1
|
Zessin M, Meleshin M, Hilscher S, Schiene-Fischer C, Barinka C, Jung M, Schutkowski M. Continuous Fluorescent Sirtuin Activity Assay Based on Fatty Acylated Lysines. Int J Mol Sci 2023; 24:ijms24087416. [PMID: 37108579 PMCID: PMC10138348 DOI: 10.3390/ijms24087416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Sebastian Hilscher
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Cyril Barinka
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
2
|
Kawaguchi M, Nakajima Y, Nakagawa H. Development of Sirtuin Fluorescence Probes and Medicinal Chemistry Research Targeting SIRT Family. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
He H, Song A. Design of Fluorogenic Probe Based on Intramolecular Condensation for Specific Detection of HDAC3. Chem Asian J 2022; 17:e202200575. [PMID: 35765155 DOI: 10.1002/asia.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Indexed: 11/10/2022]
Abstract
It is crucial to develop fluorogenic probes for selective targeting of HDACs to explore the roles of HDACs in the tumor onset and progression as well as HDAC-related drug development. However, considerable non-specific signals were produced by spontaneous hydrolysis and undesirable intermolecular attack of the unstable caging moiety in the detection of HDACs with previous probes. To improve the detection specificity, we proposed an intramolecular condensation strategy by the replacement of the traditional acetamide moiety with a trans-enamide unit. Upon deacetylation by HDACs, rapid intramolecular condensation reaction between newly formed terminal aldehyde and hydrazine moiety would occur to afford highly fluorescent hydrazone product. Systematic studies demonstrated that the probe exhibited an extraordinary selectivity for HDAC3 over other HDAC isoforms and interfering substances. The stability and specificity of the indicator make it a powerful tool for HDAC3 activity detection and HDAC3-related drug development.
Collapse
Affiliation(s)
- Huimin He
- Northwestern Polytechnic University, Institute of Medical Research, CHINA
| | - Aiguo Song
- Northwestern Polytechnical University, Institute of Medical Research, 127 West Youyi Road, 710072, Xi'an, CHINA
| |
Collapse
|
4
|
Wang P, Chen D, An JX, Lin SX, Liu T, Li Y, Chen L, He B. Development of a single-step fluorogenic sirtuin assay and its applications for high-throughput screening. Org Biomol Chem 2022; 20:1243-1252. [PMID: 35050299 DOI: 10.1039/d1ob02347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sirtuins (SIRTs) are a class of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases. Since SIRTs have different subcellular locations and different preferences for deacylation activity, SIRTs are not only highly gaining significance in biological functions but also implications in human diseases. Therefore, it is valuable to establish a high-throughput screening method for the rapid and accurate discovery of SIRT modulators. In this study, we designed and synthesized small molecules 4a-d as fluorogenic probes based on the different lysine substrates of SIRTs, which can be recognized and catalyzed by SIRTs and then spontaneous intramolecular transesterification can give the fluorescence. We have undertaken a comprehensive study of these fluorogenic probes with different SIRTs for assay optimization, validation, kinetics, parameters, and applications of high-throughput screening formats. We envision that these probes will provide useful and powerful tools for the highly efficient discovery of more SIRT inhibitors.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Jian-Xiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Shu-Xian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 50004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
5
|
Ishiuchi K, Nagumo A, Kawaguchi M, Furuyashiki H, Nakagawa H, Hirose D. Stereochemistries of Mariannamides C and D, Two Lipohexapeptides, Isolated from Mariannaea elegans NBRC102301. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zessin M, Meleshin M, Simic Z, Kalbas D, Arbach M, Gebhardt P, Melesina J, Liebscher S, Bordusa F, Sippl W, Barinka C, Schutkowski M. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)-based fluorescence quencher. Bioorg Chem 2021; 117:105425. [PMID: 34695733 DOI: 10.1016/j.bioorg.2021.105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/28/2022]
Abstract
Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Zeljko Simic
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Diana Kalbas
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Miriam Arbach
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Philip Gebhardt
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jelena Melesina
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Sandra Liebscher
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Frank Bordusa
- Department of Natural Product Biochemistry, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
7
|
Roopa, Priya B, Bhalla V, Kumar M, Kumar N. Fluorescent molecular probe-based activity and inhibition monitoring of histone deacetylases. Chem Commun (Camb) 2021; 57:11153-11164. [PMID: 34613324 DOI: 10.1039/d1cc04034k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive studies in recent decades have revealed that gene expression regulation is not limited to genetic mutations but also to processes that do not alter the genetic sequence. Post-translational histone modification is one of these processes in addition to DNA or RNA modifications. Histone modifications are essential in controlling histone functions and play a vital role in cellular gene expression. The reversible histone acetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is an example of such modifications. HDACs are involved in the deacetylation of histones and lead to the termination of gene expression. Although this cellular process is essential, upregulation of HDACs is found in numerous cancers. Therefore, research related to the activity and inhibition monitoring of HDACs is necessary to gain profound knowledge of these enzymes and evaluate the success of the therapeutic approach. In this perspective, methodology derived from fluorescent molecular probes is one of the preferable methods. Herein, we describe fluorescent probes developed to target HDACs by considering their activity and inhibition characteristics.
