1
|
Ni J, Kong L, Tang M, Song Y, Zhao J, Wang W, Sun T, Wang Y, Wang L. Sensitive visual detection of intracellular zinc ions based on signal-on polydopamine carbon dots. NANOTECHNOLOGY 2022; 33:185502. [PMID: 35062011 DOI: 10.1088/1361-6528/ac4dc1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The concentration of intracellular zinc ions is a significant clinical parameter for diagnosis. However, it is still a challenge for direct visual detection of zinc ions in cells at single-cell level. To address this issue, herein, water-soluble amino-rich polydopamine carbon quantum dots (PDA-CQDs) were successfully synthesized, with strong blue-green fluorescence as the probes for zinc ions detection in cells. The structure and properties of PDA-CQDs were confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), UV-visible spectrophotometry (UV-vis), and fluorescence spectroscopy. Importantly, by successfully linking salicylaldehyde (SA) to PDA-CQDs via nucleophilic reaction, the FL quenching and Zn ions induced FL-recovering system was built up, thus offering a signal-on platform for the detection of zinc ions. This PDA-CQDs-SA nanoprobe can be applied for the detection of Zn2+with a detection limit of 0.09μM, with good biocompatibility confirmed using cytotoxicity assay. Of significance, the results of fluorescence bioimaging showed that PDA-CQDs-SA is able to detect Zn2+in single-cell visually, with the detection limit of Zn ions in cells as low as 0.11μM per cell, which was confirmed using flow cytometry. Therefore, this work offers a potential probe for Zn2+detection in cells at single-cell level, towards the precise diagnosis of zinc ions related diseases.
Collapse
Affiliation(s)
- Jiatong Ni
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Lixiang Kong
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Minglu Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yan Song
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Junge Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Wenxin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
2
|
Chen W, Seidel D. Condensation-Based Methods for the C-H Bond Functionalization of Amines. SYNTHESIS-STUTTGART 2021; 53:3869-3908. [PMID: 35422533 PMCID: PMC9004714 DOI: 10.1055/a-1631-2140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review aims to provide a comprehensive overview of condensation-based methods for the C-H bond functionalization of amines that feature azomethine ylides as key intermediates. These transformations are typically redox-neutral and share common attributes with classic name reactions such as the Strecker, Mannich, Friedel-Crafts, Pictet-Spengler, and Kabachnik-Fields reaction, while incorporating a redox-isomerization step. This approach provides an ideal platform to rapidly transform simple starting materials into complex amines.
Collapse
Affiliation(s)
- Weijie Chen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- School of Chemical Science and Engineering, Institute for Advanced Study, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Gomes ATPC, Neves MGPMS, Fernandes R, Ribeiro CF, Cavaleiro JAS, Moura NMM. Unraveling the Photodynamic Activity of Cationic Benzoporphyrin-Based Photosensitizers against Bladder Cancer Cells. Molecules 2021; 26:5312. [PMID: 34500746 PMCID: PMC8434352 DOI: 10.3390/molecules26175312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
In this study, we report the preparation of new mono-charged benzoporphyrin complexes by reaction of the appropriate neutral benzoporphyrin with (2,2'-bipyridine)dichloroplatinum(II) and of the analogs' derivatives synthesized through alkylation of the neutral scaffold with iodomethane. All derivatives were incorporated into polyvinylpyrrolidone (PVP) micelles. The ability of the resultant formulations to generate reactive oxygen species was evaluated, mainly the singlet oxygen formation. Then, the capability of the PVP formulations to act as photosensitizers against bladder cancer cells was assessed. Some of the studied formulations were the most active photosensitizers causing a decrease in HT-1376 cells' viability. This creates an avenue to further studies related to bladder cancer cells.
