1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Liu Z, Shi X, Shu W, Qi S, Wang X, He X. The effect of hydration and dehydration on the conformation, assembling behavior and photoluminescence of PBLG. SOFT MATTER 2022; 18:4396-4401. [PMID: 35635105 DOI: 10.1039/d2sm00344a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydration and dehydration play crucial roles in hydrophobic effects (HEs) and are yet to be understood. Poly(γ-benzyl-L-glutamate) (PBLG) homopolymers in THF/water with various water contents were investigated. We discovered that PBLG was hydrated at low water contents and adopted a helical conformation. The chain became dehydrated with increasing water content, which converted the PBLG100 helix to a PPII-helix. The variation in the conformation resulted in an alteration of the self-assembled morphologies from fibers to particles. For PBLG12 with a shorter chain, the chain underwent an α-to-β transition in the conformation due to dehydration as the water content increased, and correspondingly the morphologies varied from tapes to helical ribbons, and eventually to toroids at a higher water content. We also observed that this α-to-β transition is accompanied by an increase in intensity of the fluorescence, which is attributed to the through-space-conjugation of tightly packed phenyl groups within the β-sheet. The discovered effect of hydration and dehydration on the PBLG chain conformation, self-assembling behavior and optical function is essential for the innovation of polypeptide materials and understanding of water-mediated biological systems.
Collapse
Affiliation(s)
- Zhen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Xinjie Shi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Wenchao Shu
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N21 3G1, Canada.
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No. 500 Dongchuan Road, shanghai 200241, China.
| |
Collapse
|
3
|
Mantsyzov AB, Sokolov MN, Ivantcova PM, Bräse S, Polshakov VI, Kudryavtsev KV. Interplay of Pyrrolidine Units with Homo/Hetero Chirality and CF 3-Aryl Substituents on Secondary Structures of β-Proline Tripeptides in Solution. J Org Chem 2020; 85:8865-8871. [PMID: 32526142 DOI: 10.1021/acs.joc.0c00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All possible variants of β-proline functionalized tripeptides consisting of homo/hetero chiral monomeric all-cis 5-arylpyrrolidine-2,4-dicarboxylate units were synthesized for the first time by a nonpeptidic coupling method based on 1,3-dipolar cycloaddition chemistry of azomethine ylides. Secondary structures of β-proline tripeptides in solution were determined using the NMR spectroscopy data. o-(Trifluoromethyl)phenyl substituent contributes to stereoselectivity of 1,3-dipolar cycloaddition and structural features of β-proline tripeptides. A β-proline CF3-tripeptide with alternating absolute chirality between adjacent pyrrolidine units mimics natural PPII helix secondary structure.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, Moscow, 119992, Russian Federation
| | - Mikhail N Sokolov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Polina M Ivantcova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany.,Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany
| | - Vladimir I Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Ave 31/5, Moscow, 119992, Russian Federation
| | - Konstantin V Kudryavtsev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russian Federation.,Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997, Moscow, Russian Federation
| |
Collapse
|
4
|
Meirson T, Bomze D, Markel G, Samson AO. κ-helix and the helical lock and key model: a pivotal way of looking at polyproline II. Bioinformatics 2020; 36:3726-3732. [DOI: 10.1093/bioinformatics/btaa186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/11/2020] [Accepted: 03/12/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Polyproline II (PPII) is a common conformation, comparable to α-helix and β-sheet. PPII, recently termed with a more generic name—κ-helix, adopts a left-handed structure with 3-fold rotational symmetry. Lately, a new type of binding mechanism—the helical lock and key model was introduced in SH3-domain complexes, where the interaction is characterized by a sliding helical pattern. However, whether this binding mechanism is unique only to SH3 domains is unreported.
