1
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
2
|
Abdelkader EH, Qianzhu H, George J, Frkic RL, Jackson CJ, Nitsche C, Otting G, Huber T. Genetic Encoding of Cyanopyridylalanine for In‐Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angew Chem Int Ed Engl 2022; 61:e202114154. [PMID: 35102680 PMCID: PMC9304162 DOI: 10.1002/anie.202114154] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 12/04/2022]
Abstract
Cyanopyridylalanines are non‐canonical amino acids that react with aminothiol compounds under physiological conditions in a biocompatible manner without requiring added catalyst. Here we present newly developed aminoacyl‐tRNA synthetases for genetic encoding of meta‐ and para‐cyanopyridylalanine to enable the site‐specific attachment of a wide range of different functionalities. The outstanding utility of the cyanopyridine moiety is demonstrated by examples of i) post‐translational functionalization of proteins, ii) in‐cell macrocyclization of peptides and proteins, and iii) protein stapling. The biocompatible nature of the protein ligation chemistry enabled by the cyanopyridylalanine amino acid opens a new path to specific in vivo protein modifications in complex biological environments.
Collapse
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Haocheng Qianzhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Josemon George
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Rebecca L. Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
3
|
Abdelkader EH, Qianzhu H, George J, Frkic RL, Jackson CJ, Nitsche C, Otting G, Huber T. Genetic Encoding of Cyanopyridylalanine for In‐Cell Protein Macrocyclization by the Nitrile–Aminothiol Click Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Haocheng Qianzhu
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Josemon George
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Rebecca L. Frkic
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Thomas Huber
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
4
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Mekkattu Tharayil S, Mahawaththa M, Loh CT, Adekoya I, Otting G. Phosphoserine for the generation of lanthanide-binding sites on proteins for paramagnetic nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:1-13. [PMID: 37904776 PMCID: PMC10539748 DOI: 10.5194/mr-2-1-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 11/01/2023]
Abstract
Pseudocontact shifts (PCSs) generated by paramagnetic lanthanide ions provide valuable long-range structural information in nuclear magnetic resonance (NMR) spectroscopic analyses of biological macromolecules such as proteins, but labelling proteins site-specifically with a single lanthanide ion remains an ongoing challenge, especially for proteins that are not suitable for ligation with cysteine-reactive lanthanide complexes. We show that a specific lanthanide-binding site can be installed on proteins by incorporation of phosphoserine in conjunction with other negatively charged residues, such as aspartate, glutamate or a second phosphoserine residue. The close proximity of the binding sites to the protein backbone leads to good immobilization of the lanthanide ion, as evidenced by the excellent quality of fits between experimental PCSs and PCSs calculated with a single magnetic susceptibility anisotropy (Δ χ ) tensor. An improved two-plasmid system was designed to enhance the yields of proteins with genetically encoded phosphoserine, and good lanthanide ion affinities were obtained when the side chains of the phosphoserine and aspartate residues are not engaged in salt bridges, although the presence of too many negatively charged residues in close proximity can also lead to unfolding of the protein. In view of the quality of the Δ χ tensors that can be obtained from lanthanide-binding sites generated by site-specific incorporation of phosphoserine, this method presents an attractive tool for generating PCSs in stable proteins, particularly as it is independent of cysteine residues.