Collapse
Affiliation(s)
- Ana T. P. C. Gomes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.F.); (C.F.R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine, Universidade Católica Portuguesa, 3504-505 Viseu, Portugal
| | | | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.F.); (C.F.R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos F. Ribeiro
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (R.F.); (C.F.R.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - José A. S. Cavaleiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Vallejo MCS, Moura NMM, Gomes ATPC, Joaquinito ASM, Faustino MAF, Almeida A, Gonçalves I, Serra VV, Neves MGPMS. The Role of Porphyrinoid Photosensitizers for Skin Wound Healing. Int J Mol Sci 2021; 22:4121. [PMID: 33923523 PMCID: PMC8072979 DOI: 10.3390/ijms22084121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
Microorganisms, usually bacteria and fungi, grow and spread in skin wounds, causing infections. These infections trigger the immune system and cause inflammation and tissue damage within the skin or wound, slowing down the healing process. The use of photodynamic therapy (PDT) to eradicate microorganisms has been regarded as a promising alternative to anti-infective therapies, such as those based on antibiotics, and more recently, is being considered for skin wound-healing, namely for infected wounds. Among the several molecules exploited as photosensitizers (PS), porphyrinoids exhibit suitable features for achieving those goals efficiently. The capability that these macrocycles display to generate reactive oxygen species (ROS) gives a significant contribution to the regenerative process. ROS are responsible for avoiding the development of infections by inactivating microorganisms such as bacteria but also by promoting cell proliferation through the activation of stem cells which regulates inflammatory factors and collagen remodeling. The PS can act solo or combined with several materials, such as polymers, hydrogels, nanotubes, or metal-organic frameworks (MOF), keeping both the microbial photoinactivation and healing/regenerative processes' effectiveness. This review highlights the developments on the combination of PDT approach and skin wound healing using natural and synthetic porphyrinoids, such as porphyrins, chlorins and phthalocyanines, as PS, as well as the prodrug 5-aminolevulinic acid (5-ALA), the natural precursor of protoporphyrin-IX (PP-IX).
Collapse
Affiliation(s)
- Mariana C. S. Vallejo
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Ana T. P. C. Gomes
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Ana S. M. Joaquinito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Maria Amparo F. Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.T.P.C.G.); (A.A.)
| | - Idalina Gonçalves
- CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Maria Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.S.V.); (A.S.M.J.)
| |
Collapse
|
5
|
Norvaiša K, Kielmann M, Senge MO. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. Chembiochem 2020; 21:1793-1807. [PMID: 32187831 PMCID: PMC7383976 DOI: 10.1002/cbic.202000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Advances in porphyrin chemistry have provided novel materials and exciting technologies for bioanalysis such as colorimetric sensor array (CSA), photo-electrochemical (PEC) biosensing, and nanocomposites as peroxidase mimetics for glucose detection. This review highlights selected recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that provide recognition of various biologically important entities through the unique porphyrin properties associated with colorimetry, spectrophotometry, and photo-electrochemistry.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Marc Kielmann
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Lichtenberg-Strasse 2a85748GarchingGermany
| |
Collapse
|
6
|
An insight into the vicarious nucleophilic substitution reaction of 2-nitro-5,10,15,20-tetraphenylporphyrin with p-chlorophenoxyacetonitrile: Synthesis and gas-phase fragmentation studies. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Chang MY, Tsai YL. One-Pot Amberlyst 15-Controlled Cyclocondensation of Piperidines and Arylaldehydes: Synthesis of 3,5-Diarylmethylpyridines. J Org Chem 2020; 85:5651-5659. [PMID: 32208623 DOI: 10.1021/acs.joc.9b03315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amberlyst 15-controlled one-pot easy-operational intermolecular cyclocondensation of substituted piperidines with arylaldehydes provides diversified 3,5-diarylmethylpyridines in high to excellent yields under refluxing toluene conditions. The uses of various acidic solid supports and reaction solvents are investigated for facile and efficient transformation. A plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yu-Lin Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Castro KADF, Moura NMM, Figueira F, Ferreira RI, Simões MMQ, Cavaleiro JAS, Faustino MAF, Silvestre AJD, Freire CSR, Tomé JPC, Nakagaki S, Almeida A, Neves MGPMS. New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy. Int J Mol Sci 2019; 20:E2522. [PMID: 31121942 PMCID: PMC6566955 DOI: 10.3390/ijms20102522] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 11/28/2022] Open
Abstract
