1
|
Biswas J, Kulbir F, Bhardwaj P, Ghosh S, Chandra Sahoo S, Apfel UP, Kumar P. Acid-catalyzed Transformation of Nitrite to Nitric Oxide on Copper(II)-Cobalt(II) Centers in a Bimetallic Complex. Chemistry 2024; 30:e202402295. [PMID: 38985519 DOI: 10.1002/chem.202402295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Nitrite (NO2 -) serves as a pool of nitric oxide (NO) in biological systems under hypoxic conditions, and it is transformed to NO by nitrite reductase (NiR) enzyme in the presence of acid (H+ ions). However, NO synthases (NOSs) generate NO via L-arginine oxidation in normoxic conditions. Previously, acid-induced NO2 - reduction chemistry was modeled on mono-metallic 3d-metals, generating metal-nitrosyls or NO(g) with H2O or H2O2 products. Herein, to understand the relative potency of a bimetallic system, we report the acid-induced reductive conversion of η2-bound NO2 - to NO on CuII-CoII centers of a hetero-bimetallic CuII-nitrito-CoII complex, [(LN8H)CuII-NO2 --CoII]3+ (CuII-NO2 --CoII, 2) bearing an octadentate N8-cryptand ligand (LN8H). The CuII-NO2 --CoII generates [CuII(LN8H)CoII]4+ (1) upon reaction with one equiv. acid (HClO4, H+ ions source) with NO(g) via a presumed transient nitrousacid (ONOH) intermediate species. Likewise, this NO2 - reduction was found to form H2O, which is believed to be from the decomposition of H2O2, an intermediate species. In addition, complex 2, in the presence of more than one equiv. H+ ions also showed the formation of NO(g) with H2O. Mechanistic investigations, using 15N-labeled-15NO2 -, 18O-labeled-18O14N16O- and 2H-labeled-DClO4 (D+ source), revealed that the N-atom and O-atom in the 14/15NO and 14N18O gases are derived from NO2 - ligand and H-atom in H2O derived from H+-source, respectively.
Collapse
Affiliation(s)
- Jyotiprokash Biswas
- Ruhr-Universität Bochum, Inorganic Chemistry I Universität Strasse 150, NC 1/71a, 44801, Bochum, Germany
| | - Fnm/ Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | | | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Inorganic Chemistry I Universität Strasse 150, NC 1/71a, 44801, Bochum, Germany
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
2
|
Kulbir, Das S, Devi T, Ghosh S, Chandra Sahoo S, Kumar P. Acid-induced nitrite reduction of nonheme iron(ii)-nitrite: mimicking biological Fe-NiR reactions. Chem Sci 2023; 14:2935-2942. [PMID: 36937601 PMCID: PMC10016336 DOI: 10.1039/d2sc06704h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nitrite reductase (NiR) catalyzes nitrite (NO2 -) to nitric oxide (NO) transformation in the presence of an acid (H+ ions/pH) and serves as a critical step in NO biosynthesis. In addition to the NiR enzyme, NO synthases (NOSs) participate in NO production. The chemistry involved in the catalytic reduction of NO2 -, in the presence of H+, generates NO with a H2O molecule utilizing two H+ + one electron from cytochromes and is believed to be affected by the pH. Here, to understand the effect of H+ ions on NO2 - reduction, we report the acid-induced NO2 - reduction chemistry of a nonheme FeII-nitrito complex, [(12TMC)FeII(NO2 -)]+ (FeII-NO2 -, 2), with variable amounts of H+. FeII-NO2 - upon reaction with one-equiv. of acid (H+) generates [(12TMC)Fe(NO)]2+, {FeNO}7 (3) with H2O2 rather than H2O. However, the amount of H2O2 decreases with increasing equivalents of H+ and entirely disappears when H+ reaches ≅ two-equiv. and shows H2O formation. Furthermore, we have spectroscopically characterized and followed the formation of H2O2 (H+ = one-equiv.) and H2O (H+ ≅ two-equiv.) and explained why bio-driven NiR reactions end with NO and H2O. Mechanistic investigations, using 15N-labeled-15NO2 - and 2H-labeled-CF3SO3D (D+ source), revealed that the N atom in the {Fe14/15NO}7 is derived from the NO2 - ligand and the H atom in H2O or H2O2 is derived from the H+ source, respectively.
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
3
|
Schön F, Biebl F, Greb L, Leingang S, Grimm‐Lebsanft B, Teubner M, Buchenau S, Kaifer E, Rübhausen MA, Himmel H. On the Metal Cooperativity in a Dinuclear Copper–Guanidine Complex for Aliphatic C−H Bond Cleavage by Dioxygen. Chemistry 2019; 25:11257-11268. [DOI: 10.1002/chem.201901906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Florian Schön
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian Biebl
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Simone Leingang
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Benjamin Grimm‐Lebsanft
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Melissa Teubner
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Sören Buchenau
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael A. Rübhausen
- Institut für Nanostruktur- und FestkörperphysikUniversität Hamburg and Center for Free Electron Laser Science Luruper Chaussee 149 22761 Hamburg Germany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
4
|
Bete SC, Würtele C, Otte M. A bio-inspired imidazole-functionalised copper cage complex. Chem Commun (Camb) 2019; 55:4427-4430. [DOI: 10.1039/c9cc00437h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An endo-functionalized cage is presented that upon copper(i) complexation assembles to a well-defined structural and catalytically active biomimetic model compound.
