1
|
Miyaji K, Masaki Y, Seio K. Inhibitory Effects on RNA Binding and RNase H Induction Activity of Prodrug-Type Oligodeoxynucleotides Modified with a Galactosylated Self-Immolative Linker Cleavable by β-Galactosidase. Bioconjug Chem 2024. [PMID: 39376088 DOI: 10.1021/acs.bioconjchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Prodrug-type oligonucleotides (prodrug-ONs) are a class of oligonucleotide designed for activation under specific intracellular conditions or external stimuli. Prodrug-ONs can be activated in the target tissues or cells, thereby reducing the risk of adverse effects. In this study, we synthesized prodrug-type oligodeoxynucleotides activated by β-galactosidase, an enzyme that is overexpressed in cancer and senescent cells. These oligodeoxynucleotides (ODNs) contain a modified thymidine conjugated with galactose via a self-immolative linker at the O4-position. UV-melting analysis revealed that the modifications decreased the melting temperature (Tm) compared with that of the unmodified ODN when hybridized with complementary RNA. Furthermore, cleavage of the glycosidic bond by β-galactosidase resulted in the spontaneous removal of the linker from the nucleobase moiety, generating unmodified ODNs. Additionally, the introduction of multiple modified thymidines into ODNs completely inhibited the RNase H-mediated cleavage of complementary RNA. These findings suggest the possibility of developing prodrug-ONs, which are specifically activated in cancer cells or senescent cells with high β-galactosidase expression.
Collapse
Affiliation(s)
- Kento Miyaji
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshiaki Masaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Nucleotide and Peptide Drug Discovery Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kohji Seio
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Nomura K, Onda K, Murase H, Hashiya F, Ono Y, Terai G, Oka N, Asai K, Suzuki D, Takahashi N, Hiraoka H, Inagaki M, Kimura Y, Shimizu Y, Abe N, Abe H. Development of PCR primers enabling the design of flexible sticky ends for efficient concatenation of long DNA fragments. RSC Chem Biol 2024; 5:360-371. [PMID: 38576723 PMCID: PMC10989509 DOI: 10.1039/d3cb00212h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
We developed chemically modified PCR primers that allow the design of flexible sticky ends by introducing a photo-cleavable group at the phosphate moiety. Nucleic acid derivatives containing o-nitrobenzyl photo-cleavable groups with a tert-butyl group at the benzyl position were stable during strong base treatment for oligonucleotide synthesis and thermal cycling in PCR reactions. PCR using primers incorporating these nucleic acid derivatives confirmed that chain extension reactions completely stopped at position 1 before and after the site of the photo-cleavable group was introduced. DNA fragments of 2 and 3 kbp, with sticky ends of 50 bases, were successfully concatenated with a high yield of 77%. A plasmid was constructed using this method. Finally, we applied this approach to construct a 48.5 kbp lambda phage DNA, which is difficult to achieve using restriction enzyme-based methods. After 7 days, we were able to confirm the generation of DNA of the desired length. Although the efficiency is yet to be improved, the chemically modified PCR primer offers potential to complement enzymatic methods and serve as a DNA concatenation technique.