The post-functionalization of 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide, known as a highly efficient photosensitizer (PS) for antimicrobial photodynamic therapy (aPDT), in the presence of 3- or 4-mercaptobenzoic acid, afforded two new tricationic porphyrins with adequate carboxylic pending groups to be immobilized on chitosan or titanium oxide. The structural characterization of the newly obtained materials confirmed the success of the porphyrin immobilization on the solid supports. The photophysical properties and the antimicrobial photodynamic efficacy of the non-immobilized porphyrins and of the new conjugates were evaluated. The results showed that the position of the carboxyl group in the mercapto units or the absence of these substituents in the porphyrin core could modulate the action of the photosensitizer towards the bioluminescent Gram-negative Escherichia coli bacterium. The antimicrobial activity was also influenced by the interaction between the photosensitizer and the type of support (chitosan or titanium dioxide). The new cationic porphyrins and some of the materials were shown to be very stable in PBS and effective in the photoinactivation of E. coli bacterium. The physicochemical properties of TiO2 allowed the interaction of the PS with its surface, increasing the absorption profile of TiO2, which enables the use of visible light, inactivating the bacteria more efficiently than the corresponding PS immobilized on chitosan.
Collapse
Affiliation(s)
- Kelly A D F Castro
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno M M Moura
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Flávio Figueira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Rosalina I Ferreira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mário M Q Simões
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José A S Cavaleiro
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Carmen S R Freire
- CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Shirley Nakagaki
- Laboratório de Bioinorgânica e Catálise, Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná 81531-990, Brasil.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Supramolecular Hybrid Material Based on Engineering Porphyrin Hosts for an Efficient Elimination of Lead(II) from Aquatic Medium. Molecules 2019; 24:molecules24040669. [PMID: 30769770 PMCID: PMC6412391 DOI: 10.3390/molecules24040669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Porphyrins show great promise for future purification demands. This is largely due to their unique features as host binding molecules that can be modified at the synthetic level, and largely improved by their incorporation into inorganic based materials. In this study, we assessed the efficacy of a hybrid material obtained from the immobilization of 5,10,15,20-tetrakis(pentafluorophenyl)-porphyrin on silica surface to remove Pb(II), Cu(II), Cd(II), and Zn(II) ions from water. The new organic-inorganic hybrid adsorbent was fully characterized by adequate techniques and the results show that the hybrid exhibits good chemical and thermal stability. From batch assays, it was evaluated how the efficacy of the hybrid was affected by the pH, contact time, initial metal concentration, and temperature. The adsorption kinetic and isotherms showed to fit the recent developed fractal-like pseudo-second-order model and Langmuir–Freundlich model respectively. The highest adsorption capacities for Pb(II), Cu(II), Cd(II), and Zn(II) ions were 187.36, 125.17, 82.45, and 56.23 mg g−1, respectively, at pH 6.0 and 25 °C. This study also shows that metal cations from real river water samples can be efficient removed in the presence of the new adsorbent material.
Collapse
|
10
|
Porphyrinic coordination polymer-type materials as heterogeneous catalysts in catechol oxidation. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Moura NMM, Mariz IFA, Cavaleiro JAS, Silva AMS, Lodeiro C, Martinho JMG, Maçôas EMS, Neves MGPMS. Porphyrin-Oligopyridine Triads: Synthesis and Optical Properties. J Org Chem 2018; 83:5282-5287. [DOI: 10.1021/acs.joc.8b00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nuno M. M. Moura
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516, Monte da Caparica, Portugal
| | - Inês F. A. Mariz
- CQFM and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José A. S. Cavaleiro
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516, Monte da Caparica, Portugal
- ProteoMass Scientific Society, Madan Parque, Rua dos Inventores 2825-182, Monte da Caparica, Portugal
| | - José M. G. Martinho
- CQFM and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ermelinda M. S. Maçôas
- CQFM and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | |
Collapse
|
12
|
Gamelas SRD, Gomes ATPC, Moura NMM, Faustino MAF, Cavaleiro JAS, Lodeiro C, Veríssimo MIS, Fernandes T, Daniel-da-Silva AL, Gomes MTSR, Neves MGPMS. N-Confused Porphyrin Immobilized on Solid Supports: Synthesis and Metal Ions Sensing Efficacy. Molecules 2018; 23:E867. [PMID: 29642601 PMCID: PMC6017291 DOI: 10.3390/molecules23040867] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/15/2023] Open
Abstract
In this work, the N-confused porphyrin 5,10,15,20-tetraphenyl-2-aza-21-carbaporphyrin (NCTPP) was immobilized on neutral or cationic supports based on silica and on Merrifield resin. The new materials were characterized by appropriate techniques (UV-Vis spectroscopy, SEM, and zeta potential analysis). Piezoelectric quartz crystal gold electrodes were coated with the different hybrids and their ability to interact with heavy metals was evaluated. The preliminary results obtained showed that the new materials can be explored for metal cations detection and the modification of the material surface is a key factor in tuning the metal selectivity.