Collapse
Affiliation(s)
- Sreelakshmi Mekkattu Tharayil
- ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
| | - Mithun Chamikara Mahawaththa
- ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
| | - Choy-Theng Loh
- ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
- present address: Hangzhou Wayland Bioscience Co. Ltd, Hangzhou
310030, PR China
| | - Ibidolapo Adekoya
- ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide and Protein
Science, Research School of Chemistry, Australian National University,
Canberra ACT 2601, Australia
| |
Collapse
|
6
|
Morewood R, Nitsche C. A biocompatible stapling reaction for in situ generation of constrained peptides. Chem Sci 2020; 12:669-674. [PMID: 34163798 PMCID: PMC8178976 DOI: 10.1039/d0sc05125j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Constrained peptides are promising next-generation therapeutics. Peptide stapling is a particularly attractive technique to generate constrained macrocycles with improved biological activity and metabolic stability. We introduce a biocompatible two-component stapling approach based on the reagent 2,6-dicyanopyridine and a pseudo-cysteine amino acid. Stapling can proceed either directly on-resin during solid-phase synthesis or following isolation of the linear peptide. The stapling reaction is orthogonal to natural amino acid side chains and completes in aqueous solution at physiological pH, enabling its direct use in biochemical assays. We performed a small screening campaign of short peptides targeting the Zika virus protease NS2B-NS3, allowing the direct comparison of linear with in situ stapled peptides. A stapled screening hit showed over 28-fold stronger inhibition than its linear analogue, demonstrating the successful identification of constrained peptide inhibitors. A synthetically straightforward and biocompatible peptide-stapling strategy that can be used directly in biochemical assays to identify constrained enzyme inhibitors.![]()
Collapse
Affiliation(s)
- Richard Morewood
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
7
|
Softley CA, Bostock MJ, Popowicz GM, Sattler M. Paramagnetic NMR in drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:287-309. [PMID: 32524233 PMCID: PMC7311382 DOI: 10.1007/s10858-020-00322-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 05/05/2023]
Abstract
The presence of an unpaired electron in paramagnetic molecules generates significant effects in NMR spectra, which can be exploited to provide restraints complementary to those used in standard structure-calculation protocols. NMR already occupies a central position in drug discovery for its use in fragment screening, structural biology and validation of ligand-target interactions. Paramagnetic restraints provide unique opportunities, for example, for more sensitive screening to identify weaker-binding fragments. A key application of paramagnetic NMR in drug discovery, however, is to provide new structural restraints in cases where crystallography proves intractable. This is particularly important at early stages in drug-discovery programs where crystal structures of weakly-binding fragments are difficult to obtain and crystallization artefacts are probable, but structural information about ligand poses is crucial to guide medicinal chemistry. Numerous applications show the value of paramagnetic restraints to filter computational docking poses and to generate interaction models. Paramagnetic relaxation enhancements (PREs) generate a distance-dependent effect, while pseudo-contact shift (PCS) restraints provide both distance and angular information. Here, we review strategies for introducing paramagnetic centers and discuss examples that illustrate the utility of paramagnetic restraints in drug discovery. Combined with standard approaches, such as chemical shift perturbation and NOE-derived distance information, paramagnetic NMR promises a valuable source of information for many challenging drug-discovery programs.
Collapse
Affiliation(s)
- Charlotte A Softley
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Mark J Bostock
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Grzegorz M Popowicz
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Lichtenbergstraße 4, 85747, Garching, Germany.
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
8
|
Winnett MR, Mini P, Grace MR, Tuck KL. Time-Resolved Terbium-Based Probe for the Detection of Zinc(II) Ions: Investigation of the Formation of a Luminescent Ternary Complex. Inorg Chem 2020; 59:118-127. [PMID: 31453684 DOI: 10.1021/acs.inorgchem.9b01771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their unique photochemical and photophysical properties, luminescent lanthanide-based complexes have long captivated chemists. In recent years, the number of reports of luminescent lanthanide complex-based probes for monitoring of biological and environmental processes has dramatically increased, namely, because of their selectivity for particular analytes, lower limits of detection, and the fact that they allow monitoring of analytes in real time. Lanthanide-based probes need to be paired with an appropriate antenna/sensitizer to allow maximum energy transfer, with the antenna typically covalently attached to the stable lanthanide chelate. We have recently investigated "dark" lanthanide-based probes where the sensitizer is not covalently linked to the lanthanide chelate. Herein we report the use of a luminescent lanthanide-based probe system for the detection of Zn2+ ions based on the formation of a ternary complex between a "dark" terbium complex, lumazine, and Zn2+. The terbium(III)-based probe incorporates a 1,4,7,10-tetraazacyclododecane-1,4,7,10-triacetic acid macrocyclic chelator covalently attached to a cyclen moiety, which is the Zn2+ ion binding group. In the presence of Zn2+ ions and lumazine (a strongly UV-absorbing sensitizer), a 1:1:1 ternary complex forms. The resulting complex is highly luminescent and selective for Zn2+ ions over other cations of environmental significance. Furthermore, with a limit of detection of 1.2 μM, this probe can detect the level of chronic zinc(II) concentrations denoted by the U.S. Environmental Protection Agency.