Collapse
Affiliation(s)
- Roopa
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala 144603, Punjab, India.
| | - Bhanu Priya
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala 144603, Punjab, India.
| | - Vandana Bhalla
- Department of Chemistry, UGC Center of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Center of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Naresh Kumar
- Department of Chemistry, SRM University, Delhi-NCR, Sonepat-131029, Haryana, India.
| |
Collapse
|
8
|
Nakajima Y, Kawaguchi M, Ieda N, Nakagawa H. A Set of Highly Sensitive Sirtuin Fluorescence Probes for Screening Small-Molecular Sirtuin Defatty-Acylase Inhibitors. ACS Med Chem Lett 2021; 12:617-624. [PMID: 33859801 DOI: 10.1021/acsmedchemlett.1c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022] Open
Abstract
Human sirtuins (SIRT1-7) regulate not only deacetylation but also deacylation of fatty acid-derived acyl moieties (defatty-acylation) at the ε-amino group of lysine residues. SIRT-subtype-specific defatty-acylase activity modulators are needed for detailed investigation of the biological roles of these enzymes, and to find suitable small molecules, we require appropriate screening systems. Here, we designed and synthesized a set of SIRT defatty-acylase activity probes with various quencher moieties and peptide sequences based on our previously developed one-step FRET-based SIRT probe SFP3, using improved methodology. Scanning of this set of probes with SIRT isozymes revealed that certain probe/isozyme combinations showed especially high responses. To illustrate the utility of the combinations thus identified, we applied compound 18/SIRT2 for inhibitor screening of a large chemical library. This enabled us to discover a new small molecule SIRT2-specific defatty-acylase inhibitor.
Collapse
Affiliation(s)
- Yuya Nakajima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
9
|
Hori Y, Nishiura M, Tao T, Baba R, Bull SD, Kikuchi K. Fluorogenic probes for detecting deacylase and demethylase activity towards post-translationally-modified lysine residues. Chem Sci 2021; 12:2498-2503. [PMID: 34164016 PMCID: PMC8179349 DOI: 10.1039/d0sc06551j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reversible enzymatic post-translational modification of the ε-amino groups of lysine residues (e.g. N-acylation reactions) plays an important role in regulating the cellular activities of numerous proteins. This study describes how enzyme catalyzed N-deprotection of lysine residues of non-fluorescent peptide-coumarin probes can be used to generate N-deprotected peptides that undergo spontaneous O- to N-ester transfer reactions (uncatalyzed) to generate a highly fluorescent N-carbamoyl peptide. This enables detection of enzyme catalyzed N-deacetylation, N-demalonylation, N-desuccinylation and N-demethylation reactions activities towards the N-modified lysine residues of these probes using simple ‘turn on’ fluorescent assays. We developed “turn-on” fluorescent probes that detect enzymatic lysine deacylation and demethylation critical for epigenetic and other cellular phenomena, using intramolecular O- to N-ester transfer reactions.![]()
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan .,IFReC, Osaka University Suita Osaka 565-0871 Japan
| | - Miyako Nishiura
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Tomomi Tao
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Reisuke Baba
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Steven D Bull
- Department of Chemistry, University of Bath Bath BA27AY UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan .,IFReC, Osaka University Suita Osaka 565-0871 Japan.,Quantum Information and Quantum Biology Division, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
10
|
Kutil Z, Mikešová J, Zessin M, Meleshin M, Nováková Z, Alquicer G, Kozikowski A, Sippl W, Bařinka C, Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS OMEGA 2019; 4:19895-19904. [PMID: 31788622 PMCID: PMC6882135 DOI: 10.1021/acsomega.9b02808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/18/2019] [Indexed: 05/05/2023]
Abstract