Results
Here, we show that the helical binding pattern is a universal feature of the κ-helix conformation, present within all the major target families—SH3, WW, profilin, MHC-II, EVH1 and GYF domains. Based on a geometric analysis of 255 experimentally solved structures, we found that they are characterized by a distinctive rotational angle along the helical axis. Furthermore, we found that the range of helical pitch varies between different protein domains or peptide orientations and that the interaction is also represented by a rotational displacement mimicking helical motion. The discovery of rotational interactions as a mechanism, reveals a new dimension in the realm of protein–protein interactions, which introduces a new layer of information encoded by the helical conformation. Due to the extensive involvement of the conformation in functional interactions, we anticipate our model to expand the current molecular understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Markel
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Ramat-Gan 526260, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
5
|
Elbatrawi YM, Pedretty KP, Giddings N, Woodcock HL, Del Valle JR. δ-Azaproline and Its Oxidized Variants. J Org Chem 2020; 85:4207-4219. [DOI: 10.1021/acs.joc.9b03384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yassin M. Elbatrawi
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle P. Pedretty
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nicole Giddings
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Mkrtchyan AF, Hayriyan LA, Karapetyan AJ, Tovmasyan AS, Tsaturyan AH, Khrustalev VN, Maleev VI, Saghyan AS. Using the Ni-[(benzylprolyl)amino]benzophenone complex in the Glaser reaction for the synthesis of bis α-amino acids. NEW J CHEM 2020. [DOI: 10.1039/d0nj02072a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantiomerically enriched (S)-α-amino acids were obtained. As the initial complex, the Schiff base Ni(ii) complexes were used. The target Ni(ii) complexes were disassembled and the amino acids were isolated with excellent enantioselectivities.
Collapse
Affiliation(s)
- Anna F. Mkrtchyan
- Institute of Pharmacy
- Yerevan State University
- 0025 Yerevan
- Armenia
- Scientific and Production Center “Armbiotechnology” of NAS RA
| | - Liana A. Hayriyan
- Scientific and Production Center “Armbiotechnology” of NAS RA
- 0056 Yerevan
- Armenia
| | - Ani J. Karapetyan
- Institute of Pharmacy
- Yerevan State University
- 0025 Yerevan
- Armenia
- Scientific and Production Center “Armbiotechnology” of NAS RA
| | - Anna S. Tovmasyan
- Institute of Pharmacy
- Yerevan State University
- 0025 Yerevan
- Armenia
- Scientific and Production Center “Armbiotechnology” of NAS RA
| | - Avetis H. Tsaturyan
- Institute of Pharmacy
- Yerevan State University
- 0025 Yerevan
- Armenia
- Scientific and Production Center “Armbiotechnology” of NAS RA
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
- Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
| | - Viktor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Ashot S. Saghyan
- Institute of Pharmacy
- Yerevan State University
- 0025 Yerevan
- Armenia
- Scientific and Production Center “Armbiotechnology” of NAS RA
| |
Collapse
|
7
|
Kubyshkin V, Budisa N. Anticipating alien cells with alternative genetic codes: away from the alanine world! Curr Opin Biotechnol 2019; 60:242-249. [DOI: 10.1016/j.copbio.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
|
8
|
Kubyshkin V, Grage SL, Ulrich AS, Budisa N. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Phys Chem Chem Phys 2019; 21:22396-22408. [PMID: 31577299 DOI: 10.1039/c9cp02996f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our understanding of protein folds relies fundamentally on the set of secondary structures found in the proteomes. Yet, there also exist intriguing structures and motifs that are underrepresented in natural biopolymeric systems. One example is the polyproline II helix, which is usually considered to have a polar character and therefore does not form membrane spanning sections of membrane proteins. In our work, we have introduced specially designed polyproline II helices into the hydrophobic membrane milieu and used 19F NMR to monitor the helix alignment in oriented lipid bilayers. Our results show that these artificial hydrophobic peptides can adopt several different alignment states. If the helix is shorter than the thickness of the hydrophobic core of the membrane, it is submerged into the bilayer with its long axis parallel to the membrane plane. The polyproline helix adopts a transmembrane alignment when its length exceeds the bilayer thickness. If the peptide length roughly matches the lipid thickness, a coexistence of both states is observed. We thus show that the lipid thickness plays a determining role in the occurrence of a transmembrane polyproline II helix. We also found that the adaptation of polyproline II helices to hydrophobic mismatch is in some notable aspects different from α-helices. Finally, our results prove that the polyproline II helix is a competent structure for the construction of transmembrane peptide segments, despite the fact that no such motif has ever been reported in natural systems.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), P.O.B. 3640, Karlsruhe 76021, Germany and Institute of Organic Chemistry, KIT, Fritz-Haber-Weg 6, Karlsruhe 76131, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin 10623, Germany and Department of Chemistry, University of Manitoba, Dysart Rd. 144, Winnipeg MB R3T 2N2, Canada.
