1
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Titiš J, Rajnák C, Boča R. Limitations on the D-Parameter in Ni(II) Complexes. J Phys Chem A 2023; 127:6412-6424. [PMID: 37494700 DOI: 10.1021/acs.jpca.3c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A number of hexacoordinate, pentacoordinate, and tetracoordinate Ni(II) complexes have been investigated by applying ab initio CASSCF + NEVPT2 + SOC calculations and Generalized Crystal Field Theory. The geometry of the coordination polyhedron covers D4h, D3h, D2h, D2d, C4v, C3v, and C2v symmetry. The calculated spin-Hamiltonian parameters D and E were compared to the available experimental data. The limiting values of the D-parameter in the class of Ni(II) complexes are identified. Magnetic anisotropy in Ni(II) complexes, expressed by the axial zero-field splitting parameter D, seriously depends upon the ground and first excited electronic states. In hexacoordinate complexes, the ground electronic term is nondegenerate 3B1g for the D4h symmetry; D is slightly positive or negative. In tetracoordinate systems, D is only positive when the electronic ground state is nondegenerate 3A or 3B; this diverges on the τ4 path when oblate bisphenoid approaches the prolate geometry and a level crossing with 3E occurs. In pentacoordinate systems, D could be extremely negative when approaching a trigonal bipyramid (Addison index τ5 ∼ 1, ground state 3E″). In pentacoordinate Ni(II) complexes with the D3h and C3v symmetry of the coordination polyhedron, the ground electronic term is orbitally doubly degenerate which causes the D-parameter stays undefined. It is emphasized that one has to inspect compositions of the spin-orbit multiplets from the spin states |MS⟩ and check whether the weights confirm the expected spin-Hamiltonian picture: with D > 0, the ground state contains a dominant part of |0⟩ (close to 100%) whereas with D < 0 the spin-orbit doublet is formed of |±1⟩ with high weights (approaching 50 + 50%). The calculations show that the situations are not black and white, and the mixing of the states might be more complex especially when the rhombic zero-field splitting parameter E is in the play. In the case of the 3E ground term, six spin-orbit multiplets are formed by mixing six |MS⟩ states from the ground and quasi-degenerate excited states.
Collapse
Affiliation(s)
- Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 91701 Trnava, Slovakia
| |
Collapse
|
3
|
Georgiev M, Chamati H. Magnetic Behavior of Trigonal (Bi-)pyramidal 3d 8 Mononuclear Nanomagnets: The Case of [Ni(MDABCO) 2Cl 3]ClO 4. ACS OMEGA 2023; 8:28640-28650. [PMID: 37576657 PMCID: PMC10413474 DOI: 10.1021/acsomega.3c03208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
This paper attempts to shed light on the origin of the magnetic behavior specific to trigonal bi- and pyramidal 3d8 mono- and polynuclear nanomagnets. The focus lies on entirely unraveling the system's intrinsic microscopic mechanisms and fundamental quantum mechanical relations governing the underlying electron dynamics. To this end, we develop a self-consistent approach to characterize, in great detail, all electron correlations and the ensuing fine structure of the energy spectra of a broad class of 3d8 systems. The mathematical framework is based on the multiconfigurational self-consistent field method and is devised to account for prospective quantum mechanical constraints that may confine the electron orbital dynamics while preserving the properties of all measurable quantities. We successfully characterize the experimentally observed magnetic anisotropy properties of a slightly distorted trigonal bipyramidal Ni2+ coordination complex, demonstrating that such compounds do not exhibit intrinsic huge zero-field splitting and inherent giant magnetic anisotropy. We reproduce qualitatively and quantitatively the behavior of the low-field magnetic susceptibility, magnetization, low-, and high-field electron paramagnetic resonance spectroscopy measurements and provide an in-depth analysis of the obtained results.
Collapse
Affiliation(s)
- Miroslav Georgiev
- Bulgarian Academy of Sciences, G Nadjakov Institute of Solid State Physics, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| | - Hassan Chamati
- Bulgarian Academy of Sciences, G Nadjakov Institute of Solid State Physics, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| |
Collapse
|
4
|
Sen R, Mondal K, dos Santos AM, Escobar LB, Brandão P, Reis MS, Lin Z. A chiral alkali metal capped Ni4 cubane complex: Synthesis, structure, magnetic and catalytic bromination studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Fine Structure and the Huge Zero-Field Splitting in Ni 2+ Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248887. [PMID: 36558020 PMCID: PMC9784865 DOI: 10.3390/molecules27248887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
We perform a thorough study of the ground state magnetic properties of nickel-based 3d8 complexes. This includes an in-depth analysis of the contribution of the crystal field, spin exchange and spin-orbit interactions to the ground state magnetic properties. Of particular interest to the current investigation are the presence and occurrence of non-trivial zero-field splitting. The study focuses on the cases of Ni2+ ideal octahedral, trigonal bipyramidal, square planar and tetrahedral geometries. We provide results for the complete energy spectrum, the fine structure related to the ground state and the second set of excited states, low-field magnetic susceptibility and magnetization. In addition, we examine the zero-field fine structure in square pyramidal, trigonal pyramidal and trigonal planar complexes. The obtained results unequivocally show that a moderate or highly coordinated 3d8 complex can neither exhibit spin-orbit-driven large and giant magnetic anisotropy nor a huge zero-field splitting. Moreover, in the trigonal bipyramidal coordination, a fine structure associated to the ground state cannot result from the spin-orbit coupling alone.
Collapse
|
6
|
Jing Y, Wang J, Kong M, Wang GJ, Zhang YQ, Song Y. Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10-tetraazacyclododecane Derivative. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Bouammali MA, Suaud N, Guihéry N, Maurice R. Antisymmetric Exchange in a Real Copper Triangular Complex. Inorg Chem 2022; 61:12138-12148. [PMID: 35895313 DOI: 10.1021/acs.inorgchem.2c00939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antisymmetric exchange, also known as the Dzyaloshinskii-Moriya interaction (DMI), is an effective interaction that may be at play in isolated complexes (with transition metals or lanthanides, for instance), nanoparticles, and highly correlated materials with adequate symmetry properties. While many theoretical works have been devoted to the analysis of single-ion zero-field splitting and to a lesser extent to symmetric exchange, only a few ab initio studies deal with the DMI. Actually, it originates from a subtle interplay between weak electronic interactions and spin-orbit couplings. This article aims to highlight the origin of this interaction from theoretical grounds in a real tri-copper(II) complex, capitalizing on previous methodological studies on bi-copper(II) model complexes. By tackling this three-magnetic-center system, we will first show that the multispin model Hamiltonian is appropriate for trinuclear (and likely for higher nuclearity) complexes, then that the correct application of the permutation relationship is necessary to explain the outcomes of the ab initio calculations, and finally, that the model parameters extracted from a binuclear model transfer well to the trinuclear complex. For a more theory-oriented purpose, we will show that the use of a simplified structural model allows one to perform more demanding electronic structure calculations. On this simpler system, we will first check that the previous transferability is still valid, prior to performing more advanced calculations on the derived two-magnetic-center model system. To this end, we will explain in detail the physics of the DMI in the copper triangle of interest, before advocating further theory/experiment efforts.