Collapse
Affiliation(s)
- Kohei Nomura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Kaoru Onda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Hirotaka Murase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- CREST, Japan Science and Technology Agency 7 Gobancho Chiyoda-ku Tokyo 102-0076 Japan
| | - Yukiteru Ono
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Natsuhisa Oka
- Department of Chemistry and Biomolecular Science Faculty of Engineering, Gifu University Gifu 501-1193 Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo Kashiwanoha, Kashiwa Chiba 277-8561 Japan
| | - Daisuke Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Naho Takahashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Haruka Hiraoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Masahito Inagaki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research Suita Osaka 565-0874 Japan
| | - Naoko Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
| | - Hiroshi Abe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- Research Center for Materials Science, Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8602 Japan
- CREST, Japan Science and Technology Agency 7 Gobancho Chiyoda-ku Tokyo 102-0076 Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University Furo-cho, Chikusa-ku Nagoya Aichi 464-8601 Japan
| |
Collapse
|
3
|
Hamerla C, Mondal P, Hegger R, Burghardt I. Controlled destabilization of caged circularized DNA oligonucleotides predicted by replica exchange molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:26132-26144. [PMID: 37740309 DOI: 10.1039/d3cp02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Spatiotemporal control is a critical issue in the design of strategies for the photoregulation of oligonucleotide activity. Efficient uncaging, i.e., activation by removal of photolabile protecting groups (PPGs), often necessitates multiple PPGs. An alternative approach is based on circularization strategies, exemplified by intrasequential circularization, also denoted photo-tethering, as introduced in [Seyfried et al., Angew. Chem., Int. Ed., 2017, 56, 359]. Here, we develop a computational protocol, relying on replica exchange molecular dynamics (REMD), in order to characterize the destabilization of a series of circularized, caged DNA oligonucleotides addressed in the aforementioned study. For these medium-sized (32 nt) oligonucleotides, melting temperatures are computed, whose trend is in good agreement with experiment, exhibiting a large destabilization and, hence, reduction of the melting temperature of the order of ΔTm ∼ 30 K as compared with the native species. The analysis of free energy landscapes confirms the destabilization pattern experienced by the circularized oligonucleotides. The present study underscores that computational protocols that capture controlled destabilization and uncaging of oligonucleotides are promising as predictive tools in the tailored photocontrol of nucleic acids.
Collapse
Affiliation(s)
- Carsten Hamerla
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Padmabati Mondal
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences and Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Panguru (G.P), Yerpedu Mandal, 517619 - Tirupati Dist., Andhra Pradesh, India
| | - Rainer Hegger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Kennelly SA, Moorthy R, Otero RS, Harki DA. Expanding Catch and Release DNA Decoy (CRDD) Technology with Pyrimidine Mimics. Chemistry 2022; 28:e202201355. [PMID: 35849314 PMCID: PMC9588621 DOI: 10.1002/chem.202201355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Catch and release DNA decoys (CRDDs) utilize photochemically responsive nucleoside analogues that generate abasic sites upon exposure to light. Herein, we describe the synthesis and evaluation of four candidate CRDD monomers containing nucleobases that mimic endogenous pyrimidines: 2-nitroimidazole (2-NI), 2-nitrobenzene (2-NB), 2-nitropyrrole (2-NP) and 3-nitropyrrole (3-NP). Our studies reveal that 2-NI and 2-NP can function as CRDDs, whereas 3-NP and 2-NB undergo decomposition and transformation to a higher-ordered structure upon photolysis, respectively. When incorporated into DNA, 2-NP undergoes rapid photochemical cleavage of the anomeric bond (1.8 min half-life) to yield an abasic site. Finally, we find that all four pyrimidine mimics show significantly greater stability when base-paired against the previously reported 7-nitroindole CRDD monomer. Our work marks the expansion of CRDD technology to both purine and pyrimidine scaffolds.
Collapse
Affiliation(s)
- Samantha A. Kennelly
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Ramkumar Moorthy
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Ruben Silva Otero
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| | - Daniel A. Harki
- Department of Medicinal ChemistryUniversity of Minnesota2231 6th Street SEMinneapolis, MN 55455USA
| |
Collapse
|
5
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
6
|
Darrah KE, Deiters A. Translational control of gene function through optically regulated nucleic acids. Chem Soc Rev 2021; 50:13253-13267. [PMID: 34739027 DOI: 10.1039/d1cs00257k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Collapse
Affiliation(s)
- Kristie E Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
7
|
Zhou X, Pan Y, Yu L, Wu J, Li Z, Li H, Guan Z, Tang X, Yang Z. Feasibility of cRGD conjugation at 5'-antisense strand of siRNA by phosphodiester linkage extension. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:603-612. [PMID: 34589281 PMCID: PMC8463321 DOI: 10.1016/j.omtn.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Small interfering RNAs (siRNAs) are widely studied for their highly specific gene silencing activity. However, obstacles remain to the clinical application of siRNAs. Attaching conjugates to siRNAs can improve their stability and broaden their application, and most functional conjugates of siRNAs locate at the 3'-terminus of the sense or antisense strand. In this work, we found that conjugating a group at the 5'-terminus of the antisense strand via phosphodiester was practicable, especially when the group was a flexible moiety such as an alkyl linker. When conjugating a bulky ligand, such as cRGD, the length of the 5'-phosphodiester linker between the ligand and the 5'-terminus of the antisense strand was the key in terms of RNA interference (RNAi). With a relative longer linker, the conjugates showed potency similar to siRNA. A highly efficient transfection system composed of a neutral cytidinyl lipid (DNCA) and a gemini-like cationic lipid (CLD) was employed to deliver siRNAs or their conjugates. The cRGD conjugates showed superior targeting delivery and antitumor efficacy in vivo and also selective cellular uptake in vitro. This unity of encapsulation and conjugation strategy may provide potential strategies for siRNA-based gene therapy.