| |
Collapse
|
9
|
Meirson T, Bomze D, Kahlon L, Gil-Henn H, Samson AO. A helical lock and key model of polyproline II conformation with SH3. Bioinformatics 2019; 36:154-159. [DOI: 10.1093/bioinformatics/btz527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Motivation
More than half of the human proteome contains the proline-rich motif, PxxP. This motif has a high propensity for adopting a left-handed polyproline II (PPII) helix and can potentially bind SH3 domains. SH3 domains are generally grouped into two classes, based on whether the PPII binds in a positive (N-to-C terminal) or negative (C-to-N terminal) orientation. Since the discovery of this structural motif, over six decades ago, a systematic understanding of its binding remains poor and the consensus amino acid sequence that binds SH3 domains is still ill defined.
Results
Here, we show that the PPII interaction with SH3 domains is governed by the helix backbone and its prolines, and their rotation angle around the PPII helical axis. Based on a geometric analysis of 131 experimentally solved SH3 domains in complex with PPIIs, we observed a rotary translation along the helical screw axis, and separated them by 120° into three categories we name α (0–120°), β (120–240°) and γ (240–360°). Furthermore, we found that PPII helices are distinguished by a shifting PxxP motif preceded by positively charged residues which act as a structural reading frame and dictates the organization of SH3 domains; however, there is no one single consensus motif for all classified PPIIs. Our results demonstrate a remarkable apparatus of a lock with a rotating and translating key with no known equivalent machinery in molecular biology. We anticipate our model to be a starting point for deciphering the PPII code, which can unlock an exponential growth in our understanding of the relationship between protein structure and function.
Availability and implementation
We have implemented the proposed methods in the R software environment and in an R package freely available at https://github.com/Grantlab/bio3d.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomer Meirson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - David Bomze
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 39040, Israel
| | - Liron Kahlon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1589, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Safed 1589, Israel
| |
Collapse
|
10
|
Guo LE, Hong Y, Zhang SY, Zhang M, Yan XS, Cao JL, Li Z, James TD, Jiang YB. Proline-Based Boronic Acid Receptors for Chiral Recognition of Glucose. J Org Chem 2018; 83:15128-15135. [DOI: 10.1021/acs.joc.8b02425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin-E Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Yuan Hong
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Shu-Ying Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Miao Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Xiao-Sheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Jin-Lian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Abstract
The third most abundant polypeptide conformation in nature, the polyproline-II helix, is a polar, extended secondary structure with a local organization stabilized by intercarbonyl interactions within the peptide chain. Here we design a hydrophobic polyproline-II helical peptide based on an oligomeric octahydroindole-2-carboxylic acid scaffold and demonstrate its transmembrane alignment in model lipid bilayers by means of solid-state 19F NMR. As result, we provide a first example of a purely artificial transmembrane peptide with a structural organization that is not based on hydrogen-bonding.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry , Technical University of Berlin , Müller-Breslau-Strasse 10 , Berlin 10623 , Germany
| | - Stephan L Grage
- Institute of Biological Interfaces (IBG-2) , Karlsruhe Institute of Technology (KIT) , P.O.B. 3640, Karlsruhe 76021 , Germany
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2) , Karlsruhe Institute of Technology (KIT) , P.O.B. 3640, Karlsruhe 76021 , Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2) , Karlsruhe Institute of Technology (KIT) , P.O.B. 3640, Karlsruhe 76021 , Germany
- Institute of Organic Chemistry , KIT , Fritz-Haber-Weg 6 , Karlsruhe 76131 , Germany
| | - Nediljko Budisa
- Institute of Chemistry , Technical University of Berlin , Müller-Breslau-Strasse 10 , Berlin 10623 , Germany
| |
Collapse
|
12
|
Kubyshkin V, Budisa N. Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindole-2-carboxylic acid. J Pept Sci 2018; 24:e3076. [PMID: 29582506 DOI: 10.1002/psc.3076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
The polyproline-II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and "unstructured" denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)-octahydroindole-2-carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline-II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan-1-ol/water partitioning and inclusion in detergent micelles of the oligo-Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo-Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline-II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| | - Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Str. 10, Berlin, 10623, Germany
| |
Collapse
|
13
|