Collapse
Affiliation(s)
- Mohammed-Amine Bouammali
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR5626, Université de Toulouse 3, Paul Sabatier, 18 route de Narbonne, 31062 Toulouse, France
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France.,Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, 35000 Rennes, France
| |
Collapse
|
8
|
Krešáková L, Miňo A, Holub M, Kuchár J, Werner A, Tomás M, Čižmár E, Falvello LR, Černák J. Heteroleptic complexes of Ni(II) with 2,2′-bipyridine and benzoato ligands. Magnetic properties of [Ni(bpy)(Bz)2]. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Bhanja A, Smythe L, Kotrle K, Ortu F, Herchel R, Murrie M, Ray D. Synthesis of heptanuclear Ni4Dy3 coordination aggregate using tridentate ligand: X-ray structure, magnetism and theoretical studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Abstract
Magnetic anisotropy, in the absence of an external magnetic field, relates to the degeneracy lift of energy levels. In the standard case of transition metal complexes, this property is usually modeled by an anisotropic spin Hamiltonian and one speaks of "zero-field splitting" (ZFS) of spin states. While the case of mononuclear complexes has been extensively described by means of ab initio quantum mechanical calculations, the literature on polynuclear complexes studied with these methodologies is rather scarce. In this work, advanced multiconfigurational wave function theory methods are applied to compute the ZFS of the ground S = 4 state of an actual tetranickel(II) complex, displaying a magnet behavior below 0.5 K. First, the isotropic couplings are computed in the absence of the spin-orbit coupling operator, in the full complex and also in clusters with only two active nickel(II) centers, confirming the occurrence of weak ferromagnetic couplings in this system. Second, the single-site magnetic anisotropies are computed on a cluster bearing only one active nickel(II) site, showing that the single-site anisotropy axes are not oriented in an optimal fashion for generating a large uniaxial molecular anisotropy. Furthermore, the possibility for involving only a few local orbital excited states in the calculation is assessed, actually opening the way for a consistent and manageable treatment of the ZFS of the ground S = 4 state. Third, multiconfigurational calculations are performed on the full complex, confirming the weak uniaxial anisotropy occurring for this state and also, interestingly, revealing a significant contribution of the lowest-lying orbitally excited S = 3 states. Overall, by comparison with the experiment, the reported results question the common habit of using only one structure, in particular derived from a crystallography experiment, to compute magnetic anisotropy parameters.
Collapse
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue A. Kastler, 44307 Nantes Cedex 3, France
| |
Collapse
|
11
|
Woodhouse SS, Dais TN, Payne EH, Singh MK, Brechin EK, Plieger PG. The structural manipulation of a series of Ni 4 defective dicubanes: Synthesis, X-ray Structures, Magnetic and Computational analyses. Dalton Trans 2021; 50:5318-5326. [PMID: 33881042 DOI: 10.1039/d0dt04286b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report the synthesis and characterization of four new tetranuclear Ni(ii) complexes, C1-C4, all of which exhibit defective dicubane cores. C1-C4 are derived from the same salicylaldoxime derived ligand, H2L1. Complexes C1 and C4 have isostructural cores, differing in structure only by solvate molecules. Magnetic and computational analyses have revealed that complexes C1, C2, and C4 exhibit competing ferro- and antiferromagnetic interactions, however the different solvated species in C1 and C4 leads to notably different magnitudes in their magnetic coupling constants. Theoretical magneto-structural studies show that the pairwise magnetic exchange interaction is highly dependent on the Ni-X-Ni angle, as revealed by orbital overlap calculations.
Collapse
Affiliation(s)
- Sidney S Woodhouse
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Tyson N Dais
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Emily H Payne
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH93FJ, Scotland, UK
| | - Mukesh K Singh
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH93FJ, Scotland, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH93FJ, Scotland, UK
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
12
|
Khurana R, Gupta S, Ali ME. First-Principles Investigations of Magnetic Anisotropy and Spin-Crossover Behavior of Fe(III)-TBP Complexes. J Phys Chem A 2021; 125:2197-2207. [PMID: 33617261 DOI: 10.1021/acs.jpca.1c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the ongoing effort to obtain mononuclear 3d-transition-metal complexes that manifest slow relaxation of magnetization and, hence, can behave as single-molecule magnets (SMMs), we have modeled 14 Fe(III) complexes based on an experimentally synthesized (PMe3)2FeCl3 complex [J. Am. Chem. Soc. 2017, 139 (46), 16474-16477], by varying the axial ligands with group XV elements (N, P, and As) and equatorial halide ligands from F, Cl, Br, and I. Out of these, nine complexes possess large zero field splitting (ZFS) parameter D in the range of -40 to -60 cm-1. The first-principles investigation of the ground-spin state applying density functional theory (DFT) and wave function-based multiconfigurations methods, e.g., SA-CASSCF/NEVPT2, are found to be quite consistent except for few delicate cases with near-degenerate spin states. In such cases, the hybrid B3LYP functional is found to be biased toward high-spin (HS) state. Altering the percentage of exact exchange admixed in the B3LYP functional leads to intermediate-spin (IS) ground state consistent with the multireference calculations. The origin of large zero field splitting (ZFS) in the Fe(III)-based trigonal bipyramidal (TBP) complexes is investigated. Furthermore, a number of complexes are identified with very small ΔGHS-ISadia. values indicating the possible spin-crossover phenomenon between the bistable spin states.
Collapse
Affiliation(s)
- Rishu Khurana
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Sameer Gupta
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
13
|
Scott AJ, Vallejo J, Sarkar A, Smythe L, Regincós Martí E, Nichol GS, Klooster WT, Coles SJ, Murrie M, Rajaraman G, Piligkos S, Lusby PJ, Brechin EK. Exploiting host-guest chemistry to manipulate magnetic interactions in metallosupramolecular M 4L 6 tetrahedral cages. Chem Sci 2021; 12:5134-5142. [PMID: 34168772 PMCID: PMC8179613 DOI: 10.1039/d1sc00647a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Reaction of Ni(OTf)2 with the bisbidentate quaterpyridine ligand L results in the self-assembly of a tetrahedral, paramagnetic cage [NiII4L6]8+. By selectively exchanging the bound triflate from [OTf⊂NiII4L6](OTf)7 (1), we have been able to prepare a series of host–guest complexes that feature an encapsulated paramagnetic tetrahalometallate ion inside this paramagnetic host giving [MIIX4⊂NiII4L6](OTf)6, where MIIX42− = MnCl42− (2), CoCl42− (5), CoBr42− (6), NiCl42− (7), and CuBr42− (8) or [MIIIX4⊂NiII4L6](OTf)7, where MIIIX4− = FeCl4− (3) and FeBr4− (4). Triflate-to-tetrahalometallate exchange occurs in solution and can also be accomplished through single-crystal-to-single-crystal transformations. Host–guest complexes 1–8 all crystallise as homochiral racemates in monoclinic space groups, wherein the four {NiN6} vertexes within a single Ni4L6 unit possess the same Δ or Λ stereochemistry. Magnetic susceptibility and magnetisation data show that the magnetic exchange between metal ions in the host [NiII4] complex, and between the host and the MX4n− guest, are of comparable magnitude and antiferromagnetic in nature. Theoretically derived values for the magnetic exchange are in close agreement with experiment, revealing that large spin densities on the electronegative X-atoms of particular MX4n− guest molecules lead to stronger host–guest magnetic exchange interactions. The tetrahedral [NiII4L6]8+ cage can reversibly bind paramagnetic MX41/2− guests, inducing magnetic exchange interactions between host and guest.![]()
Collapse
Affiliation(s)
- Aaron J Scott
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH93FJ UK
| | - Julia Vallejo
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH93FJ UK
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Lucy Smythe
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | - E Regincós Martí
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH93FJ UK
| | - Wim T Klooster
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton England SO17 1BJ UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton England SO17 1BJ UK
| | - Mark Murrie
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue Glasgow G12 8QQ UK
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Stergios Piligkos
- Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Paul J Lusby
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH93FJ UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH93FJ UK
| |
Collapse
|
14
|
Bhanja A, Smythe L, Herchel R, Nemec I, Murrie M, Ray D. Hydroxido supported and differently networked octanuclear Ni6Ln2 [Ln = GdIII and DyIII] complexes: structural variation, magnetic properties and theoretical insights. Dalton Trans 2021; 50:5023-5035. [DOI: 10.1039/d0dt04168h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Solvent derived hydroxido bridge driven Ni6Ln2 [Ln = GdIII (1) and DyIII (2)] coordination aggregates of two different types has been synthesized. Magnetic susceptibility study confirms field induced slow relaxation of magnetization for Ni6Dy2.