Collapse
Affiliation(s)
- Matthew R Winnett
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Parvathy Mini
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Michael R Grace
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Kellie L Tuck
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
9
|
Joss D, Häussinger D. Design and applications of lanthanide chelating tags for pseudocontact shift NMR spectroscopy with biomacromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:284-312. [PMID: 31779884 DOI: 10.1016/j.pnmrs.2019.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 05/14/2023]
Abstract
In this review, lanthanide chelating tags and their applications to pseudocontact shift NMR spectroscopy as well as analysis of residual dipolar couplings are covered. A complete overview is presented of DOTA-derived and non-DOTA-derived lanthanide chelating tags, critical points in the design of lanthanide chelating tags as appropriate linker moieties, their stability under reductive conditions, e.g., for in-cell applications, the magnitude of the anisotropy transferred from the lanthanide chelating tag to the biomacromolecule under investigation and structural properties, as well as conformational bias of the lanthanide chelating tags are discussed. Furthermore, all DOTA-derived lanthanide chelating tags used for PCS NMR spectroscopy published to date are displayed in tabular form, including their anisotropy parameters, with all employed lanthanide ions, CB-Ln distances and tagging reaction conditions, i.e., the stoichiometry of lanthanide chelating tags, pH, buffer composition, temperature and reaction time. Additionally, applications of lanthanide chelating tags for pseudocontact shifts and residual dipolar couplings that have been reported for proteins, protein-protein and protein-ligand complexes, carbohydrates, carbohydrate-protein complexes, nucleic acids and nucleic acid-protein complexes are presented and critically reviewed. The vast and impressive range of applications of lanthanide chelating tags to structural investigations of biomacromolecules in solution clearly illustrates the significance of this particular field of research. The extension of the repertoire of lanthanide chelating tags from proteins to nucleic acids holds great promise for the determination of valuable structural parameters and further developments in characterizing intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Joss
- University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
10
|
Miao Q, Liu WM, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double-Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019; 58:13093-13100. [PMID: 31314159 PMCID: PMC6771572 DOI: 10.1002/anie.201906049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/15/2019] [Indexed: 01/20/2023]
Abstract
Synthetic metal complexes can be used as paramagnetic probes for the study of proteins and protein complexes. Herein, two transition metal NMR probes (TraNPs) are reported. TraNPs are attached through two arms to a protein to generate a pseudocontact shift (PCS) using cobalt(II), or paramagnetic relaxation enhancement (PRE) with manganese(II). The PCS analysis of TraNPs attached to three different proteins shows that the size of the anisotropic component of the magnetic susceptibility depends on the probe surroundings at the surface of the protein, contrary to what is observed for lanthanoid‐based probes. The observed PCS are relatively small, making cobalt‐based probes suitable for localized studies, such as of an active site. The obtained PREs are stronger than those obtained with nitroxide spin labels and the possibility to generate both PCS and PRE offers advantages. The properties of TraNPs in comparison with other cobalt‐based probes are discussed.
Collapse
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New, Taipei City, 24205, Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
11
|
Miao Q, Liu W, Kock T, Blok A, Timmer M, Overhand M, Ubbink M. A Double‐Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing Miao
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Wei‐Min Liu
- Department of Chemistry Fu Jen Catholic University No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205 Taiwan
| | - Thomas Kock
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Anneloes Blok
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Monika Timmer
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Mark Overhand
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marcellus Ubbink
- Gorlaeus Laboratories Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
12
|
Bahramzadeh A, Huber T, Otting G. Three-Dimensional Protein Structure Determination Using Pseudocontact Shifts of Backbone Amide Protons Generated by Double-Histidine Co 2+-Binding Motifs at Multiple Sites. Biochemistry 2019; 58:3243-3250. [PMID: 31282649 DOI: 10.1021/acs.biochem.9b00404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pseudocontact shifts (PCSs) generated by paramagnetic metal ions contribute highly informative long-range structure restraints that can be measured in solution and are ideally suited to guide structure prediction algorithms in determining global protein folds. We recently demonstrated that PCSs, which are relatively small but of high quality, can be generated by a double-histidine (dHis) motif in an α-helix, which provides a well-defined binding site for a single Co2+ ion. Here we show that PCSs of backbone amide protons generated by dHis-Co2+ motifs positioned in four different α-helices of a protein deliver excellent restraints to determine the three-dimensional (3D) structure of a protein in a way akin to the global positioning system (GPS). We demonstrate the approach with GPS-Rosetta calculations of the 3D structure of the C-terminal domain of the chaperone ERp29 (ERp29-C). Despite the relatively small size of the PCSs generated by the dHis-Co2+ motifs, the structure calculations converged readily. Generating PCSs by the dHis-Co2+ motif thus presents an excellent alternative to the use of lanthanide tags.