Dobitz S, Aronoff MR, Wennemers H. Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Acc Chem Res 2017; 50:2420-2428. [PMID: 28885830 DOI: 10.1021/acs.accounts.7b00340] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nature utilizes large biomolecules to fulfill tasks that require spatially well-defined arrangements at the molecular level such as electron transfer, ligand-receptor interactions, or catalysis. The creation of synthetic molecules that enable precise control over spacing and functionalization provides opportunities across diverse disciplines. Key requirements of functionalizable oligomeric scaffolds include the specific control of their molecular properties where the correct balance of flexibility and rigidity must be maintained in addition to the prerequisite of defined length. These molecules must ideally be equally applicable in aqueous and organic environments, they must be easy to synthesize in a controlled stepwise fashion, and they must be easily modified with a palette of chemical appendages having diverse functionalities. Oligoproline, a peptidic polymer comprised of repeating units of the amino acid proline, is an ideal platform to meet such challenges. Oligoproline derives its characteristic rigidity and well-defined secondary structure from the innate features of proline. It is the only naturally occurring amino acid that has its side-chain cyclized to its α-amino group, generating often-populated trans and cis conformers around the tertiary amide bonds formed in proline oligomers. Oligoprolines are widely applied to define distance on the molecular level as they are capable of serving as both a "molecular ruler" with a defined length and as a "molecular scaffold" with precisely located and predictably oriented substitutions along the polymeric backbone. Our investigations focus on the use of oligoproline as a molecular scaffold. Toward this end, we have investigated the role of solvent upon helical structure of oligoproline, and the effect that substituents on the pyrrolidine ring and the oligomer termini have on the stability of the helix. We have also further explored the molecular characteristics of oligoproline through spectroscopic and crystallographic methods. All of these structural insights laid the basis for implementation of oligoproline in materials science and chemical biology. Within this Account, we highlight the value of oligoprolines for applications in distinctly different research areas. Toward materials chemistry, we have utilized oligoprolines for the size-controlled generation of noble metal nanoparticles, and to probe the role of spatial preorganization of π-systems for molecular self-assembly. Within the biological realm, we have applied oligoprolines to probe the role of distance on G-protein coupled receptor-mediated ligand uptake by cancerous cells and to investigate the effects of charge preorganization on the efficacy of cationic cell-penetrating peptides.
Collapse
Affiliation(s)
- Stefanie Dobitz
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Matthew R. Aronoff
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Helma Wennemers
- ETH Zürich, Laboratory of Organic Chemistry, D-CHAB, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| |
Collapse
|
14
|
Ramesh R, Reddy DS. Quest for Novel Chemical Entities through Incorporation of Silicon in Drug Scaffolds. J Med Chem 2017; 61:3779-3798. [DOI: 10.1021/acs.jmedchem.7b00718] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Remya Ramesh
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| | - D. Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110 025, India
| |
Collapse
|
15
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
16
|
Fanelli R, Berthomieu D, Didierjean C, Doudouh A, Lebrun A, Martinez J, Cavelier F. Hydrophobic α,α-Disubstituted Disilylated TESDpg Induces Incipient 310-Helix in Short Tripeptide Sequence. Org Lett 2017; 19:2937-2940. [DOI: 10.1021/acs.orglett.7b01172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Roberto Fanelli
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Dorothée Berthomieu
- Laboratoire
des Matériaux Avancés pour la Catalyse et la Santé,
Institut Charles Gerhardt, UMR-5253, CNRS, Université Montpellier, ENSCM, 8, rue de l’Ecole Normale, Montpellier 34296 Cedex 5, France
| | - Claude Didierjean
- CRM2,
UMR-7036, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Abdelatif Doudouh
- CRM2,
UMR-7036, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Aurélien Lebrun
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Jean Martinez
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier 34095 Cedex 5, France
| |
Collapse
|
17
|
Madica K, Nadimpally KC, Sanjayan GJ. Novel silaproline (Sip)-incorporated close structural mimics of potent antidepressant peptide drug rapastinel (GLYX-13). Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Nakagawa Y, Chanthamath S, Fujisawa I, Shibatomi K, Iwasa S. Ru(ii)-Pheox-catalyzed Si–H insertion reaction: construction of enantioenriched carbon and silicon centers. Chem Commun (Camb) 2017; 53:3753-3756. [PMID: 28304026 DOI: 10.1039/c7cc01070b] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We established a highly enantioselective Si–H insertion reaction to construct chiral centers at the carbon and silicon atoms, using a Ru(ii)–Pheox catalyst.
