1
|
Liu Y, Chen Y, Yihuo A, Zhou Y, Liu X, Lin L, Feng X. Diastereodivergent Synthesis of Chiral α-Aminoketones via a Catalytic O–H Insertion/Barnes–Claisen Rearrangement Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yun Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yushuang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Aying Yihuo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People’s Republic of China
| |
Collapse
|
2
|
Guo S, Wong KC, Scheeff S, He Z, Chan WTK, Low KH, Chiu P. Copper-Catalyzed Reductive Ireland-Claisen Rearrangements of Propargylic Acrylates and Allylic Allenoates. J Org Chem 2021; 87:429-452. [PMID: 34918517 DOI: 10.1021/acs.joc.1c02455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The copper-catalyzed reductive Ireland-Claisen rearrangement of propargylic acrylates led to 3,4-allenoic acids. The use of silanes or pinacolborane as stoichiometric reducing agents and triethylphosphite as a ligand facilitated the divergent and complementary selectivity for the synthesis of diastereomeric anti- and syn-rearranged products, respectively. Copper-catalyzed reductive Ireland-Claisen rearrangement of allylic 2,3-allenoates proceeded effectively only when pinacolborane was used as a reductant to generate various 1,5-dienes in excellent yields and with good diastereoselectivities in some cases. Mechanistic studies showed that the silyl and boron enolates, rather than the copper enolate, underwent a stereospecific rearrangement via a chairlike transition state to afford the corresponding Claisen rearrangement products.
Collapse
Affiliation(s)
- Siyuan Guo
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kong Ching Wong
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Stephan Scheeff
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Zhuo He
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| | - Kam-Hung Low
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Pauline Chiu
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
3
|
Yang L, Zhang S, Zeng G. Mechanistic Insight into the 1,3,2-Diazaphospholene-Catalyzed Reductant (HBpin/NH 3BH 3)-Controlled Reaction of Allyl 2-Phenylacrylate: Claisen Rearrangement or Hydrogenation? J Phys Chem A 2021; 125:8658-8667. [PMID: 34582211 DOI: 10.1021/acs.jpca.1c06828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanistic study on the 1,3,2-diazaphospholene (1)-catalyzed reduction reaction of allyl 2-phenylacrylate 4 with HBpin or ammonia borane (AB) was systematically performed by the density functional theory (DFT) method. When HBpin is employed as the reductant, the reductive Ireland-Claisen (IC) rearrangement reaction occurs. First, the active species P-hydrido-1,3,2-diazaphospholene 3 is generated through the metathesis reaction of 1 with HBpin. Next, the terminal C═C double bond of 4 is inserted into the P-H bond of 3 to produce 6a through the 1,2-addition (Markovnikov) step, which is followed by the pinB-H bond activation to afford key boron enolate 8. Then, 8 undergoes the [3,3] rearrangement that is followed by the alcoholysis reaction with methanol leading to the final product γ,δ-unsaturated carboxylic acid. The [3,3] rearrangement step is the rate-determining step with the Gibbs energy barrier (ΔG≠) and Gibbs reaction energy (ΔG) of 23.9 and -27.5 kcal/mol, respectively. When AB is employed as the reductant, the transfer hydrogenation reaction occurs through two comparable pathways, 1,2- and 1,4-transfer hydrogenation pathways. The former pathway directly leads to the hydrogenation product with the ΔG≠ and ΔG values of 22.4 and -27.7 kcal/mol, respectively. The latter pathway produces an enolate intermediate (rate-determining step, ΔG≠/ΔG = 24.1/-0.3 kcal/mol) first, which then prefers to undergo the enol-keto tautomerism instead of the [3,3] rearrangement to afford the hydrogenation product. Obviously, the generation of the boron enolate plays a crucial role in the reductive IC rearrangement reaction because it prevents the enol-keto tautomerism.
Collapse
Affiliation(s)
- Linlin Yang
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Shuoqi Zhang
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Guixiang Zeng
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Trost BM, Zuo Z, Schultz JE, Anugula N, Carr KA. A borane-mediated palladium-catalyzed reductive allylic alkylation of α,β-unsaturated carbonyl compounds. Chem Sci 2020; 11:2136-2140. [PMID: 34123302 PMCID: PMC8150111 DOI: 10.1039/c9sc05970a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The development of the palladium-catalyzed allylic alkylation of in situ generated boron enolates via tandem 1,4-hydroboration is reported. Investigation of the reaction revealed insights into specific catalyst electronic features as well as a profound leaving group effect that proved crucial for achieving efficient allylic alkylation of ester enolates at room temperature and ultimately a highly preparatively useful synthesis of notoriously challenging acyclic all-carbon quaternary stereocenters. The method demonstrates boron enolates as viable pro-nucleophiles in transition-metal catalyzed allylic alkylation, potentially opening up further transformations outside their traditional use.