Collapse
Affiliation(s)
- Avik Bhanja
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Lucy Smythe
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow G12 8QQ
- UK
| | - Radovan Herchel
- Department of Inorganic Chemistry
- Faculty of Science
- Palacky University
- CZ-771 46 Olomouc
- Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry
- Faculty of Science
- Palacky University
- CZ-771 46 Olomouc
- Czech Republic
| | - Mark Murrie
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow G12 8QQ
- UK
| | - Debashis Ray
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
15
|
Pajuelo-Corral O, Zabala-Lekuona A, San Sebastian E, Rodríguez-Diéguez A, García JA, Lezama L, Colacio E, Seco JM, Cepeda J. Modulating Magnetic and Photoluminescence Properties in 2-Aminonicotinate-Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry 2020; 26:13484-13498. [PMID: 32668065 DOI: 10.1002/chem.202002755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Herein, the synthesis and study of bifunctional coordination polymers (CPs) with both magnetic and photoluminescence properties, derived from a heterometallic environment, are reported. As a starting point, three isostructural monometallic CPs with the formula [M(μ-2ani)2 ]n (MII =Mn (1Mn ), Co (3Co ) and Ni (4Ni ); 2ani=2-aminonicotinate), crystallise as chiral 2D-layered structures stacked by means of supramolecular interactions. These compounds show high thermal stability in the solid state (above 350 °C), despite which, in aqueous solution, compound 1Mn is shown to partially transform into a novel 1D chain CP with the formula [Mn(2ani)2 (μ-H2 O)2 ]n (2Mn ). A study of the direct current (dc) magnetic properties of 1Mn , 3Co and 4Ni reveals a spin-canted structure derived from antisymmetric antiferromagnetic weak exchanges along the chiral network (as confirmed by DFT calculations) and magnetic anisotropy of the ions, in such a way that long-range ordering is observed with variable magnitude for the spin carriers. Moreover, compounds 3Co and 4Ni show no frequency-dependent alternating current (ac) susceptibility curves under zero dc field; this is characteristic behaviour of a glassy state that may be partially supressed for 3Co by applying an external dc field. To overcome long-range magnetic ordering, CoII ions are diluted in a diamagnetic ZnII -based matrix, which enables single-molecule magnet behaviour. Interestingly, this strategy allows a bifunctional Cox Zn1-x 2ani material, which is imbued with a strong photoluminescent emitting capacity, as characterised by an intense blue light followed by a green afterglow, to be obtained.
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose Angel García
- Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| |
Collapse
|
16
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
17
|
Šterbinská S, Holub M, Kuchár J, Čižmár E, Černák J. Markedly different magnetic properties of two analogous Ni(II) complexes with 2-aminoethylpyridine: [Ni(2aepy)2Cl(H2O)]Cl⋅H2O and [Ni(2aepy)2(NO3)]NO3. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Plaza‐Lozano D, Morales‐Martínez D, González FJ, Olguín J. Homoleptic Mononuclear Tris‐Chelate Complexes of Fe
II
, Co
II
, Ni
II
, and Zn
II
Based on a Redox‐Active Imidazolyl‐2‐thione Ligand: Structural and Electrochemical Correlation. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Diego Plaza‐Lozano
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| | - Daniel Morales‐Martínez
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| | - Felipe J. González
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| | - Juan Olguín
- Departamento de Química Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav) Avenida IPN 2508, Col. San Pedro Zacatenco 07360 Ciudad de México México
| |
Collapse
|
19
|
Singh MK, Shukla P, Khatua M, Rajaraman G. A Design Criteria to Achieve Giant Ising-Type Anisotropy in Co II -Encapsulated Metallofullerenes. Chemistry 2019; 26:464-477. [PMID: 31506987 DOI: 10.1002/chem.201903618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Indexed: 11/10/2022]
Abstract
Discovery of permanent magnetisation in molecules just like in hard magnets decades ago led to the proposal of utilising these molecules for information storage devices and also as Q-bits in quantum computing. A significant breakthrough with a blocking temperature as high as 80 K has been recently reported for lanthanocene complexes. While enhancing the blocking temperature further remains one of the primary challenges, obtaining molecules that are suitable for the fabrication of the devices sets the bar very high in this area. Encouraged by the fact that our earlier predictions of potential single-molecule magnets (SMMs) in lanthanide-containing endohedral fullerenes have been verified, here we set out to undertake a comprehensive study on CoII -ion-encapsulated fullerene as potential SMMs. To study this class of molecules, we have utilised an array of theoretical methods ranging from density functional to ab initio CASSCF/NEVPT2 methods for obtaining reliable estimate of zero-field splitting parameters D and E. Additionally, we have also employed, for the first time a combination of molecular dynamics based on DFT methods coupled with CASSCF/NEVPT2 methods to seek the role of conformational isomers in the relaxation of magnetisation. Particularly, we have studied, Co@C28 , Co@C38 and Co@C48 cages and their isomers as potential target molecules that could yield substantial magnetic anisotropy. Our calculations categorically reveal a very large Ising anisotropy in this class of molecules, with Co@C48 cages predicted to yield D values as high as -127 cm-1 . Our calculations on the smaller cages reveal the free movement of CoII ion inside the cage, leading to the likely scenario of faster relaxation of magnetisation. However, larger fullerene cages were found to solve this issue. Further models with incorporating units such as {CoOZn}, {CoScZnN} inside larger fullerenes yield axial zero-field splitting values as high as -200 cm-1 with negligible E/D values. As these units represent a strong axiality coupled with a viable way to obtain air-stable low-coordinate CoII complexes, this opens up a new paradigm in the search of SMMs in this class of molecules.