Collapse
Affiliation(s)
- Yoko Nakagawa
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Soda Chanthamath
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Ikuhide Fujisawa
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Kazutaka Shibatomi
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi
- Japan
| | - Seiji Iwasa
- Department of Environmental and Life Sciences
- Toyohashi University of Technology
- Toyohashi
- Japan
| |
Collapse
|
19
|
Kubyshkin V, Budisa N. Construction of a polyproline structure with hydrophobic exterior using octahydroindole-2-carboxylic acid. Org Biomol Chem 2017; 15:619-627. [DOI: 10.1039/c6ob02306a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oligomeric octahydroindole-2-carboxilic acid (Oic) forms a stable polyproline-II type helix.
Collapse
Affiliation(s)
- Vladimir Kubyshkin
- Biocatalysis group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| | - Nediljko Budisa
- Biocatalysis group
- Institute of Chemistry
- Technical University of Berlin
- Berlin
- Germany
| |
Collapse
|
20
|
Rémond E, Martin C, Martinez J, Cavelier F. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides. Chem Rev 2016; 116:11654-11684. [DOI: 10.1021/acs.chemrev.6b00122] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Emmanuelle Rémond
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Charlotte Martin
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Florine Cavelier
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
21
|
Siebler C, Maryasin B, Kuemin M, Erdmann RS, Rigling C, Grünenfelder C, Ochsenfeld C, Wennemers H. Importance of dipole moments and ambient polarity for the conformation of Xaa-Pro moieties - a combined experimental and theoretical study. Chem Sci 2015; 6:6725-6730. [PMID: 30154996 PMCID: PMC6090429 DOI: 10.1039/c5sc02211h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 12/04/2022] Open
Abstract
NMR spectroscopic studies with a series of proline derivatives revealed that the polarity of the environment has a significant effect on the trans : cis isomer ratio of Xaa-Pro bonds. Computational studies showed that this effect is due to differences in the overall dipole moments of trans and cis conformers. Comparisons between the conformational properties of amide and ester derivatives revealed an intricate balance between polarity effects and n → π* interactions of adjacent carbonyl groups. The findings have important implications for protein folding and signaling as well as the performance of proline-based stereoselective catalysts.
Collapse
Affiliation(s)
- Christiane Siebler
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Boris Maryasin
- Chair of Theoretical Chemistry , Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Michael Kuemin
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Roman S Erdmann
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Carla Rigling
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Claudio Grünenfelder
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry , Department of Chemistry , University of Munich (LMU) , Butenandtstr. 7 , D-81377 Munich , Germany
- Center of Integrated Protein Science (CIPSM) at the Department of Chemistry , University of Munich (LMU) , Butenandtstr. 5-13 , D-81377 Munich , Germany
| | - Helma Wennemers
- Laboratory of Organic Chemistry , D-CHAB , ETH Zürich , Vladimir Prelog Weg 3 , CH-8093 Zürich , Switzerland .
| |
Collapse
|
22
|
Fanelli R, Besserer-Offroy É, René A, Côté J, Tétreault P, Collerette-Tremblay J, Longpré JM, Leduc R, Martinez J, Sarret P, Cavelier F. Synthesis and Characterization in Vitro and in Vivo of (l)-(Trimethylsilyl)alanine Containing Neurotensin Analogues. J Med Chem 2015; 58:7785-95. [DOI: 10.1021/acs.jmedchem.5b00841] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Roberto Fanelli
- Institut des Biomolécules
Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier,
ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Élie Besserer-Offroy
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Adeline René
- Institut des Biomolécules
Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier,
ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Jérôme Côté
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Pascal Tétreault
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jasmin Collerette-Tremblay
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jean-Michel Longpré
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Richard Leduc
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Jean Martinez
- Institut des Biomolécules
Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier,
ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Philippe Sarret
- Department
of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke,
Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Florine Cavelier
- Institut des Biomolécules
Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier,
ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| |
Collapse
|
23
|