Collapse
Affiliation(s)
- Xinyang Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- People’s Public Security University of China, Beijing 100038, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Jing Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zheng Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huantong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Wang Q, Fan X, Jing N, Zhao H, Yu L, Tang X. Photoregulation of Gene Expression with Ligand-Modified Caged siRNAs through Host/Guest Interaction. Chembiochem 2021; 22:1901-1907. [PMID: 33432703 DOI: 10.1002/cbic.202000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Han Zhao
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| |
Collapse
|
9
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
10
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
11
|
Chen C, Wang Z, Jing N, Chen W, Tang X. Photomodulation of Caged RNA Oligonucleotide Functions in Living Systems. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Changmai Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Zhongyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| | - Wei Chen
- School of Pharmacy Fujian Medical University No.1 Xuefu N Rd, University Town Fuzhou 350122 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd, Haidian District Beijing 100191 China
| |
Collapse
|
12
|
Zhang J, Jing N, Fan X, Tang X. Photoregulation of Gene Expression with Amantadine‐Modified Caged siRNAs through Host–Guest Interactions. Chemistry 2020; 26:14002-14010. [DOI: 10.1002/chem.202003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| |
Collapse
|
13
|
Krasheninina OA, Fishman VS, Lomzov AA, Ustinov AV, Venyaminova AG. Postsynthetic On-Column 2' Functionalization of RNA by Convenient Versatile Method. Int J Mol Sci 2020; 21:E5127. [PMID: 32698484 PMCID: PMC7404181 DOI: 10.3390/ijms21145127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
We report a universal straightforward strategy for the chemical synthesis of modified oligoribonucleotides containing functional groups of different structures at the 2' position of ribose. The on-column synthetic concept is based on the incorporation of two types of commercial nucleotide phosphoramidites containing orthogonal 2'-O-protecting groups, namely 2'-O-thiomorpholine-carbothioate (TC, as "permanent") and 2'-O-tert-butyl(dimethyl)silyl (tBDMS, as "temporary"), to RNA during solid-phase synthesis. Subsequently, the support-bound RNA undergoes selective deprotection and follows postsynthetic 2' functionalization of the naked hydroxyl group. This convenient method to tailor RNA, utilizing the advantages of solid phase approaches, gives an opportunity to introduce site-specifically a wide range of linkers and functional groups. By this strategy, a series of RNAs containing diverse 2' functionalities were synthesized and studied with respect to their physicochemical properties.
Collapse
Affiliation(s)
- Olga A. Krasheninina
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria
| | - Veniamin S. Fishman
- Institute of Cytology and Genetics SB RAS Lavrentiev Ave. 10, 630090 Novosibirsk, Russia;
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.L.); (A.G.V.)
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
| | - Alya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (A.A.L.); (A.G.V.)