Collapse
Affiliation(s)
- Mukesh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pratima Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Munmun Khatua
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
20
|
Craig GA, Velmurugan G, Wilson C, Valiente R, Rajaraman G, Murrie M. Magnetic Properties of a Family of [MnIII4LnIII4] Wheel Complexes: An Experimental and Theoretical Study. Inorg Chem 2019; 58:13815-13825. [DOI: 10.1021/acs.inorgchem.9b01592] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gavin A. Craig
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Gunasekaran Velmurugan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rafael Valiente
- Física Aplicada, Facultad de Ciencias, Universidad de Cantabria-IDIVAL, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India
| | - Mark Murrie
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
21
|
Mondal A, Kharwar AK, Konar S. Sizeable Effect of Lattice Solvent on Field Induced Slow Magnetic Relaxation in Seven Coordinated CoII Complexes. Inorg Chem 2019; 58:10686-10693. [DOI: 10.1021/acs.inorgchem.9b00615] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
22
|
Hay MA, Sarkar A, Marriott KER, Wilson C, Rajaraman G, Murrie M. Investigation of the magnetic anisotropy in a series of trigonal bipyramidal Mn(ii) complexes. Dalton Trans 2019; 48:15480-15486. [PMID: 31282505 DOI: 10.1039/c9dt02187f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding how the magnetic anisotropy in simple coordination complexes can be manipulated is instrumental to the development of single-molecule magnets (SMMs). Clear strategies can then be designed to control both the axial and transverse contributions to the magnetic anisotropy in such compounds, and allow them to reach their full potential. Here we show a strategy for boosting the magnetic anisotropy in a series of trigonal bipyramidal Mn(ii) complexes - [MnCl3(HDABCO)(DABCO)] (1), [MnCl3(MDABCO)2]·[ClO4] (2), and [MnCl3(H2O)(MDABCO)] (3). These have been successfully synthesised using the monodentate [DABCO] and [MDABCO]+ ligands. Through static (DC) magnetic measurements and detailed theoretical investigation using ab initio methods, the magnetic anisotropy of each system has been studied. The calculations reveal that the rhombic zero-field splitting (ZFS) term (E) can be tuned as the symmetry around the Mn(ii) ion is changed. Furthermore, an in silico investigation reveals a strategy to increase the axial ZFS parameter (D) of trigonal bipyramidal Mn(ii) by an order of magnitude.
Collapse
Affiliation(s)
- Moya A Hay
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Arup Sarkar
- Department of Chemistry, Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India.
| | - Katie E R Marriott
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Gopalan Rajaraman
- Department of Chemistry, Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India.
| | - Mark Murrie
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
23
|
Singh MK, Rajaraman G. Theoretical Studies on Hexanuclear [M 3(μ 3-O/OH)] 2 (M = Fe(III), Mn(III), and Ni(II)) Clusters: Magnetic Exchange, Magnetic Anisotropy, and Magneto-Structural Correlations. Inorg Chem 2019; 58:3175-3188. [PMID: 30741554 DOI: 10.1021/acs.inorgchem.8b03257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling spin Hamiltonian parameters such as magnetic exchange and magnetic anisotropy of polynuclear clusters is of great interest in the area of single molecule magnets (SMMs). Among large polynuclear clusters, hexanuclear clusters offer the best compromise in terms of size as they are often rigid, solution stable, and chemically amenable. The {M6O2} core is one of the common architectures known for many hexanuclear clusters and generally reported to possess a diamagnetic ST = 0 spin ground state, barring a few exceptions. In these clusters, there are several open questions that are poorly understood: (a) What controls the nature of magnetic exchange, which in turn dictates the ground state spin values? (b) For clusters possessing a nonzero spin ground state, what dictates the magnetic anisotropy? Here, using density functional methods, we have attempted to shed light on these two question by evaluating the exchange coupling constants in [Fe6IIIO2(OH)2{(C4N2H2SMe)2C(OH)O}2( tBuCO2)10] (1), [Fe6III(O)2(O2CH2)(O2CCH2 tBu)12(py)2] (2), [Fe6III(O2)(O)2(O2CCMe3)12(py)2] (3), [FeIII6O3(O2CMe)9(OEt)2(bpy)2]ClO4 (4), [MnIII6O2(O2CH2)(O2CPe t)11(HO2CPe t)2(O2CMe)] (5), and [NiII6(OH)4(O2C tBu)8( tBuCO2H)4] (6) complexes. We have estimated all the eight near-neighbor exchange coupling constants in these clusters. Our calculations not only agree with the experimental results but also offer insight on the origin of the spin ground state. Extensive magneto-structural correlations developed by varying M-O-M angles and M-O distances reveal that J values are extremely sensitive to small structural distortions. Correlations developed indicate that both the parameters are important for Fe(III), but for Mn(III) and Ni(II), the angles were found to play a dominant role. Quite interestingly, the computed zero-field splitting parameter D S=5 of complex 1 reveals that the exchange contribution to the anisotropy controls the sign of the ground state D value-an observation which differs from the general perception that the ground state D is controlled by the single-ion zero-field splitting parameter.
Collapse
Affiliation(s)
- Mukesh Kumar Singh
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai , Maharashtra , India - 400076
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai , Maharashtra , India - 400076
| |
Collapse
|
24
|
Costes JP, Mallet-Ladeira S, Vendier L, Maurice R, Wernsdorfer W. Influence of ancillary ligands and solvents on the nuclearity of Ni-Ln complexes. Dalton Trans 2019; 48:3404-3414. [PMID: 30788479 DOI: 10.1039/c9dt00370c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Schiff base ligand resulting from the reaction of ovanillin and 2,2-dimethyl-1,3-diaminopropane allows the preparation of hetero-dinuclear [Ni-Ln]3+ or -trinuclear [Ni-Ln-Ni]3+ complexes. Although empirical parameters for rationalizing the strength of the ferromagnetic Ni-Gd interaction have already been discussed in several papers, no systematic study has been devoted to the control of the nuclearity of such complexes. With the help of structural determinations, we demonstrate the role of solvent and of the nature of ancillary ligands, linked to the Ln ions, in nuclearity. For instance, the presence of one chelating nitrato ligand is already sufficient to impede an increase in the nuclearity, while the replacement of nitrato ligands by chloride anions still yields dinuclear Ni-Ln complexes. This experimental result evidences the role of protic solvents. In contrast, the use of lanthanide salts, soluble in non-protic solvents, allows the isolation of dinuclear [Ni-Ln]3+ or trinuclear cationic [LNi-Ln-NiL]3+ complexes, depending on the Ni/Ln ratio. A further synthetic step can be overtaken by the reaction of a Ni-Ln complex, soluble in a non-protic solvent, with a LM complex (M = Cu, Zn). By doing so, a heterotrinuclear complex made of three different metal ions, two distinct 3d ions and a 4f one, has been isolated and structurally characterized. Note that the Ni coordination number decreases from 6 to 5 on going from the dinuclear complex to the trinuclear one. Also, the replacement of water molecules by chloride ligands in the hexacoordinate Ni complexes induces a net increase of the positive zero-field splitting parameter D to 20 cm-1, which is supported by ab initio calculations. Although the Ni-Ln (Ln = Gd, Tb, Dy) magnetic interactions are ferromagnetic, the corresponding trinuclear complexes are devoid of SMM properties in the absence of an applied magnetic field.