Histone deacetylase 11 (HDAC11) preferentially removes fatty acid residues from lysine side chains in a peptide or protein environment. Here, we report the development and validation of a continuous fluorescence-based activity assay using an internally quenched TNFα-derived peptide derivative as a substrate. The threonine residue in the +1 position was replaced by the quencher amino acid 3'-nitro-l-tyrosine and the fatty acyl moiety substituted by 2-aminobenzoylated 11-aminoundecanoic acid. The resulting peptide substrate enables fluorescence-based direct and continuous readout of HDAC11-mediated amide bond cleavage fully compatible with high-throughput screening formats. The Z'-factor is higher than 0.85 for the 15 μM substrate concentration, and the signal-to-noise ratio exceeds 150 for 384-well plates. In the absence of NAD+, this substrate is specific for HDAC11. Reevaluation of inhibitory data using our novel assay revealed limited potency and selectivity of known HDAC inhibitors, including Elevenostat, a putative HDAC11-specific inhibitor.
Collapse
Affiliation(s)
- Zsófia Kutil
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikešová
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Matthes Zessin
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marat Meleshin
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
| | - Zora Nováková
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Glenda Alquicer
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Alan Kozikowski
- StarWise
Therapeutics LLC, 505
S Rosa Road, Suite 27, Madison, Wisconsin 53719-1235, United States
| | - Wolfgang Sippl
- Department
of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Cyril Bařinka
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
- E-mail: . Tel.: +420-325-873-777 (C.B.)
| | - Mike Schutkowski
- Department
of Enzymology, Institute of Biochemistry and Biotechnology, Charles
Tanford Protein Centre, Martin Luther University
Halle-Wittenberg, Kurt-Mothes-Straße
3a, 06120 Halle
(Saale), Germany
- E-mail: . Tel.: +49-345-5524-828 (M.S.)
| |
Collapse
|
11
|
Zessin M, Kutil Z, Meleshin M, Nováková Z, Ghazy E, Kalbas D, Marek M, Romier C, Sippl W, Bařinka C, Schutkowski M. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry 2019; 58:4777-4789. [PMID: 31682411 DOI: 10.1021/acs.biochem.9b00786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 μM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.
Collapse
Affiliation(s)
- Matthes Zessin
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zsófia Kutil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Marat Meleshin
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Zora Nováková
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Diana Kalbas
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Martin Marek
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Christophe Romier
- Departement de Biologie Structurale Integrative, Institut de Genetique et Biologie Moleculaire et Cellulaire (IGBMC) , Universite de Strasbourg (UDS), CNRS, INSERM , 1 rue Laurent Fries, B.P. 10142 , 67404 Illkirch Cedex IGBMC, France
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| | - Cyril Bařinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV , Prumyslova 595 , 252 50 Vestec , Czech Republic
| | - Mike Schutkowski
- Department of Enzymology, Institute of Biochemistry and Biotechnology, Charles-Tanford-Protein Center , Martin-Luther-University Halle-Wittenberg , 06120 Halle/Saale , Germany
| |
Collapse
|
12
|
Hori Y, Kikuchi K. Chemical Tools with Fluorescence Switches for Verifying Epigenetic Modifications. Acc Chem Res 2019; 52:2849-2857. [PMID: 31577127 DOI: 10.1021/acs.accounts.9b00349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epigenetic DNA and histone modifications alter chromatin conformation and regulate gene expression. A major DNA modification is methylation, which is catalyzed by DNA methyltransferase (Dnmt) and results in gene suppression. Compared to DNA, histones undergo a greater variety of modification types, one of which is the acetylation of lysine. While histone acetyltransferase (HAT) catalyzes acetylation and activates gene expression, histone deacetylase (HDAC) removes the modification and causes gene suppression. As precise regulation of these epigenetic marks on DNA and histones is critical for cellular functions, their dysregulation causes various diseases including cancer, metabolic syndromes, immune diseases, and psychiatric diseases. Therefore, elucidation of the epigenetic phenomena is important not only in the field of biology but also in medical and pharmaceutical sciences. Furthermore, this field is also attracting industrial interest, because small-molecule inhibitors modulate enzymatic activity for epigenetic modification and are used for cancer treatment. Under these circumstances, various methods for detecting epigenetic modifications have been developed. However, most methods require cell lysis, which is not suitable for real-time detection of enzymatic