| |
Collapse
|
14
|
Kimura Y, Shu Z, Ito M, Abe N, Nakamoto K, Tomoike F, Shuto S, Ito Y, Abe H. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chem Commun (Camb) 2020; 56:466-469. [DOI: 10.1039/c9cc04872c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a new approach for RNA interference, so-called “build-up RNAi” approach, where single-strand circular RNAs with a photocleavable unit or disulfide moiety were used as siRNA precursors.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Zhaoma Shu
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Naoko Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kosuke Nakamoto
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Wako-Shi
- Japan
| | - Hiroshi Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
15
|
Müller P, Seyfried P, Frühauf A, Heckel A. Phosphodiester photo-tethers for the (multi-)cyclic conformational caging of oligonucleotides. Methods Enzymol 2019; 624:89-111. [PMID: 31370937 DOI: 10.1016/bs.mie.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to address the function of oligonucleotides with light is highly desirable since they are often used experimentally in the regulation of biological processes that need to be controlled in time, space and activation level. Here we present an extension of our initial approach of using photo-tethers that force single strands of nucleic acids into a circle, thus making them unable to form a duplex with a complementary DNA- or RNA-strand. Due to the persistence length a single strand can form a circle of, for example, 30 nucleotides, but a duplex cannot. We show that these new photo-tethers can also be easily installed on the phosphodiester backbone. This simplifies the approach considerably and leads to temporarily inhibited oligonucleotides that can only form a duplex after linearization by photoactivation.
Collapse
Affiliation(s)
- Patricia Müller
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Seyfried
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anton Frühauf
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Seyfried P, Heinz M, Pintér G, Klötzner DP, Becker Y, Bolte M, Jonker HRA, Stelzl LS, Hummer G, Schwalbe H, Heckel A. Optimal Destabilization of DNA Double Strands by Single-Nucleobase Caging. Chemistry 2018; 24:17568-17576. [DOI: 10.1002/chem.201804040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Patrick Seyfried
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Marcel Heinz
- Department of Theoretical Biophysics; Max Planck Institute of Biophysics; Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - György Pintér
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt/, Centre for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Dean-Paulos Klötzner
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Yvonne Becker
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Michael Bolte
- Institute for Inorganic Chemistry; Goethe University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt/, Centre for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Lukas S. Stelzl
- Department of Theoretical Biophysics; Max Planck Institute of Biophysics; Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics; Max Planck Institute of Biophysics; Max-von-Laue-Str. 3 60438 Frankfurt am Main Germany
- Institute of Biophysics; Max-von-Laue-Str. 1 60438 Frankfurt am Main Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt/, Centre for Biomolecular Magnetic Resonance (BMRZ); Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology; Goethe University Frankfurt; Max-von-Laue-Str. 7 60438 Frankfurt am Main Germany
| |
Collapse
|
17
|
Kadina A, Kietrys AM, Kool ET. RNA Cloaking by Reversible Acylation. Angew Chem Int Ed Engl 2018; 57:3059-3063. [PMID: 29370460 PMCID: PMC5842138 DOI: 10.1002/anie.201708696] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/18/2018] [Indexed: 11/08/2022]
Abstract
We describe a selective and mild chemical approach for controlling RNA hybridization, folding, and enzyme interactions. Reaction of RNAs in aqueous buffer with an azide-substituted acylating agent (100-200 mm) yields several 2'-OH acylations per RNA strand in as little as 10 min. This poly-acylated ("cloaked") RNA is strongly blocked from hybridization with complementary nucleic acids, from cleavage by RNA-processing enzymes, and from folding into active aptamer structures. Importantly, treatment with a water-soluble phosphine triggers a Staudinger reduction of the azide groups, resulting in spontaneous loss of acyl groups ("uncloaking"). This fully restores RNA folding and biochemical activity.