Collapse
Affiliation(s)
- Sarah C. Bete
- Institut für Anorganische Chemie
- Universität Göttingen
- Tammannstraße 4
- 37077 Göttingen
- Germany
| | - Christian Würtele
- Institut für Anorganische Chemie
- Universität Göttingen
- Tammannstraße 4
- 37077 Göttingen
- Germany
| | - Matthias Otte
- Institut für Anorganische Chemie
- Universität Göttingen
- Tammannstraße 4
- 37077 Göttingen
- Germany
| |
Collapse
|
5
|
Coordination chemistry of mononuclear ruthenium complexes bearing versatile 1,8-naphthyridine units: Utilization of specific reaction sites constructed by the secondary coordination sphere. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Isaschar-Ovdat S, Fishman A. Mechanistic insights into tyrosinase-mediated crosslinking of soy glycinin derived peptides. Food Chem 2017; 232:587-594. [PMID: 28490115 DOI: 10.1016/j.foodchem.2017.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Tyrosinase from Bacillus megaterium (TyrBm) was previously used to modulate soy glycinin-based emulsions and gels. To study the crosslinking mechanism, TyrBm oxidation of three tyrosine-containing octapeptides derived from glycinin was analyzed by oxygen consumption measurements, absorbance and mass spectrometry. A significant lag period and lower activity were measured when tyrosine was located in the middle of the peptide chain. Mass spectrometry analysis showed that these peptides are crosslinked via the oxidative quinone ring of the tyrosine residue by aryl-alkylamine addition or aryloxy radical coupling to form di-DOPA (3,4-dihydroxyphenylalanine). In contrast, peptides containing tyrosine in the N- or C-terminus, were rapidly oxidized forming multimer units within thirty minutes. When small amino acids were adjacent to the terminus tyrosine, formation of di-tyrosine was observed. This work confirms that protein crosslinking by TyrBm occurs by several chemical mechanisms and may assist in designing peptide-based inhibitors for the food and cosmetic applications.
Collapse
Affiliation(s)
- Sivan Isaschar-Ovdat
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
7
|
Hamann JN, Herzigkeit B, Jurgeleit R, Tuczek F. Small-molecule models of tyrosinase: From ligand hydroxylation to catalytic monooxygenation of external substrates. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Oyama D, Yamanaka T, Abe R, Takase T. Ruthenium complexes bearing a tridentate polypyridyl ligand with non-coordinating donor atoms: Construction of a specific coordination environment involving noncovalent interactions. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Li ST, Braun-Cula B, Hoof S, Dürr M, Ivanović-Burmazović I, Limberg C. Ligands with Two Different Binding Sites and O2Reactivity of their Copper(I) Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sin Ting Li
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Santina Hoof
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Maximilian Dürr
- Universität Erlangen-Nürnberg; Lehrstuhl für Bioanorganische Chemie; Egerlandstraße 1 91058 Erlangen Germany
| | - Ivana Ivanović-Burmazović
- Universität Erlangen-Nürnberg; Lehrstuhl für Bioanorganische Chemie; Egerlandstraße 1 91058 Erlangen Germany
| | - Christian Limberg
- Institut für Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
10
|
Yaremenko IA, Vil’ VA, Demchuk DV, Terent’ev AO. Rearrangements of organic peroxides and related processes. Beilstein J Org Chem 2016; 12:1647-748. [PMID: 27559418 PMCID: PMC4979652 DOI: 10.3762/bjoc.12.162] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/14/2016] [Indexed: 12/17/2022] Open
Abstract
This review is the first to collate and summarize main data on named and unnamed rearrangement reactions of peroxides. It should be noted, that in the chemistry of peroxides two types of processes are considered under the term rearrangements. These are conventional rearrangements occurring with the retention of the molecular weight and transformations of one of the peroxide moieties after O-O-bond cleavage. Detailed information about the Baeyer-Villiger, Criegee, Hock, Kornblum-DeLaMare, Dakin, Elbs, Schenck, Smith, Wieland, and Story reactions is given. Unnamed rearrangements of organic peroxides and related processes are also analyzed. The rearrangements and related processes of important natural and synthetic peroxides are discussed separately.
Collapse
Affiliation(s)
- Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry V Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
11
|
Kim HY, Takizawa S, Oh K. Copper-catalyzed divergent oxidative pathways of 2-naphthol derivatives: ortho-naphthoquinones versus 2-BINOLs. Org Biomol Chem 2016; 14:7191-6. [DOI: 10.1039/c6ob01183g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Divergent reaction pathways of 2-naphthol derivatives to either ortho-naphthoquinones or BINOLs have been achieved using two different Cu(ii) catalyst systems.