Collapse
Affiliation(s)
- Sara R D Gamelas
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana T P C Gomes
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Nuno M M Moura
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal.
| | - Maria A F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - José A S Cavaleiro
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Caparica, Portugal.
- ProteoMass Scientific Society, Madan Park, Rua dos Inventores, 2825-182 Caparica, Portugal.
| | - Marta I S Veríssimo
- Department of Chemistry and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago Fernandes
- Department of Chemistry and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- Department of Chemistry and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Teresa S R Gomes
- Department of Chemistry and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction. Food Chem 2018; 245:337-345. [DOI: 10.1016/j.foodchem.2017.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
|
14
|
Oliveira E, Bértolo E, Núñez C, Pilla V, Santos HM, Fernández‐Lodeiro J, Fernández‐Lodeiro A, Djafari J, Capelo JL, Lodeiro C. Green and Red Fluorescent Dyes for Translational Applications in Imaging and Sensing Analytes: A Dual-Color Flag. ChemistryOpen 2018; 7:9-52. [PMID: 29318095 PMCID: PMC5754553 DOI: 10.1002/open.201700135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
Red and green are two of the most-preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune-staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most-relevant results on the use of red and green fluorescent dyes in the fields of bio-, chemo- and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron-dipyrromethene (BODIPY), 7-nitobenz-2-oxa-1,3-diazole-4-yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P-oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed.
Collapse
Affiliation(s)
- Elisabete Oliveira
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Emilia Bértolo
- Biomolecular Research GroupSchool of Human and Life SciencesCanterbury Christ Church UniversityCanterburyCT1 1QUUK
| | - Cristina Núñez
- Research UnitHospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS)27003LugoSpain
| | - Viviane Pilla
- Instituto de FísicaUniversidade Federal de Uberlândia-UFUAv. João Naves de Ávila 2121Uberlândia, MG38400-902Brazil
| | - Hugo M. Santos
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Javier Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Adrian Fernández‐Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Jamila Djafari
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - José Luis Capelo
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| | - Carlos Lodeiro
- BIOSCOPE GroupUCIBIO-LAQV-REQUIMTEDepartamento de Química, Faculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516LisboaPortugal
- Proteomass Scientific SocietyRua dos Inventores, Madan Park2829-516CaparicaPortugal
| |
Collapse
|
15
|
Kielmann M, Prior C, Senge MO. Porphyrins in troubled times: a spotlight on porphyrins and their metal complexes for explosives testing and CBRN defense. NEW J CHEM 2018. [DOI: 10.1039/c7nj04679k] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A critical perspective on (metallo)porphyrins in security-related applications: the past, present and future of explosives detection, CBRN defense, and beyond.