activity. Since fluorescent probes are attractive chemical tools to solve this issue, chemists made considerable efforts to create fluorescent probes for epigenetics. To date, we have particularly focused on HDAC activity and DNA methylation and have developed fluorescent probes for their detection. The first part of this review describes our recent efforts to develop fluorescent probes for detecting HDAC activity. Since the discovery of HDAC activity in the late 1960s, no fluorescent probe has been developed that can detect enzymatic reactions in a simple, one-step procedure despite its biological and medical importance. We designed fluorescent probes to overcome this limitation by devising two different types of fluorescence switching mechanisms, which are based on aggregation-induced emission (AIE) and intramolecular transesterification. Using these probes, we detected HDAC activity simply by mixing the probes and HDAC for the first time. In the second part, a hybrid approach using a protein-labeling system was employed to detect DNA methylation in living cells. So far, live-cell detection of DNA methylation was conducted by imaging the localization of Fluorescent Proteins (FPs) fused to a methylated DNA-binding domain. However, FP lacks a fluorescence switch and emits fluorescence without binding to methylated DNA. We created a hybrid probe that comprises a fluorogen and a protein and enhances fluorescence intensity upon binding to methylated DNA. To create the hybrid probe, we applied our protein labeling system using the PYP-tag that we previously developed. This method successfully visualized methylated DNA in living cells and verified its dynamics during cell division. Both of the above-mentioned fluorescent probes have great potential for use not only in HDAC and DNA methylation but also in other epigenetics-associated modifications. For example, the mechanism of the HDAC probes can be used to detect histone demethylation. The hybrid probe can be converted to a sensor for imaging acetylated or methylated histones. In this review, we mainly describe how we designed the probes using chemical principles and solved the current obstacles with the probe design and discuss the future prospects of these probes.
Collapse
Affiliation(s)
- Yuichiro Hori
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering and Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Halloran MW, Lumb JP. Recent Applications of Diazirines in Chemical Proteomics. Chemistry 2019; 25:4885-4898. [PMID: 30444029 DOI: 10.1002/chem.201805004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/12/2018] [Indexed: 02/06/2023]
Abstract
The elucidation of substrate-protein interactions is an important component of the drug development process. Due to the complexity of native cellular environments, elucidating these fundamental biochemical interactions remains challenging. Photoaffinity labeling (PAL) is a versatile technique that can provide insight into ligand-target interactions. By judicious modification of substrates with a photoreactive group, PAL creates a covalent crosslink between a substrate and its biological target following UV-irradiation. Among the commonly employed photoreactive groups, diazirines have emerged as the gold standard. In this Minireview, recent developments in the field of diazirine-based photoaffinity labeling will be discussed, with emphasis being placed on their applications in chemical proteomic studies.
Collapse
Affiliation(s)
- Matthew W Halloran
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
14
|
Smart fluorescent probes for in situ imaging of enzyme activity: design strategies and applications. Future Med Chem 2018; 10:2729-2744. [PMID: 30518266 DOI: 10.4155/fmc-2018-0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Enzymes play critical roles in the physiological and pathological processes of living systems. To provide detailed pictures of enzyme activity at the molecular and cellular levels, interdisciplinary studies of chemistry and biology have led to the emergence of many smart fluorescent probes, which emit fluorescence or show a shifted signal only upon interaction with their targets. With distinct advantage of a higher signal-to-noise ratio than traditional ‘always on’ probes, smart fluorescent probes enable sensitive detection of enzymes with clinical significance. In this review, we summarize the design strategies and selected applications of smart fluorescent probes for in situ imaging of enzyme activity. Current challenges and future developments in this field are also discussed.