Collapse
Affiliation(s)
- Anastasia Kadina
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Yang J, Chen C, Tang X. Cholesterol-Modified Caged siRNAs for Photoregulating Exogenous and Endogenous Gene Expression. Bioconjug Chem 2018. [DOI: 10.1021/acs.bioconjchem.8b00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, the School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine, Peking University Health Center, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Zhang L, Chen C, Fan X, Tang X. Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification. Chembiochem 2018; 19:1259-1263. [PMID: 29488297 DOI: 10.1002/cbic.201700623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/21/2022]
Abstract
Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
20
|
Affiliation(s)
- Anastasia Kadina
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Eric T. Kool
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
21
|
Debart F, Dupouy C, Vasseur JJ. Stimuli-responsive oligonucleotides in prodrug-based approaches for gene silencing. Beilstein J Org Chem 2018; 14:436-469. [PMID: 29520308 PMCID: PMC5827813 DOI: 10.3762/bjoc.14.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
Oligonucleotides (ONs) have been envisaged for therapeutic applications for more than thirty years. However, their broad use requires overcoming several hurdles such as instability in biological fluids, low cell penetration, limited tissue distribution, and off-target effects. With this aim, many chemical modifications have been introduced into ONs definitively as a means of modifying and better improving their properties as gene silencing agents and some of them have been successful. Moreover, in the search for an alternative way to make efficient ON-based drugs, the general concept of prodrugs was applied to the oligonucleotide field. A prodrug is defined as a compound that undergoes transformations in vivo to yield the parent active drug under different stimuli. The interest in stimuli-responsive ONs for gene silencing functions has been notable in recent years. The ON prodrug strategies usually help to overcome limitations of natural ONs due to their low metabolic stability and poor delivery. Nevertheless, compared to permanent ON modifications, transient modifications in prodrugs offer the opportunity to regulate ON activity as a function of stimuli acting as switches. Generally, the ON prodrug is not active until it is triggered to release an unmodified ON. However, as it will be described in some examples, the opposite effect can be sought. This review examines ON modifications in response to various stimuli. These stimuli may be internal or external to the cell, chemical (glutathione), biochemical (enzymes), or physical (heat, light). For each stimulus, the discussion has been separated into sections corresponding to the site of the modification in the nucleotide: the internucleosidic phosphate, the nucleobase, the sugar or the extremities of ONs. Moreover, the review provides a current and detailed account of stimuli-responsive ONs with the main goal of gene silencing. However, for some stimuli-responsive ONs reported in this review, no application for controlling gene expression has been shown, but a certain potential in this field could be demonstrated. Additionally, other applications in different domains have been mentioned to extend the interest in such molecules.
Collapse
Affiliation(s)
- Françoise Debart
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
22
|
Yu L, Jing N, Yang Z, Zhang L, Tang X. Caged siRNAs with single folic acid modification of antisense RNA for photomodulation of exogenous and endogenous gene expression in cells. Org Biomol Chem 2018; 16:7029-7035. [DOI: 10.1039/c8ob01952e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photoregulating gene expression using folic acid modified caged siRNA through complex formation of folic acid/folate receptor.
Collapse
Affiliation(s)
- Lijia Yu
- National Center of Occupational Safety and Health
- State Administration of Work Safety
- Beijing 102308
- China
- State key Laboratory of Natural and Biomimetic Drugs
| | - Nannan Jing
- State key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine
- Peking University
- Beijing 100191
- China
| | - Zhenjun Yang
- State key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine
- Peking University
- Beijing 100191
- China
| | - Lihe Zhang
- State key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine
- Peking University
- Beijing 100191
- China
| | - Xinjing Tang
- State key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences and Center for Noncoding RNA Medicine
- Peking University
- Beijing 100191
- China
| |
Collapse
|
23
|
Zhang L, Liang D, Wang Y, Li D, Zhang J, Wu L, Feng M, Yi F, Xu L, Lei L, Du Q, Tang X. Caged circular siRNAs for photomodulation of gene expression in cells and mice. Chem Sci 2017; 9:44-51. [PMID: 29629072 PMCID: PMC5869302 DOI: 10.1039/c7sc03842a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Caged siRNAs with a circular structure were successfully used for photoregulation of target genes in both cells and mice.
By means of RNA interference (RNAi), small interfering RNAs (siRNAs) play important roles in gene function study and drug development. Recently, photolabile siRNAs were developed to elucidate the process of gene silencing in terms of space, time and degree through chemical modification of siRNAs. We report herein a novel type of photolabile siRNA that was synthesized through cyclizing two ends of a single stranded RNA with a photocleavable linker. These circular siRNAs became more resistant to serum degradation. Using reporter assays of firefly/Renilla luciferase and GFP/RFP, the gene silencing activities of caged circular siRNAs for both genes were evaluated in HEK293 cells. The results indicated that the target genes were successfully photomodulated using these caged circular siRNAs that were formed by caged circular antisense guide RNAs and their linear complementary sense RNAs. Using the caged circular siRNA targeting GFP, we also successfully achieved photomodulation of GFP expression in mice. Upon further optimization, this new type of caged circular siRNA is expected to be a promising tool for studying gene therapy.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Duanwei Liang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Dong Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Mengke Feng
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Fan Yi
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - Luzheng Xu
- Medical and Health Analytical Center , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China
| | - Liandi Lei
- Medical and Health Analytical Center , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China
| | - Quan Du
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| | - XinJing Tang
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , No. 38, Xueyuan Rd , Beijing 100191 , China .