Collapse
|
25
|
Chakraborty A, Goura J, Bag P, Chandrasekhar V. Ni
II
‐Ln
III
Heterometallic Complexes as Single‐Molecule Magnets. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amit Chakraborty
- Tata Institute of Fundamental Research Hyderabad Gopanpally 500107 Hyderabad India
| | - Joydeb Goura
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Prasenjit Bag
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad Gopanpally 500107 Hyderabad India
- Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| |
Collapse
|
26
|
Schulte KA, Vignesh KR, Dunbar KR. Effects of coordination sphere on unusually large zero field splitting and slow magnetic relaxation in trigonally symmetric molecules. Chem Sci 2018; 9:9018-9026. [PMID: 30647894 PMCID: PMC6301199 DOI: 10.1039/c8sc02820f] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023] Open
Abstract
Geometric control in mononuclear complexes has come to the forefront in the field of molecular magnets due to its profound effects on relaxation pathways and blocking temperature in single molecule magnets (SMMs). Herein we report the synthesis and magnetic characterization of six trigonally symmetric, divalent Fe, Co, and Ni molecules, with the rigid geometry enforced via the use of the tris-anionic, tetradentate ligand MST (N,N',N''-[2,2',2''-nitrilotris-(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamide)). A systematic study on the effect of converting between trigonal monopyramidal complexes, (Me4N)[M(MST)], and trigonal bipyramidal complexes, (Me4N)[M(MST)(OH2)] was conducted experimentally and computationally. It was found that (Me4N)[Ni(MST)] exhibits a very large, near record zero-field splitting parameter (D) value of -434 cm-1, owing to an extremely low lying first excited state. The trigonal monopyramidal cobalt and iron complexes exhibit slow magnetic relaxation under applied fields, resulting in barriers of 45 K and 63.9 K respectively. Coordination of a single water molecule in the open axial site of the trigonal monopyramidal complexes exerts drastic dampening effects on the D value as well as slow relaxation. Computations reveal that coordination of water rotates the D zz axis away from the C 3 axis of symmetry resulting in a smaller D value. The aquo species (Me4N)[Co(MST)(OH2)] also exhibits magnetic relaxation under an applied field, but the barrier is reduced to 9.9 K. Water coordination totally quenches the magnetic behavior in the iron complex, and reduces the D value for nickel to -185 cm-1. These results showcase the drastic effect that a small change in the coordination environment can have on magnetic behavior, as well as that trigonal monopyramidal geometry can lead to near record D values.
Collapse
Affiliation(s)
- Kelsey A Schulte
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , USA .
| | - Kuduva R Vignesh
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , USA .
| | - Kim R Dunbar
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , USA .
| |
Collapse
|
27
|
Mondal AK, Mondal A, Dey B, Konar S. Influence of the Coordination Environment on Easy-Plane Magnetic Anisotropy of Pentagonal Bipyramidal Cobalt(II) Complexes. Inorg Chem 2018; 57:9999-10008. [DOI: 10.1021/acs.inorgchem.8b01162] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| | - Bijoy Dey
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066 Madhya Pradesh, India
| |
Collapse
|
28
|
Dorn M, Mack K, Carrella LM, Rentschler E, Förster C, Heinze K. Structure and Electronic Properties of an Expanded Terpyridine Complex of Nickel(II) [Ni(ddpd)2](BF4)2. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Dorn
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Katharina Mack
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Luca M. Carrella
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Eva Rentschler
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg University of Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
29
|
Craig GA, Sarkar A, Woodall CH, Hay MA, Marriott KER, Kamenev KV, Moggach SA, Brechin EK, Parsons S, Rajaraman G, Murrie M. Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(ii) under high pressure. Chem Sci 2018; 9:1551-1559. [PMID: 29675200 PMCID: PMC5890327 DOI: 10.1039/c7sc04460g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022] Open
Abstract
Understanding and controlling magnetic anisotropy at the level of a single metal ion is vital if the miniaturisation of data storage is to continue to evolve into transformative technologies. Magnetic anisotropy is essential for a molecule-based magnetic memory as it pins the magnetic moment of a metal ion along the easy axis. Devices will require deposition of magnetic molecules on surfaces, where changes in molecular structure can significantly alter magnetic properties. Furthermore, if we are to use coordination complexes with high magnetic anisotropy as building blocks for larger systems we need to know how magnetic anisotropy is affected by structural distortions. Here we study a trigonal bipyramidal nickel(ii) complex where a giant magnetic anisotropy of several hundred wavenumbers can be engineered. By using high pressure, we show how the magnetic anisotropy is strongly influenced by small structural distortions. Using a combination of high pressure X-ray diffraction, ab initio methods and high pressure magnetic measurements, we find that hydrostatic pressure lowers both the trigonal symmetry and axial anisotropy, while increasing the rhombic anisotropy. The ligand-metal-ligand angles in the equatorial plane are found to play a crucial role in tuning the energy separation between the d x2-y2 and d xy orbitals, which is the determining factor that controls the magnitude of the axial anisotropy. These results demonstrate that the combination of high pressure techniques with ab initio studies is a powerful tool that gives a unique insight into the design of systems that show giant magnetic anisotropy.
Collapse
Affiliation(s)
- Gavin A Craig
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Arup Sarkar
- Department of Chemistry , Indian Institute of Technology Bombay , Powai , Mumbai , Maharashtra 400 076 , India .
| | - Christopher H Woodall
- Centre for Science at Extreme Conditions , University of Edinburgh , Edinburgh , EH9 3FD , UK .
- EaStCHEM , School of Chemistry , University of Edinburgh , Edinburgh , EH9 3FJ , UK
| | - Moya A Hay
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Katie E R Marriott
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Konstantin V Kamenev
- Centre for Science at Extreme Conditions , University of Edinburgh , Edinburgh , EH9 3FD , UK .
- EaStCHEM , School of Chemistry , University of Edinburgh , Edinburgh , EH9 3FJ , UK
| | - Stephen A Moggach
- Centre for Science at Extreme Conditions , University of Edinburgh , Edinburgh , EH9 3FD , UK .
- EaStCHEM , School of Chemistry , University of Edinburgh , Edinburgh , EH9 3FJ , UK
| | - Euan K Brechin
- Centre for Science at Extreme Conditions , University of Edinburgh , Edinburgh , EH9 3FD , UK .
- EaStCHEM , School of Chemistry , University of Edinburgh , Edinburgh , EH9 3FJ , UK
| | - Simon Parsons
- Centre for Science at Extreme Conditions , University of Edinburgh , Edinburgh , EH9 3FD , UK .
- EaStCHEM , School of Chemistry , University of Edinburgh , Edinburgh , EH9 3FJ , UK
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Powai , Mumbai , Maharashtra 400 076 , India .
| | - Mark Murrie
- WestCHEM , School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| |
Collapse
|
30
|
Gupta T, Rajaraman G. Modelling spin Hamiltonian parameters of molecular nanomagnets. Chem Commun (Camb) 2018; 52:8972-9008. [PMID: 27366794 DOI: 10.1039/c6cc01251e] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
Collapse
Affiliation(s)
- Tulika Gupta
- Department of Chemistry, IIT Powai, Mumbai-400076, India.
| | | |
Collapse
|
31
|
Sarkar A, Velmurugan G, Rajeshkumar T, Rajaraman G. Deciphering the origin of invariance in magnetic anisotropy in {FeIIS4} complexes: a theoretical perspective. Dalton Trans 2018; 47:9980-9984. [DOI: 10.1039/c8dt02145g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By employing the state-of-the-art ab initio calculations, we have probed the origin of invariance in ZFS parameters in {FeIIS4} complexes.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | | | | | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| |
Collapse
|
32
|
Mondal AK, Sundararajan M, Konar S. A new series of tetrahedral Co(ii) complexes [CoLX2] (X = NCS, Cl, Br, I) manifesting single-ion magnet features. Dalton Trans 2018; 47:3745-3754. [DOI: 10.1039/c7dt04007e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The influence of ligand field strength on the magnetic anisotropy of a series of isostructural tetrahedral CoII complexes has been investigated by using a combined experimental and theoretical approach.