Collapse
Affiliation(s)
- Marc Kielmann
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Caroline Prior
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Mathias O. Senge
- Medicinal Chemistry
- Trinity Translational Medicine Institute
- Trinity Centre for Health Sciences
- Trinity College Dublin
- The University of Dublin
| |
Collapse
|
16
|
Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, Huang CZ. Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. NANOSCALE 2017; 9:17020-17028. [PMID: 29082397 DOI: 10.1039/c7nr04817c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A membrane-based fluorescent sensing platform is a facile, point-of-care and promising technique in chemo/bio-analytical fields. However, the existing fluorescence sensing films for cancer biomarkers have several problems, with dissatisfactory sensitivity and selectivity, low utilization of probes encapsulated in films as well as the tedious design of membrane structures. In this work, a novel fluorescence sensing platform is fabricated by bio-grafting quantum dots (QDs) onto the surface of electrospun nanofibers (NFs). The aptamer integrated into the QDs/NFs can result in high specificity for recognizing and capturing biomarkers. Partially complementary DNA-attached gold nanoparticles (AuNPs) are employed to efficiently hybridize with the remaining aptamer to quench the fluorescence of QDs by nanometal surface energy transfer (NSET) between them both, which are constructed for prostate specific antigen (PSA) assay. Taking advantage of the networked nanostructure of aptamer-QDs/NFs, the fluorescent film can detect PSA with high sensitivity and a detection limit of 0.46 pg mL-1, which was further applied in real clinical serum samples. Coupling the surface grafted techniques to the advanced network nanostructure of electrospun NFs, the proposed aptasensing platform can be easily extended to achieve sensitive and selective assays for other biomarkers.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ma L, Paul A, Breugst M, Seidel D. Redox-Neutral Aromatization of Cyclic Amines: Mechanistic Insights and Harnessing of Reactive Intermediates for Amine α- and β-C-H Functionalization. Chemistry 2016; 22:18179-18189. [PMID: 27712000 DOI: 10.1002/chem.201603839] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 01/14/2023]
Abstract
Cyclic amines such as pyrrolidine and piperidine are known to undergo condensations with aldehydes to furnish pyrrole and pyridine derivatives, respectively. A combined experimental and computational study provides detailed insights into the mechanism of pyrrole formation. A number of reactive intermediates (e.g., azomethine ylides, conjugated azomethine ylides, enamines) were intercepted, outlining strategies for circumventing aromatization as a valuable pathway for amine C-H functionalization.
Collapse
Affiliation(s)
- Longle Ma
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Anirudra Paul
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Martin Breugst
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Daniel Seidel
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
18
|
Paolesse R, Nardis S, Monti D, Stefanelli M, Di Natale C. Porphyrinoids for Chemical Sensor Applications. Chem Rev 2016; 117:2517-2583. [PMID: 28222604 DOI: 10.1021/acs.chemrev.6b00361] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.
Collapse
Affiliation(s)
- Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Donato Monti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata , via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata , via del Politecnico, 00133 Rome, Italy
| |
Collapse
|
19
|
Li Y, Li K, He J. A “turn-on” fluorescent chemosensor for the detection of Zn(II) in aqueous solution at neutral pH and its application in live cells imaging. Talanta 2016; 153:381-5. [DOI: 10.1016/j.talanta.2016.03.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 01/22/2023]
|
20
|
D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor. Talanta 2016; 151:106-113. [DOI: 10.1016/j.talanta.2016.01.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 11/17/2022]
|
21
|
Santos CIM, Oliveira E, Santos HM, Menezes JCJMDS, Faustino MAF, Cavaleiro JAS, Capelo JL, Neves MDGPMS, Lodeiro C. Untangling interactions of a zinc(II) complex containing a coumarin-porphyrin unit with alkaloids in water solutions: a photophysical study. Photochem Photobiol Sci 2015; 14:757-64. [PMID: 25620620 DOI: 10.1039/c4pp00359d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A metal complex 1 derivative from a coumarin bearing a porphyrin unit was spectroscopically characterized and its sensing ability towards the alkaloids caffeine 2, nicotine 3 and cotinine 4 was evaluated in these studies. This probe shows to be sensitive to the alkaloids studied, where a detectable amount of 2.5 ± 0.3 μM of cotinine was determined in dam water from the Vigia Dam located in the Montoito village region, Alentejo district, Portugal. The interaction of 1 with cotinine was also verified by MALDI-TOF-MS, where it was found with peaks at 877.2 and 1053.3 m/z corresponding to the species [1H](+) and [1CotinineH](+), respectively.