Fanelli R, Salah KBH, Inguimbert N, Didierjean C, Martinez J, Cavelier F. Access to α,α-Disubstituted Disilylated Amino Acids and Their Use in Solid-Phase Peptide Synthesis. Org Lett 2015; 17:4498-501. [DOI: 10.1021/acs.orglett.5b02175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Roberto Fanelli
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier34095 Cedex 5, France
| | - Khoubaib Ben Haj Salah
- Université de Perpignan Via Domitia, CRIOBE USR
3278, 58 avenue P. Alduy Bât T, 66860 Perpignan, France
| | - Nicolas Inguimbert
- Université de Perpignan Via Domitia, CRIOBE USR
3278, 58 avenue P. Alduy Bât T, 66860 Perpignan, France
| | - Claude Didierjean
- CRM2
(UMR UL-CNRS 7036) Faculté des Sciences et Technologies, Université de Lorraine, 70239 Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy, France
| | - Jean Martinez
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier34095 Cedex 5, France
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, Montpellier34095 Cedex 5, France
| |
Collapse
|
24
|
Garbuio L, Lewandowski B, Wilhelm P, Ziegler L, Yulikov M, Wennemers H, Jeschke G. Shape Persistence of Polyproline II Helical Oligoprolines. Chemistry 2015; 21:10747-53. [PMID: 26089127 DOI: 10.1002/chem.201501190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 11/06/2022]
Abstract
Oligoprolines are commonly used as molecular scaffolds. Past studies on the persistence length of their secondary structure, the polyproline II (PPII) helix, and on the fraction of backbone cis amide bonds have provided conflicting results. We resolved this debate by studying a series of spin-labeled proline octadecamers with EPR spectroscopy. Distance distributions between an N-terminal Gd(III) -DOTA (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) label and a nitroxide label at one of five evenly spaced backbone sites allowed us to discriminate between the flexibility of the PPII helix and the cis amide contributions. An upper limit of 2 % cis amide bonds per residue was found in a 7:3 (v/v) water/glycerol mixture, whereas cis amides were not observed in trifluoroethanol. Extrapolation of Monte Carlo models from the glass transition to ambient temperature predicts a persistence length of ≈3-3.5 nm in both solvents. The method is generally applicable to any type of oligomer for which the persistence length is of interest.
Collapse
Affiliation(s)
- Luca Garbuio
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland)
| | - Bartosz Lewandowski
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Patrick Wilhelm
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Ludmila Ziegler
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Maxim Yulikov
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland).
| | - Helma Wennemers
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland).
| | - Gunnar Jeschke
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland).
| |
Collapse
|
25
|
Stereoselective synthesis of unsaturated α-amino acids. Amino Acids 2015; 47:1107-15. [DOI: 10.1007/s00726-015-1934-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/30/2015] [Indexed: 12/22/2022]
|
26
|
Crisma M, De Zotti M, Formaggio F, Peggion C, Moretto A, Toniolo C. Handedness preference and switching of peptide helices. Part II: Helices based on noncodedα-amino acids. J Pept Sci 2015; 21:148-77. [DOI: 10.1002/psc.2743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/27/2022]
Affiliation(s)
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova Italy
| | - Fernando Formaggio
- ICB; Padova Unit; CNR Padova Italy
- Department of Chemistry; University of Padova; Padova Italy
| | | | - Alessandro Moretto
- ICB; Padova Unit; CNR Padova Italy
- Department of Chemistry; University of Padova; Padova Italy
| | - Claudio Toniolo
- ICB; Padova Unit; CNR Padova Italy
- Department of Chemistry; University of Padova; Padova Italy
| |
Collapse
|
27
|
Aillard B, Kilburn JD, Blaydes JP, Tizzard GJ, Findlow S, Werner JM, Bloodworth S. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-l-proline type II helix conformation. Org Biomol Chem 2015; 13:4562-9. [DOI: 10.1039/c5ob00180c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stereoselective synthesis of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane mimic of Xaa-trans-Pro in poly-l-proline type II helix conformation is reported.
Collapse
Affiliation(s)
- Boris Aillard
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
- UK
| | - Jeremy D. Kilburn
- School of Biological and Chemical Sciences
- Queen Mary
- University of London
- London
- UK
| | - Jeremy P. Blaydes
- Cancer Sciences
- Faculty of Medicine
- University of Southampton
- Southampton
- UK
| | - Graham J. Tizzard
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
- UK
| | - Stuart Findlow
- Centre for Biological Sciences
- University of Southampton
- Southampton
- UK
| | - Jörn M. Werner
- Centre for Biological Sciences
- University of Southampton
- Southampton
- UK
| | - Sally Bloodworth
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- Southampton
- UK
| |
Collapse
|