Collapse
Affiliation(s)
- Amit Kumar Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| |
Collapse
|
33
|
Novitchi G, Jiang S, Shova S, Rida F, Hlavička I, Orlita M, Wernsdorfer W, Hamze R, Martins C, Suaud N, Guihéry N, Barra AL, Train C. From Positive to Negative Zero-Field Splitting in a Series of Strongly Magnetically Anisotropic Mononuclear Metal Complexes. Inorg Chem 2017; 56:14809-14822. [PMID: 29181984 DOI: 10.1021/acs.inorgchem.7b01861] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of mononuclear [M(hfa)2(pic)2] (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; pic = 4-methylpyridine; M = FeII, CoII, NiII, ZnII) compounds were obtained and characterized. The structures of the complexes have been resolved by single-crystal X-ray diffraction, indicating that, apart from the zinc derivative, the complexes are in a trans configuration. Moreover, a dramatic lenghthening of the Fe-N distances was observed, whereas the nickel(II) complex is almost perfectly octahedral. The magnetic anisotropy of these complexes was thoroughly studied by direct-current (dc) magnetic measurements, high-field electron paramagnetic resonance, and infrared (IR) magnetospectroscopy: the iron(II) derivative exhibits an out-of-plane anisotropy (DFe = -7.28 cm-1) with a high rhombicity, whereas the cobalt(II) and nickel(II) complexes show in-plane anisotropy (DCo ∼ 92-95 cm-1; DNi = 4.920 cm-1). Ab initio calculations were performed to rationalize the evolution of the structure and identify the excited states governing the magnetic anisotropy along the series. For the iron(II) complex, an out-of-phase alternating-current (ac) magnetic susceptibility signal was observed using a 0.1 T dc field. For the cobalt(II) derivative, the ac magnetic susceptibility shows the presence of two field-dependent relaxation phenomena: at low field (500 Oe), the relaxation process is beyond single-ion behavior, whereas at high field (2000 Oe), the relaxation of magnetization implies several mechanisms including an Orbach process with Ueff = 25 K and quantum tunneling of magnetization. The observation by μ-SQUID magnetization measurements of hysteresis loops of up to 1 K confirmed the single-ion-magnet behavior of the cobalt(II) derivative.
Collapse
Affiliation(s)
- Ghénadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Shangda Jiang
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry , Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania
| | - Fatima Rida
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Ivo Hlavička
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Milan Orlita
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Wolfgang Wernsdorfer
- Institut Néel, UPR CNRS 2940, Université Grenoble-Alpes , B.P. 166, 38042 Grenoble Cedex 9, France.,Physikalisches Institut and Institute of Nanotechnology, Karlsruhe Institute of Technology , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Rana Hamze
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université de Toulouse 3, Paul Sabatier , 118 route de Narbonne, 31062 Toulouse, France
| | - Cyril Martins
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université de Toulouse 3, Paul Sabatier , 118 route de Narbonne, 31062 Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université de Toulouse 3, Paul Sabatier , 118 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, Université de Toulouse 3, Paul Sabatier , 118 route de Narbonne, 31062 Toulouse, France
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes , 25 rue des Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France
| |
Collapse
|
34
|
García-Valdivia AA, Seco JM, Cepeda J, Rodríguez-Diéguez A. Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions. Inorg Chem 2017; 56:13897-13912. [PMID: 29120182 DOI: 10.1021/acs.inorgchem.7b02020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detailed structural, magnetic, and photoluminescence (PL) characterization of four new compounds based on 1-methylimidazole-5-carboxylate (mimc) ligand and transition metal ions, namely [Ni(mimc)2(H2O)4] (1), [Co(μ-mimc)2]n (2), {[Cu2(μ-mimc)4(H2O)]·2H2O}n (3), and [Cd(μ-mimc)2(H2O)]n (4) is reported. The structural diversity found in the family of compounds derives from the coordination versatility of the ligand, which coordinates as a terminal ligand to give a supramolecular network of monomeric entities in 1 or acts as a bridging linker to build isoreticular 2D coordination polymers (CPs) in 2-4. Magnetic direct-current (dc) susceptibility data have been measured for compounds 1-3 to analyze the exchange interactions among paramagnetic centers, which have been indeed supported by calculations based on broken symmetry (BS) and density functional theory (DFT) methodology. The temperature dependence of susceptibility and magnetization data of 2 are indicative of easy-plane anisotropy (D = +12.9 cm-1, E = +0.5 cm-1) that involves a bistable Ms = ±1/2 ground state. Alternating-current (ac) susceptibility curves exhibit field-induced single-ion magnet (SIM) behavior that occurs below 14 K, which is characterized by two spin relaxation processes of distinct nature: fast relaxation of single ions proceeding through multiple mechanisms (Ueff = 26 K) and a slow relaxation attributed to interactions along the polymeric crystal building. Exhaustive PL analysis of compound 4 in the solid state confirms low-temperature phosphorescent green emission consisting of radiative lifetimes in the range of 0.25-0.43 s, which explains the afterglow observed during about 1 s after the removal of the UV source. Time-dependent DFT and computational calculations to estimate phosphorescent vertical transitions have been also employed to provide an accurate description of the PL performance of this long-lasting phosphor.
Collapse
Affiliation(s)
| | - Jose M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU , 20018 San Sebastián, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU , 20018 San Sebastián, Spain
| | | |
Collapse
|
35
|
Woods TJ, Stout HD, Dolinar BS, Vignesh KR, Ballesteros-Rivas MF, Achim C, Dunbar KR. Strong Ferromagnetic Exchange Coupling Mediated by a Bridging Tetrazine Radical in a Dinuclear Nickel Complex. Inorg Chem 2017; 56:12094-12097. [PMID: 28945087 DOI: 10.1021/acs.inorgchem.7b01812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The radical bridged compound [(Ni(TPMA))2-μ-bmtz•-](BF4)3·3CH3CN (bmtz = 3,6-bis(2'-pyrimidyl)-1,2,4,5-tetrazine, TPMA = tris(2-pyridylmethyl)amine) exhibits strong ferromagnetic exchange between the S = 1 NiII centers and the bridging S = 1/2 bmtz radical with J = 96 ± 5 cm-1 (-2JNi-radSNiSrad). DFT calculations support the existence of strong ferromagnetic exchange.
Collapse
Affiliation(s)
- Toby J Woods
- Department of Chemistry, Texas A&M University , College Station, Texas 77842-3012, United States
| | - Heather D Stout
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Brian S Dolinar
- Department of Chemistry, Texas A&M University , College Station, Texas 77842-3012, United States
| | - Kuduva R Vignesh
- Department of Chemistry, Texas A&M University , College Station, Texas 77842-3012, United States
| | | | - Catalina Achim
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University , College Station, Texas 77842-3012, United States
| |
Collapse
|
36
|
Synthesis, crystal structure and magnetism of [Cu(cyclam)Ni(NCS)4(H2O)2]n. NOVA BIOTECHNOLOGICA ET CHIMICA 2017. [DOI: 10.1515/nbec-2017-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract[Cu(cyclam)Ni(NCS)4(H2O)2]n(1) (cyclam = 1,4,8,11-tetraazacyclodecane) exhibits bent 1D crystal structure in which paramagnetic Cu(II) and Ni(II) atoms are linked by bridging μ2-NCS- ligands. The Cu(II) atom exhibit tetragonally elongated hexacoordination in the 4+2 form with one tetradentate macrocyclic cyclam ligands placed in the equatorial plane while the axial positions are occupied by S atoms from bridging NCS- ligands. The Ni(II) atom in NiN4O2donor set is deformed octahedrally coordinated by four isothiocyanato ligands among which two in trans positions are bridging in nature; additional aqua ligands occupy the remaining two positions in trans arrangement. Weak hydrogen bonding interactions of the O-H···S type links the formed chains into 3D supramolecular structure. The magnetism of 1 is dominated by a sizable single-ion anisotropy DNi/hc = +7.49 cm-1along with a weak exchange interaction of the ferromagnetic nature.