Collapse
Affiliation(s)
- Alireza Bahramzadeh
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Thomas Huber
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , ACT 2601 , Australia
| |
Collapse
|
13
|
Müntener T, Kottelat J, Huber A, Häussinger D. New Lanthanide Chelating Tags for PCS NMR Spectroscopy with Reduction Stable, Rigid Linkers for Fast and Irreversible Conjugation to Proteins. Bioconjug Chem 2018; 29:3344-3351. [DOI: 10.1021/acs.bioconjchem.8b00512] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Müntener
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Jérémy Kottelat
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Annika Huber
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Richardson MB, Brown DB, Vasquez CA, Ziller JW, Johnston KM, Weiss GA. Synthesis and Explosion Hazards of 4-Azido-l-phenylalanine. J Org Chem 2018; 83:4525-4536. [PMID: 29577718 PMCID: PMC6008159 DOI: 10.1021/acs.joc.8b00270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A reliable, scalable, cost-effective, and chromatography-free synthesis of 4-azido-l-phenylalanine beginning from l-phenylalanine is described. Investigations into the safety of the synthesis reveal that the Ullman-like Cu(I)-catalyzed azidation step does not represent a significant risk. The isolated 4-azido-l-phenylalanine product, however, exhibits previously undocumented explosive characteristics.
Collapse
Affiliation(s)
- Mark B. Richardson
- Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, Irvine CA 92697-2025 USA
| | - Derek B. Brown
- Amgen Inc. One Amgen Center Drive, Thousand Oaks CA 91320 USA
| | - Carlos A. Vasquez
- Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, Irvine CA 92697-2025 USA
| | - Joseph W. Ziller
- Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, Irvine CA 92697-2025 USA
| | - Kevin M. Johnston
- Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, Irvine CA 92697-2025 USA
| | - Gregory A. Weiss
- Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, Irvine CA 92697-2025 USA
| |
Collapse
|
15
|
Tsitovich PB, Tittiris TY, Cox JM, Benedict JB, Morrow JR. Fe(ii) and Co(ii) N-methylated CYCLEN complexes as paraSHIFT agents with large temperature dependent shifts. Dalton Trans 2018; 47:916-924. [PMID: 29260180 DOI: 10.1039/c7dt03812g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several complexes of Co(ii) or Fe(ii) with 1,4,7,10-tetraazacyclododecane (CYCLEN) appended with 1,7-(6-methyl)2-picolyl groups are studied as 1H NMR paraSHIFT agents (paramagnetic shift agents) for the registration of temperature. Two of the complexes, [Co(BMPC)]2+ and [Fe(BMPC)]2+, contain methyl groups only on the methyl picolyl pendents. Two other complexes, [Co(2MPC)]2+ and [Fe(2MPC)]2+, contain picolyl groups and also methyl groups on the macrocyclic amines. All macrocyclic complexes are in high spin form as shown by solution magnetic moments in the range of 5.0-5.9μBM and 5.3-5.8μBM for Co(ii) and Fe(ii) complexes, respectively. The 1H NMR spectra of both of the Fe(ii) complexes and one of the Co(ii) complexes are consistent with a predominant diastereomeric form in deuterium oxide solutions. The highly shifted methyl proton resonances for [Co(2MPC)]2+ appear at 164 and -113 ppm for macrocycle and pendent picolyl methyls and show temperature coefficients of -0.58 ppm °C-1 and 0.49 ppm °C-1, respectively. Fe(ii) complexes have less shifted methyl proton resonances and smaller temperature coefficients. The 1H resonances of [Fe(2MPC)]2+ appear at 105 ppm and -46 ppm with corresponding temperature coefficients (CT) of -0.29 ppm °C-1 and 0.22 ppm °C-1, respectively. The relatively narrow linewidths of [Fe(2MPC)]2+, however, produce superior CT/FWHM values of 0.44 and 0.31 °C-1 for the N-methyl and picolyl proton resonances where FWHM is the full width at half maximum of the 1H resonance. The crystal structure of [Co(BMPC)]Cl2 shows a six-coordinate Co(ii) bound to the macrocyclic amines and two pendent picolyl groups. The distorted trigonal prismatic geometry of the complex resembles that of an analogous complex containing four 6-methyl-2-picolyl groups, in which only two picolyl pendents are coordinated.