Collapse
Affiliation(s)
- H. Y. Kim
- Center for Metareceptome Research
- College of Pharmacy
- Chung-Ang University
- Seoul 156-756
- Republic of Korea
| | - S. Takizawa
- The Institute of Scientific and Industrial Research
- Osaka University
- Ibaraki
- Japan
| | - K. Oh
- Center for Metareceptome Research
- College of Pharmacy
- Chung-Ang University
- Seoul 156-756
- Republic of Korea
| |
Collapse
|
12
|
Wilfer C, Liebhäuser P, Hoffmann A, Erdmann H, Grossmann O, Runtsch L, Paffenholz E, Schepper R, Dick R, Bauer M, Dürr M, Ivanović-Burmazović I, Herres-Pawlis S. Efficient Biomimetic Hydroxylation Catalysis with a Bis(pyrazolyl)imidazolylmethane Copper Peroxide Complex. Chemistry 2015; 21:17639-49. [PMID: 26458073 DOI: 10.1002/chem.201501685] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/08/2022]
Abstract
Bis(pyrazolyl)methane ligands are excellent components of model complexes used to investigate the activity of the enzyme tyrosinase. Combining the N donors 3-tert-butylpyrazole and 1-methylimidazole results in a ligand that is capable of stabilising a (μ-η(2) :η(2) )-dicopper(II) core that resembles the active centre of tyrosinase. UV/Vis spectroscopy shows blueshifted UV bands in comparison to other known peroxo complexes, due to donor competition from different ligand substituents. This effect was investigated with the help of theoretical calculations, including DFT and natural transition orbital analysis. The peroxo complex acts as a catalyst capable of hydroxylating a variety of phenols by using oxygen. Catalytic conversion with the non-biological phenolic substrate 8-hydroxyquinoline resulted in remarkable turnover numbers. In stoichiometric reactions, substrate-binding kinetics was observed and the intrinsic hydroxylation constant, kox , was determined for five phenolates. It was found to be the fastest hydroxylation model system determined so far, reaching almost biological activity. Furthermore, Hammett analysis proved the electrophilic character of the reaction. This sheds light on the subtle role of donor strength and its influence on hydroxylation activity.
Collapse
Affiliation(s)
- Claudia Wilfer
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München (Germany).,Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen (Germany)
| | - Patricia Liebhäuser
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen (Germany)
| | - Alexander Hoffmann
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen (Germany)
| | - Hannes Erdmann
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München (Germany)
| | - Oleg Grossmann
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München (Germany)
| | - Leander Runtsch
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München (Germany)
| | - Eva Paffenholz
- Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen (Germany)
| | - Rahel Schepper
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn (Germany)
| | - Regina Dick
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn (Germany)
| | - Matthias Bauer
- Department Chemie, Universität Paderborn, Warburger Straße 100, 33098 Paderborn (Germany)
| | - Maximilian Dürr
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen (Germany)
| | - Ivana Ivanović-Burmazović
- Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen (Germany)
| | - Sonja Herres-Pawlis
- Department für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München (Germany). .,Institut für Anorganische Chemie, Rheinisch-Westfälische Technische Hochschule Aachen, Landoltweg 1, 52074 Aachen (Germany).
| |
Collapse
|
13
|
Dey SK, Mukherjee A. Investigation of 3d-transition metal acetates in the oxidation of substituted dioxolene and phenols. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Askari MS, Esguerra KVN, Lumb JP, Ottenwaelder X. A Biomimetic Mechanism for the Copper-Catalyzed Aerobic Oxygenation of 4-tert-Butylphenol. Inorg Chem 2015; 54:8665-72. [PMID: 26302341 DOI: 10.1021/acs.inorgchem.5b01297] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlling product selectivity during the catalytic aerobic oxidation of phenols remains a significant challenge that hinders reaction development. This work provides a mechanistic picture of a Cu-catalyzed, aerobic functionalization of phenols that is selective for phenoxy-coupled ortho-quinones. We show that the immediate product of the reaction is a Cu(II)-semiquinone radical complex and reveal that ortho-oxygenation precedes oxidative coupling. This complex is the resting state of the Cu catalyst during turnover at room temperature. A mechanistic study of the formation of this complex at low temperatures demonstrates that the oxygenation pathway mimics the dinuclear Cu enzyme tyrosinase by involving a dinuclear side-on peroxodicopper(II) oxidant. Unlike the enzyme, however, the rate-limiting step of the ortho-oxygenation reaction is the self-assembly of the oxidant from Cu(I) and O2. We provide details for all steps in the cycle and demonstrate that turnover is contingent upon proton-transfer events that are mediated by a slight excess of ligand. Finally, our knowledge of the reaction mechanism can be leveraged to diversify the reaction outcome. Thus, uncoupled ortho-quinones are favored in polar, coordinating media, highlighting unusually high levels of chemoselectivity for a catalytic aerobic oxidation of a phenol.
Collapse
Affiliation(s)
- Mohammad S Askari
- Department of Chemistry and Biochemistry, Concordia University , Montreal, QC H4B 1R6, Canada
| | | | - Jean-Philip Lumb
- Department of Chemistry, McGill University , Montreal, QC H3A 0B8, Canada
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University , Montreal, QC H4B 1R6, Canada
| |
Collapse
|