Collapse
|
37
|
Vignesh KR, Langley SK, Gartshore CJ, Moubaraki B, Murray KS, Rajaraman G. What Controls the Magnetic Exchange and Anisotropy in a Family of Tetranuclear {Mn2IIMn2III} Single-Molecule Magnets? Inorg Chem 2017; 56:1932-1949. [PMID: 28156106 DOI: 10.1021/acs.inorgchem.6b02527] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Stuart K. Langley
- School of Science and the Environment, Chemistry Division, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Boujemaa Moubaraki
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Keith S. Murray
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
38
|
Rodríguez-Diéguez A, Pérez-Yáñez S, Ruiz-Rubio L, Seco JM, Cepeda J. From isolated to 2D coordination polymers based on 6-aminonicotinate and 3d-metal ions: towards field-induced single-ion-magnets. CrystEngComm 2017. [DOI: 10.1039/c7ce00234c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Singh SK, Rajaraman G. Deciphering the origin of giant magnetic anisotropy and fast quantum tunnelling in Rhenium(IV) single-molecule magnets. Nat Commun 2016; 7:10669. [PMID: 26883278 PMCID: PMC4757791 DOI: 10.1038/ncomms10669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/08/2016] [Indexed: 12/21/2022] Open
Abstract
Single-molecule magnets represent a promising route to achieve potential applications such as high-density information storage and spintronics devices. Among others, 4d/5d elements such as Re(IV) ion are found to exhibit very large magnetic anisotropy, and inclusion of this ion-aggregated clusters yields several attractive molecular magnets. Here, using ab intio calculations, we unravel the source of giant magnetic anisotropy associated with the Re(IV) ions by studying a series of mononuclear Re(IV) six coordinate complexes. The low-lying doublet states are found to be responsible for large magnetic anisotropy and the sign of the axial zero-field splitting parameter (D) can be categorically predicted based on the position of the ligand coordination. Large transverse anisotropy along with large hyperfine interactions opens up multiple relaxation channels leading to a fast quantum tunnelling of the magnetization (QTM) process. Enhancing the Re-ligand covalency is found to significantly quench the QTM process. Rhenium(IV) complexes are magnetically anisotropic although the origin of this anisotropy is poorly explored compared to 3d transition metals and lanthanides. Here, the authors computationally examine the effects of ligand donor ability and structural distortion on magnetic anisotropy for a series of rhenium(IV) complexes.
Collapse
Affiliation(s)
- Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology, Bombay Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Bombay Powai, Mumbai 400076, India
| |
Collapse
|
40
|
Zlatar M, Gruden M, Vassilyeva OY, Buvaylo EA, Ponomarev AN, Zvyagin SA, Wosnitza J, Krzystek J, Garcia-Fernandez P, Duboc C. Origin of the Zero-Field Splitting in Mononuclear Octahedral Mn(IV) Complexes: A Combined Experimental and Theoretical Investigation. Inorg Chem 2016; 55:1192-201. [PMID: 26745448 DOI: 10.1021/acs.inorgchem.5b02368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to determine and understand the origin of the electronic properties of Mn(IV) complexes, especially the zero-field splitting (ZFS), through a combined experimental and theoretical investigation on five well-characterized mononuclear octahedral Mn(IV) compounds, with various coordination spheres (N6, N3O3, N2O4 in both trans (trans-N2O4) and cis configurations (cis-N2O4) and O4S2). High-frequency and -field EPR (HFEPR) spectroscopy has been applied to determine the ZFS parameters of two of these compounds, MnL(trans-N2O4) and MnL(O4S2). While at X-band EPR, the axial-component of the ZFS tensor, D, was estimated to be +0.47 cm(-1) for MnL(O4S2), and a D-value of +2.289(5) cm(-1) was determined by HFEPR, which is the largest D-magnitude ever measured for a Mn(IV) complex. A moderate D value of -0.997(6) cm(-1) has been found for MnL(trans-N2O4). Quantum chemical calculations based on two theoretical frameworks (the Density Functional Theory based on a coupled perturbed approach (CP-DFT) and the hybrid Ligand-Field DFT (LF-DFT)) have been performed to define appropriate methodologies to calculate the ZFS tensor for Mn(IV) centers, to predict the orientation of the magnetic axes with respect to the molecular ones, and to define and quantify the physical origin of the different contributions to the ZFS. Except in the case of MnL(trans-N2O4), the experimental and calculated D values are in good agreement, and the sign of D is well predicted, LF-DFT being more satisfactory than CP-DFT. The calculations performed on MnL(cis-N2O4) are consistent with the orientation of the principal anisotropic axis determined by single-crystal EPR, validating the calculated ZFS tensor orientation. The different contributions to D were analyzed demonstrating that the d-d transitions mainly govern D in Mn(IV) ion. However, a deep analysis evidences that many factors enter into the game, explaining why no obvious magnetostructural correlations can be drawn in this series of Mn(IV) complexes.
Collapse
Affiliation(s)
- Matija Zlatar
- Center for Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade , Njegoševa 12, P.O. Box 815, 11001 Belgrade, Serbia
| | - Maja Gruden
- Faculty of Chemistry, University of Belgrade , Studentski trg 12-16, 11001 Belgrade, Serbia
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - Elena A Buvaylo
- Department of Chemistry, Taras Shevchenko National University of Kyiv , 64/13 Volodymyrska str., Kyiv 01601, Ukraine
| | - A N Ponomarev
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Saxony, Germany
| | - S A Zvyagin
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Saxony, Germany
| | - J Wosnitza
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Saxony, Germany.,Institut für Festkörperphysik, Technische Universität Dresden , D-01062 Dresden, Saxony, Germany
| | - J Krzystek
- National High Magnetic Field Laboratory (NHMFL), Florida State University , Tallahassee, Florida 32310, United States
| | - Pablo Garcia-Fernandez
- Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria , Avenida de los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Carole Duboc
- Département de Chimie Moléculaire, Université Grenoble Alpes/CNRS, UMR-5250 , BP-53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
41
|
Upadhyay A, Das C, Langley SK, Murray KS, Srivastava AK, Shanmugam M. Heteronuclear Ni(ii)–Ln(iii) (Ln = La, Pr, Tb, Dy) complexes: synthesis and single-molecule magnet behaviour. Dalton Trans 2016; 45:3616-26. [DOI: 10.1039/c5dt04102c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The crystal structures are reported for three heterometallic Ni2Ln and a Ni2Dy2 complex, using the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol. Detailed dc and ac magnetic susceptibility studies were reported for all the complexes. The complexes 3 and 4 shows frequency dependent out-of-phase susceptibility signals.