Collapse
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, USA.
| | | | | | | | | |
Collapse
|
16
|
Chen JL, Zhao Y, Gong YJ, Pan BB, Wang X, Su XC. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2018; 70:77-92. [PMID: 29224182 DOI: 10.1007/s10858-017-0160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao Wang
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
17
|
Jiang WX, Gu XH, Dong X, Tang C. Lanthanoid tagging via an unnatural amino acid for protein structure characterization. JOURNAL OF BIOMOLECULAR NMR 2017; 67:273-282. [PMID: 28365903 DOI: 10.1007/s10858-017-0106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Lanthanoid pseudo-contact shift (PCS) provides long-range structural information between a paramagnetic tag and protein nuclei. However, for proteins with native cysteines, site-specific attachment may only utilize functional groups orthogonal to sulfhydryl chemistry. Here we report two lanthanoid probes, DTTA-C3-yne and DTTA-C4-yne, which can be conjugated to an unnatural amino acid pAzF in the target protein via azide-alkyne cycloaddition. Demonstrated with ubiquitin and cysteine-containing enzyme EIIB, we show that large PCSs of distinct profiles can be generated for each tag/lanthanoid combination. The DTTA-based lanthanoid tags are associated with large magnetic susceptibility tensors owing to the rigidity of the tags. In particular, introduction of the DTTA-C3 tag affords intermolecular PCSs and enables structural characterization of a transient protein complex between ubiquitin and a UBA domain. Together, we have expanded the repertoire of paramagnetic tags and the applicability of paramagnetic NMR.
Collapse
Affiliation(s)
- Wen-Xue Jiang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Xu Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
19
|
Tăbăcaru A, Furdui B, Ghinea IO, Cârâc G, Dinică RM. Recent advances in click chemistry reactions mediated by transition metal based systems. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Gong Z, Gu XH, Guo DC, Wang J, Tang C. Protein Structural Ensembles Visualized by Solvent Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2016; 56:1002-1006. [DOI: 10.1002/anie.201609830] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/09/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Da-Chuan Guo
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Jin Wang
- Department of Physics and Astronomy and Department of Chemistry; State University of New York at Stony Brook; Stony Brook New York 11794 USA
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| |
Collapse
|
21
|
Gong Z, Gu XH, Guo DC, Wang J, Tang C. Protein Structural Ensembles Visualized by Solvent Paramagnetic Relaxation Enhancement. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhou Gong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Xin-Hua Gu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Da-Chuan Guo
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| | - Jin Wang
- Department of Physics and Astronomy and Department of Chemistry; State University of New York at Stony Brook; Stony Brook New York 11794 USA
| | - Chun Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics; National Center for Magnetic Resonance in Wuhan; Collaborative Innovation Center of Chemistry for Life Sciences; Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences; Wuhan Hubei Province 430071 China
| |
Collapse
|
22
|
Opina ACL, Strickland M, Lee YS, Tjandra N, Andrew Byrd R, Swenson RE, Vasalatiy O. Analysis of the isomer ratios of polymethylated-DOTA complexes and the implications on protein structural studies. Dalton Trans 2016; 45:4673-87. [PMID: 26857249 DOI: 10.1039/c5dt03210e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rigidified and symmetrical polymethylated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) ligand bearing four SSSS methyl groups in both the tetraaza ring and the acetate arms (SSSS-SSSS-M4DOTMA) was prepared. The isomer ratio of SSSS-SSSS-M4DOTMA complexed with a series of lanthanide ions was carefully investigated using RP-HPLC and NMR. A square antiprismatic (SAP) configuration was exclusively observed for the early lanthanides, while the twisted square antiprismatic (TSAP) geometry was preferred as the lanthanide ion size decreases. The late lanthanides preferentially adopted the TSAP geometry. One of the pendant arms was modified with a pyridyl disulfide group (SSSS-SSSS-M8SPy) for cysteine attachment and displayed a similar isomer trend as the parent compound, Ln-SSSS-SSSS-M4DOTMA. Covalent attachment to the ubiquitin S57C mutant showed resonances whose intensities are in agreement with the isomeric population observed by RP-HPLC. Furthermore, the NOE experiments combined with quantum chemical calculations have unequivocally demonstrated that the SAP of Pr-SSSS-SSSS-M4DOTMA and Pr-SSSS-SSSS-M8SPy, as well as the TSAP of Yb-SSSS-SSSS-M8SPy are more stable than their corresponding isomers.
