 China
| |
Collapse
|
5
|
Feng GJ, Luo T, Guo YF, Liu CY, Dong H. Concise Synthesis of 1-Thioalkyl Glycoside Donors by Reaction of Per-O-acetylated Sugars with Sodium Alkanethiolates under Solvent-Free Conditions. J Org Chem 2022; 87:3638-3646. [DOI: 10.1021/acs.joc.1c02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guang-Jing Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Tao Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yang-Fan Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Chun-Yang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Hai Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
6
|
Qiao M, Zhang L, Jiao R, Zhang S, Li B, Zhang X. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Ji P, Zhang Y, Gao F, Bi F, Wang W. Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy. Chem Sci 2020; 11:13079-13084. [PMID: 34094490 PMCID: PMC8163235 DOI: 10.1039/d0sc04136j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
While strategies involving a 2e- transfer pathway have dictated glycosylation development, the direct glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because of high radical anomeric selectivity and atom- and step-economy. However, the development of the radical process has been challenging owing to notorious competing reduction, elimination and/or SN side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild reaction conditions enabling the synthesis of challenging α-1,2-cis-thioglycosides, the tolerance of various functional groups and the broad substrate scope for both common pentoses and hexoses. Furthermore, this general approach is compatible with both sp2 and sp3 sulfur electrophiles and late-stage glycodiversification for a total of 50 substrates probed.
Collapse
Affiliation(s)
- Peng Ji
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Yueteng Zhang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Feng Gao
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Fangchao Bi
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| | - Wei Wang
- Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, BIO5 Institute, and University of Arizona Cancer Centre, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
8
|
Monaco S, Walpole S, Doukani H, Nepravishta R, Martínez‐Bailén M, Carmona AT, Ramos‐Soriano J, Bergström M, Robina I, Angulo J. Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B. Chemistry 2020; 26:10024-10034. [PMID: 32449563 PMCID: PMC7496166 DOI: 10.1002/chem.202001723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Indexed: 11/30/2022]
Abstract
Ligand-based NMR techniques to study protein-ligand interactions are potent tools in drug design. Saturation transfer difference (STD) NMR spectroscopy stands out as one of the most versatile techniques, allowing screening of fragments libraries and providing structural information on binding modes. Recently, it has been shown that a multi-frequency STD NMR approach, differential epitope mapping (DEEP)-STD NMR, can provide additional information on the orientation of small ligands within the binding pocket. Here, the approach is extended to a so-called DEEP-STD NMR fingerprinting technique to explore the binding subsites of cholera toxin subunit B (CTB). To that aim, the synthesis of a set of new ligands is presented, which have been subject to a thorough study of their interactions with CTB by weak affinity chromatography (WAC) and NMR spectroscopy. Remarkably, the combination of DEEP-STD NMR fingerprinting and Hamiltonian replica exchange molecular dynamics has proved to be an excellent approach to explore the geometry, flexibility, and ligand occupancy of multi-subsite binding pockets. In the particular case of CTB, it allowed the existence of a hitherto unknown binding subsite adjacent to the GM1 binding pocket to be revealed, paving the way to the design of novel leads for inhibition of this relevant toxin.
Collapse
Affiliation(s)
- Serena Monaco
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Samuel Walpole
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Hassan Doukani
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Ridvan Nepravishta
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
- Department of Biochemistry & Molecular BiologySealy Center for Structural Biology & Molecular BiophysicsUniversity of Texas Medical Branch301 University BlvdGalvestonTX77555-1068USA
| | | | - Ana T. Carmona
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
| | - Javier Ramos‐Soriano
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
| | - Maria Bergström
- Department of Chemistry and Biomedical SciencesLinnaeus University391 82KalmarSweden
| | - Inmaculada Robina
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
| | - Jesus Angulo
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
- Instituto de Investigaciones Químicas (CSIC-US)Avda. Américo Vespucio, 4941092SevillaSpain
| |
Collapse
|
9
|
Kumar V, Turnbull WB. Carbohydrate inhibitors of cholera toxin. Beilstein J Org Chem 2018; 14:484-498. [PMID: 29520310 PMCID: PMC5827775 DOI: 10.3762/bjoc.14.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/08/2018] [Indexed: 01/17/2023] Open
Abstract
Cholera is a diarrheal disease caused by a protein toxin released by Vibrio cholera in the host's intestine. The toxin enters intestinal epithelial cells after binding to specific carbohydrates on the cell surface. Over recent years, considerable effort has been invested in developing inhibitors of toxin adhesion that mimic the carbohydrate ligand, with particular emphasis on exploiting the multivalency of the toxin to enhance activity. In this review we introduce the structural features of the toxin that have guided the design of diverse inhibitors and summarise recent developments in the field.