| |
Collapse
|
24
|
Yang J, Yu L, Zhang L, Long X, Ji Y, Tang X. Synthesis and Evaluation of Caged siRNA with Terminal Single Vitamin E Modification. ACTA ACUST UNITED AC 2016; 67:16.6.1-16.6.22. [PMID: 27911495 DOI: 10.1002/cpnc.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNA-induced gene silencing has been widely applied as a powerful research tool in drug development due to its sequence-specific degradation of target mRNA. Conditional regulation of gene functions with small interfering RNAs (siRNAs) is highly useful, especially when specific gene expression regulation with spatiotemporal resolution and amplitude is desired. Here, the synthesis of a series of new caged siRNAs with vitamin E (vitE) modification and/or a single photolabile linker at the 5' terminal is described. Their capability of photolysis was investigated by PAGE gel analysis. Then, a dual reporter firefly/renilla luciferase assay with siQuant vectors and GFP/RFP reporter genes was applied to show the effect of vitE-modified caged and non-caged siRNAs on gene expression. The intracellular distribution and cellular uptake pathways of caged siRNAs are also discussed. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Center of Noncoding RNA Medicine, The School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Center of Noncoding RNA Medicine, The School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Center of Noncoding RNA Medicine, The School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xingsu Long
- State Key Laboratory of Natural and Biomimetic Drugs, Center of Noncoding RNA Medicine, The School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Center of Noncoding RNA Medicine, The School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Center of Noncoding RNA Medicine, The School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
25
|
Seyfried P, Eiden L, Grebenovsky N, Mayer G, Heckel A. Photo‐Tethers for the (Multi‐)Cyclic, Conformational Caging of Long Oligonucleotides. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201610025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Patrick Seyfried
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Laura Eiden
- Life and Medical Science Institute University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Nikolai Grebenovsky
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Günter Mayer
- Life and Medical Science Institute University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Alexander Heckel
- Goethe University Frankfurt Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences Max-von-Laue-Str. 9 60438 Frankfurt Germany
| |
Collapse
|
26
|
Seyfried P, Eiden L, Grebenovsky N, Mayer G, Heckel A. Photo-Tethers for the (Multi-)Cyclic, Conformational Caging of Long Oligonucleotides. Angew Chem Int Ed Engl 2016; 56:359-363. [PMID: 27897376 DOI: 10.1002/anie.201610025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 12/28/2022]
Abstract
Intramolecular circularization of DNA oligonucleotides was accomplished by incorporation of alkyne-modified photolabile nucleosides into DNA sequences, followed by a CuI -catalyzed alkyne-azide cycloaddition with bis-azido linker molecules. We determined a range of ring sizes, in which the caged circular oligonucleotides exhibit superior duplex destabilizing properties. Specific binding of a full-length 90 nt C10 aptamer recognizing human Burkitt's lymphoma cells was then temporarily inhibited by locking the aptamer in a bicircularized structure. Irradiation restored the native aptamer conformation resulting in efficient cell binding and uptake. The photo-tether strategy presented here provides a robust and versatile tool for the light-activation of longer functional oligonucleotides, noteworthy without prior knowledge on the structure and the importance of specific nucleotides within a DNA aptamer.