Collapse
|
15
|
Żądło-Dobrowolska A, Szczygieł M, Koszelewski D, Paprocki D, Ostaszewski R. Self-immolative versatile fluorogenic probes for screening of hydrolytic enzyme activity. Org Biomol Chem 2018; 14:9146-9150. [PMID: 27714153 DOI: 10.1039/c6ob01488g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enzyme triggered probes with a self-immolative linker for rapid and sensitive hydrolase detection through a cascade reaction have been reported. Their utility was proved by the preparation of three model compounds and their evaluation as enzyme substrates and demonstration of their applicability as fluorogenic probes for screening lipase, esterase and protease activities. These probes represent a new class of fluorogenic compounds, are stable under aqueous conditions and not susceptible to nonspecific degradation. The utilization of the carbamate cleavable linkage in a probe structure allows moving away of the bulky fluorophore from the enzyme recognition unit and targets different classes of enzymes with the same substrate.
Collapse
Affiliation(s)
- Anna Żądło-Dobrowolska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Martyna Szczygieł
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dominik Koszelewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Daniel Paprocki
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
16
|
Rooker DR, Klyubka Y, Gautam R, Tomat E, Buccella D. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation. Chembiochem 2018; 19:496-504. [PMID: 29235227 DOI: 10.1002/cbic.201700582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Histone deacetylases regulate the acetylation levels of numerous proteins and play key roles in physiological processes and disease states. In addition to acetyl groups, deacetylases can remove other acyl modifications on lysines, the roles and regulation of which are far less understood. A peptide-based fluorescent probe for single-reagent, real-time detection of deacetylase activity that can be readily adapted for probing broader lysine deacylation, including decrotonylation, is reported. Following cleavage of the lysine modification, the probe undergoes rapid intramolecular imine formation that results in marked optical changes, thus enabling convenient detection of deacylase activity with good statistical Z' factors for both absorption and fluorescence modalities. The peptide-based design offers broader isozyme scope than that of small-molecule analogues, and is suitable for probing both metal- and nicotinamide adenine dinucleotide (NAD+ )-dependent deacetylases. With an effective sirtuin activity assay in hand, it is demonstrated that iron chelation by Sirtinol, a commonly employed sirtuin inhibitor, results in an enhancement in the inhibitory activity of the compound that may affect its performance in vivo.
Collapse
Affiliation(s)
- Debra R Rooker
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Yuliya Klyubka
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Ritika Gautam
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, New York, NY, 10003, USA
| |
Collapse
|
17
|
Toro TB, Bryant JR, Watt TJ. Lysine Deacetylases Exhibit Distinct Changes in Activity Profiles Due to Fluorophore Conjugation of Substrates. Biochemistry 2017; 56:4549-4558. [PMID: 28749131 PMCID: PMC5937523 DOI: 10.1021/acs.biochem.7b00270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysine deacetylases (KDACs) are enzymes that reverse the post-translational modification of lysine acetylation. Thousands of potential substrates, acetylated protein sequences, have been identified in mammalian cells. Properly regulated acetylation and deacetylation have been linked to many biological processes, while aberrant KDAC activity has also been linked to numerous diseases. Commercially available peptide substrates that are conjugated to fluorescent dye molecules, such as 7-amino-4-methylcoumarin (AMC), are commonly used to monitor deacetylation in studies addressing both substrate specificity and small molecule modulators of activity. Here, we have compared the activity of several KDACs, representing all major classes of KDACs, with substrates in the presence and absence of AMC as well as peptides for which tryptophan has been substituted for AMC. Our results unequivocally demonstrate that AMC has a significant effect on activity for all KDACs tested. Furthermore, in neither the nature of the effect nor the magnitude is consistent across KDACs, making it impossible to predict the effect of AMC on a particular enzyme-substrate pair. AMC did not affect acetyllysine preference in a multiply acetylated substrate. In contrast, AMC significantly enhanced KDAC6 substrate affinity, greatly reduced Sirt1 activity, eliminated the substrate sequence specificity of KDAC4, and had no consistent effect with KDAC8 substrates. These results indicate that profiling of KDAC activity with labeled peptides is unlikely to produce biologically relevant data.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| | - Jenae R. Bryant