Collapse
Affiliation(s)
- Carla I M Santos
- ProteoMass Scientific Society, Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Costa JIT, Oliveira E, Santos HM, Tomé AC, Neves MGPMS, Lodeiro C. Study of Multiporphyrin Compounds as Colorimetric Sitting-Atop Metal Complexes: Synthesis and Photophysical Studies. Chempluschem 2015; 81:143-153. [DOI: 10.1002/cplu.201500386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Joana I. T. Costa
- Department of Chemistry & QOPNA; University of Aveiro; 3810-193 Aveiro Portugal
| | - Elisabete Oliveira
- BIOSCOPE group; UCIBIO-REQUIMTE; Chemistry Department; Faculty of Sciences and Technology; University NOVA of Lisbon; 2829-516 Caparica Portugal
- Proteomass Scientific Society; Madan Parque; Rua dos Inventores 2825-182 Caparica Portugal
- Veterinary Science Department and CECAV; University of Trás-os-Montes and Alto Douro; 5001-801 Vila Real Portugal
| | - Hugo M. Santos
- BIOSCOPE group; UCIBIO-REQUIMTE; Chemistry Department; Faculty of Sciences and Technology; University NOVA of Lisbon; 2829-516 Caparica Portugal
- Proteomass Scientific Society; Madan Parque; Rua dos Inventores 2825-182 Caparica Portugal
| | - Augusto C. Tomé
- Department of Chemistry & QOPNA; University of Aveiro; 3810-193 Aveiro Portugal
| | | | - Carlos Lodeiro
- BIOSCOPE group; UCIBIO-REQUIMTE; Chemistry Department; Faculty of Sciences and Technology; University NOVA of Lisbon; 2829-516 Caparica Portugal
- Proteomass Scientific Society; Madan Parque; Rua dos Inventores 2825-182 Caparica Portugal
| |
Collapse
|
23
|
Platonova AY, Seidel D. The Rügheimer-Burrows reaction revisited: Facile preparation of 4-alkylisoquinolines and 3,5-dialkylpyridines from (partially) saturated amines. Tetrahedron Lett 2015. [PMID: 26207074 DOI: 10.1016/j.tetlet.2014.11.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A long-known class of cyclic amine/aldehyde condensation reactions was reinvestigated. Benzoic acid was found to efficiently promote condensations of amines such as piperidine or 1,2,3,4-tetrahydroisoquinoline with aromatic aldehydes, resulting in amine β-functionalization and aromatization. These redox-neutral transformations provide 3,5-dialkylpyridines and 4-alkylisoquinolines in moderate to good yields, following short reaction times under microwave conditions.
Collapse
Affiliation(s)
- Alena Yu Platonova
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States ; Department of Organic Synthesis Technology, Ural Federal University, Yekaterinburg, 620002, Russia
| | - Daniel Seidel
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
24
|
Lourenço LMO, Iglesias BA, Pereira PMR, Girão H, Fernandes R, Neves MGPMS, Cavaleiro JAS, Tomé JPC. Synthesis, characterization and biomolecule-binding properties of novel tetra-platinum(ii)-thiopyridylporphyrins. Dalton Trans 2015; 44:530-8. [DOI: 10.1039/c4dt02697g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
New tetra-platinum(ii)-thiopyridylporphyrin complexes and their DNA binding studies.