Collapse
Affiliation(s)
- Apoorva Upadhyay
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Chinmoy Das
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Stuart K. Langley
- School of Science and the Environment
- Chemistry Division
- Manchester
- Metropolitan University
- Manchester
| | | | - Anant K. Srivastava
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune 411 008
- India
| | | |
Collapse
|
42
|
Meng YS, Mo Z, Wang BW, Zhang YQ, Deng L, Gao S. Observation of the single-ion magnet behavior of d 8 ions on two-coordinate Co(i)-NHC complexes. Chem Sci 2015; 6:7156-7162. [PMID: 29861952 PMCID: PMC5951210 DOI: 10.1039/c5sc02611c] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
The slow magnetic relaxation typical for single-ion magnets has been known for certain low-coordinate 3d metal complexes with d6, d7, and d9 electronic configurations, but never for d8 complexes. Herein, we report a study on two-coordinate d8 cobalt(i)-N-heterocyclic carbene complexes, for which slow magnetic relaxation behavior was observed for [Co(IMes)2][BPh4] (IMes: 1,3-dimesitylimidazol-2-ylidene) under an applied dc field. The system represents the first d8 single-ion magnet, and features a fitted energy barrier of Ueff = 21.3 cm-1 and pre-exponential factor of τ0 = 6.6 × 10-6 s. The analog two-coordinate cobalt(i) complexes with different NHC ligands, [Co(sIMes)2][BPh4] (sIMes: 1,3-dimesitylimidazolin-2-ylidene) and [Co(IAd)2][BArF4] (IAd: 1,3-dimesitylimidazol-2-ylidene; BArF4: tetra(3,5-ditrifluoromethylphenyl)borate), do not show such single-ion magnet behaviour. Ab initio calculations imply that the dihedral angle between the two NHC planes and the degree of unsaturation of the NHC ligands can dramatically alter the D value of the two-coordinate cobalt(i)-NHC ions, possibly via changing of the Co-NHC π-interactions, and hence affect the spin-orbit coupling splitting.
Collapse
Affiliation(s)
- Yin-Shan Meng
- Beijing National Laboratory of Molecular Science , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Zhenbo Mo
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS , School of Physical Science and Technology , Nanjing Normal University , Nanjing 210023 , P. R. China .
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P. R. China .
| | - Song Gao
- Beijing National Laboratory of Molecular Science , State Key Laboratory of Rare Earth Materials Chemistry and Applications , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China .
| |
Collapse
|
43
|
Brazzolotto D, Gennari M, Yu S, Pécaut J, Rouzières M, Clérac R, Orio M, Duboc C. An Experimental and Theoretical Investigation on Pentacoordinated Cobalt(III) Complexes with an Intermediate S=
1 Spin State: How Halide Ligands Affect their Magnetic Anisotropy. Chemistry 2015; 22:925-33. [DOI: 10.1002/chem.201502997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Shengying Yu
- Univ. Grenoble Alpes, DCM, CNRS UMR 5250; 38000 Grenoble France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, INAC-SCIB; 38000 Grenoble France
| | - Mathieu Rouzières
- CNRS, CRPP, UPR 8641; F-33600 Pessac France
- Univ. Bordeaux, CRPP, UPR 8641; F-33600 Pessac France
| | - Rodolphe Clérac
- CNRS, CRPP, UPR 8641; F-33600 Pessac France
- Univ. Bordeaux, CRPP, UPR 8641; F-33600 Pessac France
| | - Maylis Orio
- Aix Marseille Université, ISM2, CNRS UMR 7313; 13397 Marseille France
| | - Carole Duboc
- Univ. Grenoble Alpes, DCM, CNRS UMR 5250; 38000 Grenoble France
| |
Collapse
|
44
|
Singh SK, Beg MF, Rajaraman G. Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective. Chemistry 2015; 22:672-80. [DOI: 10.1002/chem.201503102] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 11/08/2022]
|
45
|
Perić M, García-Fuente A, Zlatar M, Daul C, Stepanović S, García-Fernández P, Gruden-Pavlović M. Magnetic Anisotropy in “Scorpionate” First-Row Transition-Metal Complexes: A Theoretical Investigation. Chemistry 2015; 21:3716-26. [DOI: 10.1002/chem.201405480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 11/12/2022]
|
46
|
Caballero-Jiménez J, Habib F, Ramírez-Rosales D, Grande-Aztatzi R, Merino G, Korobkov I, Singh MK, Rajaraman G, Reyes-Ortega Y, Murugesu M. Inducing magnetic communication in caged dinuclear Co(ii) systems. Dalton Trans 2015; 44:8649-59. [DOI: 10.1039/c5dt00497g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic interactions were probed for a series of mono and tri atomic bridged dinuclear Co(ii) azacryptand complexes. Magneto-structural correlations were established usingab initiocalculations.
Collapse
Affiliation(s)
| | - Fatemah Habib
- Department of Chemistry
- University of Ottawa
- Ottawa
- Canada K1N6N5
| | - Daniel Ramírez-Rosales
- Departamento de Física
- Escuela Superior de Física y Matemáticas
- I.P.N
- Av. Instituto Politécnico Nacional s/n San Pedro Zacatenco
- México 07738
| | - Rafael Grande-Aztatzi
- Departamento de Física Aplicada
- Centro de Investigación de Estudios Avanzados Unidad Mérida. km 6 Antigua carretera a Progreso
- Mérida
- México
| | - Gabriel Merino
- Departamento de Física Aplicada
- Centro de Investigación de Estudios Avanzados Unidad Mérida. km 6 Antigua carretera a Progreso
- Mérida
- México
| | - Ilia Korobkov
- Department of Chemistry
- University of Ottawa
- Ottawa
- Canada K1N6N5
| | | | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai
- India
| | - Yasmi Reyes-Ortega
- Centro de Química
- Instituto de Ciencias
- Universidad Autónoma de Puebla
- 72000 Puebla
- México
| | | |
Collapse
|
47
|
Vignesh KR, Langley SK, Murray KS, Rajaraman G. What controls the magnetic exchange interaction in mixed- and homo-valent Mn7 disc-like clusters? A theoretical perspective. Chemistry 2014; 21:2881-92. [PMID: 25524418 DOI: 10.1002/chem.201405679] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 11/09/2022]
Abstract
Density functional theory (DFT) studies have been undertaken to compute the magnetic exchange and to probe the origin of the magnetic interactions in two hetero- and two homo-valent heptanuclear manganese disc-like clusters, of formula [Mn(II) 4 Mn(IV) 3 (tea)(teaH2 )3 (peolH)4 ] (1), [Mn(II) 4 Mn(III) 3 F3 (tea)(teaH)(teaH2 )2 (piv)4 (Hpiv)(chp)3 ] (2), [Mn(II) 7 (pppd)6 (tea)(OH)3 ] (3) and [Mn(II) 7 (paa)6 (OMe)6 ] (4) (teaH3 =triethanolamine, peolH4 =pentaerythritol, Hpiv=pivalic acid, Hchp=6-chloro-2-hydroxypyridine, pppd=1-phenyl-3-(2-pyridyl) propane-1,3-dione; paaH=N-(2-pyridinyl)acetoacetamide). DFT calculations yield J values, which reproduce the magnetic susceptibility data very well for all four complexes; these studies are also highlighting the likely ageing/stability problems in two of the complexes. It is found that the spin ground states, S, for complexes 1-4 are drastically different, varying from S=29/2 to S=1/2. These values are found to be controlled by the nature of the oxidation state of the metal ions and minor differences present in the structures. Extensive magneto-structural correlations are developed for the seven building unit dimers present in the complexes, with the correlations unlocking the reasons behind the differences in the magnetic properties observed. Independent of the oxidation state of the metal ions, the Mn-O-Mn/Mn-F-Mn angles are found to be the key parameters, which significantly influence the sign as well as the magnitude of the J values. The magneto-structural correlations developed here, have broad applicability and can be utilised to understand the magnetic properties of other Mn clusters.
Collapse
Affiliation(s)
- Kuduva R Vignesh
- IITB-Monash Research Academy, IIT Bombay, Mumbai, 400076 (India)
| | | | | | | |
Collapse
|