Collapse
Affiliation(s)
- Barry M Trost
- Departmentof Chemistry, Stanford University Stanford CA 94305-5080 USA
| | - Zhijun Zuo
- Departmentof Chemistry, Stanford University Stanford CA 94305-5080 USA
| | | | - Nagaraju Anugula
- Departmentof Chemistry, Stanford University Stanford CA 94305-5080 USA
| | - Katherine A Carr
- Departmentof Chemistry, Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
5
|
Krištofíková D, Filo J, Mečiarová M, Šebesta R. Why do thioureas and squaramides slow down the Ireland-Claisen rearrangement? Beilstein J Org Chem 2020; 15:2948-2957. [PMID: 31921366 PMCID: PMC6941421 DOI: 10.3762/bjoc.15.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
A range of chiral hydrogen-bond-donating organocatalysts was tested in the Ireland–Claisen rearrangement of silyl ketene acetals. None of these organocatalysts was able to impart any enantioselectivity on the rearrangements. Furthermore, these organocatalysts slowed down the Ireland–Claisen rearrangement in comparison to an uncatalyzed reaction. The catalyst-free reaction proceeded well in green solvents or without any solvent. DFT calculations showed that the activation barriers are higher for reactions involving hydrogen-donating organocatalysts and kinetic experiments suggest that the catalysts bind stronger to the starting silyl ketene acetals than to transition structures thus leading to inefficient rearrangement reactions.
Collapse
Affiliation(s)
- Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Juraj Filo
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
6
|
Reed JH, Donets PA, Miaskiewicz S, Cramer N. A 1,3,2-Diazaphospholene-Catalyzed Reductive Claisen Rearrangement. Angew Chem Int Ed Engl 2019; 58:8893-8897. [PMID: 31044498 DOI: 10.1002/anie.201904411] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 01/03/2023]
Abstract
1,3,2-Diazaphospholenes (DAPs) are an emerging class of organic hydrides. In this work, we exploited them as efficient catalysts for very mild reductive Claisen rearrangements. The method is tolerant towards a wide variety of functional groups and operates at ambient temperature. Besides being enantiospecific for substrates with existing stereogenic centers, the diastereoselectivity can be switched by varying solvents and DAP catalysts. The reaction kinetics show direct rearrangements of O-bound phospholene enolates and provide a proof-of-principle for catalytic enantioselective reactions.
Collapse
Affiliation(s)
- John H Reed
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305, 1015, Lausanne, Switzerland
| | - Pavel A Donets
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305, 1015, Lausanne, Switzerland
| | - Solène Miaskiewicz
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305, 1015, Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, EPFL SB ISIC LCSA, BCH 4305, 1015, Lausanne, Switzerland
| |
Collapse
|
7
|
Reed JH, Donets PA, Miaskiewicz S, Cramer N. A 1,3,2‐Diazaphospholene‐Catalyzed Reductive Claisen Rearrangement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- John H. Reed
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Pavel A. Donets
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Solène Miaskiewicz
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 1015 Lausanne Switzerland
| |
Collapse
|
8
|
Chapman RS, Francis M, Lawrence R, Tibbetts JD, Bull SD. Formyloxyacetoxyphenylmethane and 1,1-diacylals as versatile O-formylating and O-acylating reagents for alcohols. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Seizert CA, Ferreira EM. A boron-based Ireland-Claisen approach to the synthesis of pordamacrine A. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
|
11
|
Dinesh M, Archana S, Ranganathan R, Sathishkumar M, Ponnuswamy A. Bis azide–triphenylphosphine as a reagent for esterification at room temperature. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Smits G, Kinens A, Zemribo R. Ireland-Claisen Rearrangement of 6-Methylene-1,4-oxazepan-2-ones. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
Smits G, Zemribo R. Total Synthesis of the Putative Structure of Deoxypumiliotoxin 193H by an Ireland-Claisen Rearrangement. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Simaan M, Delaye PO, Shi M, Marek I. Cyclopropene Derivatives as Precursors to Enantioenriched Cyclopropanols andn-Butenals Possessing Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2015; 54:12345-8. [DOI: 10.1002/anie.201412440] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/26/2015] [Indexed: 11/12/2022]
|
15
|
Simaan M, Delaye PO, Shi M, Marek I. Cyclopropene Derivatives as Precursors to Enantioenriched Cyclopropanols andn-Butenals Possessing Quaternary Carbon Stereocenters. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|