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1098, United States
| |
Collapse
|
18
|
Xie Y, Ge J, Lei H, Peng B, Zhang H, Wang D, Pan S, Chen G, Chen L, Wang Y, Hao Q, Yao SQ, Sun H. Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases. J Am Chem Soc 2016; 138:15596-15604. [DOI: 10.1021/jacs.6b07334] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yusheng Xie
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Jingyan Ge
- College
of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
| | - Haipeng Lei
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Bo Peng
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Huatang Zhang
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Danyang Wang
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Sijun Pan
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Ganchao Chen
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| | - Lanfang Chen
- Department
of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong, People’s Republic of China
| | - Yi Wang
- Department
of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong, People’s Republic of China
| | - Quan Hao
- Department
of Physiology, University of Hong Kong, Pok Fu Lam, Hong Kong, People’s Republic of China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 119077
| | - Hongyan Sun
- Department
of Biology and Chemistry, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
- Key
Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, People’s Republic of China
| |
Collapse
|
19
|
Kawaguchi M, Ikegawa S, Ieda N, Nakagawa H. A Fluorescent Probe for Imaging Sirtuin Activity in Living Cells, Based on One-Step Cleavage of the Dabcyl Quencher. Chembiochem 2016; 17:1961-1967. [PMID: 27542094 PMCID: PMC5095863 DOI: 10.1002/cbic.201600374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Indexed: 12/14/2022]
Abstract
Sirtuins (SIRTs) are a family of NAD+‐dependent histone deacetylases. In mammals, dysfunction of SIRTs is associated with age‐related metabolic diseases and cancers, so SIRT modulators are considered attractive therapeutic targets. However, current screening methodologies are problematic, and no tools for imaging endogenous SIRT activity in living cells have been available until now. In this work we present a series of simple and highly sensitive new SIRT activity probes. Fluorescence of these probes is activated by SIRT‐mediated hydrolytic release of a 4‐(4‐dimethylaminophenylazo)benzoyl (Dabcyl)‐based FRET quencher moiety from the ϵ‐amino group of lysine in a nonapeptide derived from histone H3K9 and bearing a C‐terminal fluorophore. The probe SFP3 detected activities of SIRT1, ‐2, ‐3, and ‐6, which exhibit deacylase activities towards long‐chain fatty acyl groups. We then truncated the molecular structure of SFP3 in order to improve both its stability to peptidases and its membrane permeability, and developed probe KST‐F, which showed specificity for SIRT1 over SIRT2 and SIRT3. We show that KST‐F can visualize endogenous SIRT1 activity in living cells.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Shohei Ikegawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
20
|
Li P, Han Y, Li Y, Zhu R, Wang H, Nie Z, Yao S. Bioanalytical approaches for the detection of protein acetylation-related enzymes. Anal Bioanal Chem 2016; 408:2659-68. [DOI: 10.1007/s00216-016-9304-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
|
21
|
Rooker DR, Buccella D. Real-time detection of histone deacetylase activity with a small molecule fluorescent and spectrophotometric probe. Chem Sci 2015; 6:6456-6461. [PMID: 30090264 PMCID: PMC6054043 DOI: 10.1039/c5sc02704g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 02/01/2023] Open
Abstract
Histone deacetylases (HDACs) are central players in transcription regulation and important targets in cancer treatment. Activity assays are critical tools for the study of the function and regulation of these enzymes, as well as for the screening of potential inhibitors. We report a small-molecule probe for single-step, continuous detection of deacetylase activity based on an acetyl-lysine mimic functionalized with an amine-reactive fluorophore, designed to undergo rapid intramolecular imine formation upon deacetylation. The probe exhibits a bathochromic shift in the absorption spectrum and changes in fluorescence emission intensity that enable unprecedented real-time detection of HDAC activity of purified enzymes or in cell lysates, and offers a means to evaluate HDAC inhibitors via simple spectrophotometric or fluorescence readings without the need of additional reagents.
Collapse
Affiliation(s)
- Debra R Rooker
- Department of Chemistry , New York University , New York , New York 10003 , USA .
| | - Daniela Buccella
- Department of Chemistry , New York University , New York , New York 10003 , USA .
| |
Collapse
|