Collapse
Affiliation(s)
| | | | - Patrícia M. R. Pereira
- QOPNA and Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Laboratory of Pharmacology and Experimental Therapeutics
| | - Henrique Girão
- Centre of Ophthalmology and Vision Sciences
- IBILI
- Faculty of Medicine of University of Coimbra
- 3000-548 Coimbra
- Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics
- IBILI
- Faculty of Medicine
- University of Coimbra
- 3000-548 Coimbra
| | | | | | - João P. C. Tomé
- QOPNA and Department of Chemistry
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Department of Organic Chemistry
| |
Collapse
|
25
|
Cardoso MFDC, Gomes ATPC, Silva VLM, Silva AMS, Neves MGPMS, da Silva FDC, Ferreira VF, Cavaleiro JAS. Ohmic heating assisted synthesis of coumarinyl porphyrin derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra11156k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient access to coumarinyl porphyrin derivatives bearing pyrano[3,2-c]coumarin motifs is disclosed. Conditions used ohmic heating and water, in Knoevenagel and hetero-Diels–Alder reactions between a beta-vinylporphyrin and α-methylenechromanes.
Collapse
Affiliation(s)
- M. F. do C. Cardoso
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
- Universidade Federal Fluminense
| | - A. T. P. C. Gomes
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - V. L. M. Silva
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - A. M. S. Silva
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | | | - F. de C. da Silva
- Universidade Federal Fluminense
- Instituto de Química
- Departamento de Química Orgânica
- Niterói
- Brazil
| | - V. F. Ferreira
- Universidade Federal Fluminense
- Instituto de Química
- Departamento de Química Orgânica
- Niterói
- Brazil
| | - J. A. S. Cavaleiro
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
26
|
Núñez C, Santos SM, Oliveira E, Santos HM, Capelo JL, Lodeiro C. Rhodamine-Appended Bipyridine: XOR and OR Logic Operations Integrated in an Example of Controlled Metal Migration. ChemistryOpen 2014; 3:190-8. [PMID: 25478314 PMCID: PMC4234215 DOI: 10.1002/open.201402020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 12/03/2022] Open
Abstract
A new bipyridyl derivative 1 bearing rhodamine B as visible fluorophore was designed, synthesized and characterized as a fluorescent and colorimetric sensor for metal ions. Interaction with Cu(2+), Zn(2+), Cd(2+), Hg(+), and Hg(2+) ions was followed by UV/Vis and emission spectroscopy. Upon addition of these metal ions, different colorimetric and fluorescent responses were observed. "Off-on-off" (Cu(2+), Zn(2+), and Hg(2+)) and "off-on" (Hg(+) and Cd(2+)) systems were obtained. Probe 1 was explored to mimic XOR and OR logic operations for the simultaneous detection of Hg(+)-Cu(2+) and Hg(+)-Zn(2+) pairs, respectively. DFT calculations were also performed to gain insight into the lowest-energy gas-phase conformation of free receptor 1 as well as the atomistic details of the coordination modes of the various metal ions.
Collapse
Affiliation(s)
- Cristina Núñez
- BIOSCOPE Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon 2829-516 Caparica (Portugal) E-mail: ; Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela 15782 Santiago de Compostela (Spain) ; Ecology Research Group, Department of Geographical & Life Sciences, Canterbury Christ Church University CT1 1QU, Canterbury (UK) ; PROTEOMASS Scientific Society, Madan Parque Rua dos Inventores, 2825-182 Caparica (Portugal)
| | - Sergio M Santos
- Department of Chemistry & CICECO, University of Aveiro Campus de Santiago, 3810-193 Aveiro (Portugal)
| | - Elisabete Oliveira
- BIOSCOPE Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon 2829-516 Caparica (Portugal) E-mail: ; PROTEOMASS Scientific Society, Madan Parque Rua dos Inventores, 2825-182 Caparica (Portugal)
| | - Hugo M Santos
- BIOSCOPE Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon 2829-516 Caparica (Portugal) E-mail: ; PROTEOMASS Scientific Society, Madan Parque Rua dos Inventores, 2825-182 Caparica (Portugal)
| | - José Luis Capelo
- BIOSCOPE Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon 2829-516 Caparica (Portugal) E-mail: ; PROTEOMASS Scientific Society, Madan Parque Rua dos Inventores, 2825-182 Caparica (Portugal)
| | - Carlos Lodeiro
- BIOSCOPE Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon 2829-516 Caparica (Portugal) E-mail: ; PROTEOMASS Scientific Society, Madan Parque Rua dos Inventores, 2825-182 Caparica (Portugal)
| |
Collapse
|