Collapse
Affiliation(s)
- Ana Christina L Opina
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cellular Uptake and Photo-Cytotoxicity of a Gadolinium(III)-DOTA-Naphthalimide Complex "Clicked" to a Lipidated Tat Peptide. Molecules 2016; 21:molecules21020194. [PMID: 26861271 PMCID: PMC6273236 DOI: 10.3390/molecules21020194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
A new bifunctional macrocyclic chelator featuring a conjugatable alkynyl-naphthalimide fluorophore pendant group has been prepared and its Gd(III) complex coupled to a cell-penetrating lipidated azido-Tat peptide derivative using Cu(I)-catalysed “click” chemistry. The resulting fluorescent conjugate is able to enter CAL-33 tongue squamous carcinoma cells, as revealed by confocal microscopy, producing a very modest anti-proliferative effect (IC50 = 93 µM). Due to the photo-reactivity of the naphthalimide moiety, however, the conjugate’s cytotoxicity is significantly enhanced (IC50 = 16 µM) upon brief low-power UV-A irradiation.
Collapse
|
24
|
Yang Y, Huang F, Huber T, Su XC. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis. JOURNAL OF BIOMOLECULAR NMR 2016; 64:103-113. [PMID: 26732873 DOI: 10.1007/s10858-016-0011-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i - 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.
Collapse
Affiliation(s)
- Yin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Feng Huang
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
O'Malley WI, Abdelkader EH, Aulsebrook ML, Rubbiani R, Loh CT, Grace MR, Spiccia L, Gasser G, Otting G, Tuck KL, Graham B. Luminescent Alkyne-Bearing Terbium(III) Complexes and Their Application to Bioorthogonal Protein Labeling. Inorg Chem 2016; 55:1674-82. [PMID: 26821062 DOI: 10.1021/acs.inorgchem.5b02605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two new bifunctional macrocyclic chelate ligands that form luminescent terbium(III) complexes featuring an alkyne group for conjugation to (bio)molecules via the Cu(I)-catalyzed "click" reaction were synthesized. Upon ligation, the complexes exhibit a significant luminescent enhancement when excited at the λ(max) of the "clicked" products. To demonstrate the utility of the complexes for luminescent labeling, they were conjugated in vitro to E. coli aspartate/glutamate-binding protein incorporating a genetically encoded p-azido-L-phenylalanine or p-(azidomethyl)-L-phenylalanine residue. The complexes may prove useful for time-gated assay applications.
Collapse
Affiliation(s)
- William I O'Malley
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville VIC 3052, Australia
| | - Elwy H Abdelkader
- Research School of Chemistry, Australian National University , Canberra ACT 2601, Australia
| | | | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Choy-Theng Loh
- Research School of Chemistry, Australian National University , Canberra ACT 2601, Australia
| | - Michael R Grace
- School of Chemistry, Monash University , Clayton VIC 3800, Australia
| | - Leone Spiccia
- School of Chemistry, Monash University , Clayton VIC 3800, Australia
| | - Gilles Gasser
- Department of Chemistry, University of Zurich , Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gottfried Otting
- Research School of Chemistry, Australian National University , Canberra ACT 2601, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University , Clayton VIC 3800, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville VIC 3052, Australia
| |
Collapse
|
26
|
Barb AW, Subedi GP. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 64:75-85. [PMID: 26728077 PMCID: PMC4884023 DOI: 10.1007/s10858-015-0009-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 05/03/2023]
Abstract
Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb(3+) with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (-0.221 to 0.081 ppm) and residual dipolar couplings (-7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb(3+))2 complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems.
Collapse
Affiliation(s)
- Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA, 50011, USA.
| | - Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA, 50011, USA
| |
Collapse
|