Collapse
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Punjab, India
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
10
|
Heggelund JE, Mackenzie A, Martinsen T, Heim JB, Cheshev P, Bernardi A, Krengel U. Towards new cholera prophylactics and treatment: Crystal structures of bacterial enterotoxins in complex with GM1 mimics. Sci Rep 2017; 7:2326. [PMID: 28539625 PMCID: PMC5443773 DOI: 10.1038/s41598-017-02179-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/07/2017] [Indexed: 01/08/2023] Open
Abstract
Cholera is a life-threatening disease in many countries, and new drugs are clearly needed. C-glycosidic antagonists may serve such a purpose. Here we report atomic-resolution crystal structures of three such compounds in complexes with the cholera toxin. The structures give unprecedented atomic details of the molecular interactions and show how the inhibitors efficiently block the GM1 binding site. These molecules are well suited for development into low-cost prophylactic drugs, due to their relatively easy synthesis and their resistance to glycolytic enzymes. One of the compounds links two toxin B-pentamers in the crystal structure, which may yield improved inhibition through the formation of toxin aggregates. These structures can spark the improved design of GM1 mimics, either alone or as multivalent inhibitors connecting multiple GM1-binding sites. Future developments may further include compounds that link the primary and secondary binding sites. Serving as decoys, receptor mimics may lessen symptoms while avoiding the use of antibiotics.
Collapse
Affiliation(s)
- Julie Elisabeth Heggelund
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway. .,School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, UK and School of Pharmacy, University of Oslo, P.O. Box 1068, NO-0316, Blindern, Norway.
| | - Alasdair Mackenzie
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway.,Alere Technologies AS, Kjelsåsveien 161, NO-0884, Oslo, Norway
| | - Tobias Martinsen
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway
| | - Joel Benjamin Heim
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway
| | - Pavel Cheshev
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy.,Skolkovo innovation center, Office 229, OC Technopark bld. 2, Lugovaya str. 4, 143026, Moscow, Russia
| | - Anna Bernardi
- Universita' degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133, Milano, Italy
| | - Ute Krengel
- Department of Chemistry, University of Oslo, P.O. Box 1033, NO-0315, Blindern, Norway.
| |
Collapse
|
11
|
Cecioni S, Imberty A, Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2014; 115:525-61. [DOI: 10.1021/cr500303t] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Samy Cecioni
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| | - Anne Imberty
- CERMAV, Université Grenoble Alpes and CNRS, BP 53, F-38041 Grenoble Cedex 9, France
| | - Sébastien Vidal
- Institut
de Chimie et Biochimie Moléculaires et Supramoléculaires,
Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Lyon 1 and CNRS, 43 Boulevard du 11 Novembre 1918, F-69622, Villeurbanne, France
| |
Collapse
|
12
|
Elías-Rodríguez P, Moreno-Clavijo E, Carmona AT, Moreno-Vargas AJ, Robina I. Rapid discovery of potent α-fucosidase inhibitors by in situ screening of a library of (pyrrolidin-2-yl)triazoles. Org Biomol Chem 2014; 12:5898-904. [DOI: 10.1039/c4ob00931b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fucosidase inhibitory activity of a library of (pyrrolidin-2-yl)triazoles generated by CuAAC can be in situ analyzed, avoiding tedious purification steps. A potent and selective inhibitor was identified.
Collapse
Affiliation(s)
- Pilar Elías-Rodríguez
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Seville
- 41012-Seville, Spain
| | - Elena Moreno-Clavijo
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Seville
- 41012-Seville, Spain
| | - Ana T. Carmona
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Seville
- 41012-Seville, Spain
| | | | - Inmaculada Robina
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Seville
- 41012-Seville, Spain
| |
Collapse
|