Collapse
Affiliation(s)
- Patrick Seyfried
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Laura Eiden
- Life and Medical Science Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Nikolai Grebenovsky
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Günter Mayer
- Life and Medical Science Institute, University of Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Alexander Heckel
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
27
|
Ji Y, Yang J, Wu L, Yu L, Tang X. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| |
Collapse
|
28
|
Ji Y, Yang J, Wu L, Yu L, Tang X. Photochemical Regulation of Gene Expression Using Caged siRNAs with Single Terminal Vitamin E Modification. Angew Chem Int Ed Engl 2015; 55:2152-6. [DOI: 10.1002/anie.201510921] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Yuzhuo Ji
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Jiali Yang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Lijia Yu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; No. 38, Xueyuan Rd. Beijing 100191 China
| |
Collapse
|
29
|
Li P, He H, Wang Z, Feng M, Jin H, Wu Y, Zhang L, Zhang L, Tang X. Sensitive Detection of Single-Nucleotide Mutation in the BRAF Mutation Site (V600E) of Human Melanoma Using Phosphate-Pyrene-Labeled DNA Probes. Anal Chem 2015; 88:883-9. [PMID: 26652624 DOI: 10.1021/acs.analchem.5b03523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of novel nucleotide phosphoramidites were rationally designed and synthesized and were then site-specifically incorporated in DNA oligonucleotide probes with pyrene-modified phosphate. These oligodeoxynucleotide (ODN) probes almost have no inherent fluorescence emission with pyrene modification at 3' phosphate of corresponding nucleotides as a result of the photoinduced electron-transfer quenching effect of nucleobases (thymidine ∼ cytidine > guanosine ≫ adenosine). However, strong fluorescence emission was observed only with the perfectly matched duplex for the probes with pyrene modified at 3' phosphate of thymidine and cytidine. These rationally designed ODN probes successfully worked as "turn on" fluorescence oligonucleotide sensors for single-nucleotide polymorphism (SNP) and were used for detecting a single BRAF mutation site (V600E) of human melanoma.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Hongyan He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Zhixuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Mengke Feng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing, Jiangsu 210093, People's Republic of China.,Center for Noncoding RNA Medicine, Peking University Health Center , Beijing 100191, People's Republic of China
| |
Collapse
|
30
|
Wu L, Wang J, Tang X. Synthesis of Site‐Specifically Phosphate‐Caged siRNAs. ACTA ACUST UNITED AC 2015; 61:6.12.1-6.12.15. [DOI: 10.1002/0471142700.nc0612s61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences Beijing China
| | - Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing China
| |
Collapse
|
31
|
Wu L, He Y, Tang X. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides. Bioconjug Chem 2015; 26:1070-9. [PMID: 25961679 DOI: 10.1021/acs.bioconjchem.5b00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction of 4,4'-bis(hydroxymethyl)-azobenzene (azo) to dumbbell hairpin oligonucleotides at the loop position was able to reversibly control the stability of the whole hairpin structure via UV or visible light irradiation. Here, we designed and synthesized a series of azobenzene linked dumbbell antisense oligodeoxynucleotides (asODNs) containing two terminal hairpins that are composed of an asODN and a short inhibitory sense strand. Thermal melting studies of these azobenzene linked dumbbell asODNs indicated that efficient trans to cis photoisomerization of azobenzene moieties induced large difference in thermal stability (ΔTm = 12.1-21.3 °C). In addition, photomodulation of their RNA binding abilities and RNA digestion by RNase H was investigated. The trans-azobenzene linked asODNs with the optimized base pairs between asODN strands and inhibitory sense strands could only bind few percentage of the target RNA, while it was able to recover their binding to the target RNA and degrade it by RNase H after light irradiation. Upon optimization, it is promising to use these azobenzene linked asODNs for reversible spatial and temporal regulation of antisense activities based on both steric binding and RNA digestion by RNase H.
Collapse
Affiliation(s)
- Li Wu
- †School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujian He
- †School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjing Tang
- ‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
32
|
Wu L, Wu Y, Jin H, Zhang L, He Y, Tang X. Photoswitching properties of hairpin ODNs with azobenzene derivatives at the loop position. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00378k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoisomerization of an azobenzene moiety modulates the thermodynamic stability of hairpin ODNs by interfering with stacking interation between azobenzene and neighbouring base pair and dihedral angle of the neighbouring base pair.
Collapse
Affiliation(s)
- Li Wu
- College of Chemistry Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Ya Wu
- College of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710062
- China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yujian He
- College of Chemistry Chemical Engineering
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|