1
|
Balzer N, Lukášek J, Valášek M, Rai V, Sun Q, Gerhard L, Wulfhekel W, Mayor M. Synthesis and Surface Behaviour of NDI Chromophores Mounted on a Tripodal Scaffold: Towards Self-Decoupled Chromophores for Single-Molecule Electroluminescence. Chemistry 2021; 27:12144-12155. [PMID: 34152041 PMCID: PMC8457086 DOI: 10.1002/chem.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/01/2022]
Abstract
This paper reports the efficient synthesis, absorption and emission spectra, and the electrochemical properties of a series of 2,6-disubstituted naphthalene-1,4,5,8-tetracarboxdiimide (NDI) tripodal molecules with thioacetate anchors for their surface investigations. Our studies showed that, in particular, the pyrrolidinyl group with its strong electron-donating properties enhanced the fluorescence of such core-substituted NDI chromophores and caused a significant bathochromic shift in the absorption spectrum with a correspondingly narrowed bandgap of 1.94 eV. Cyclic voltammetry showed the redox properties of NDIs to be influenced by core substituents. The strong electron-donating character of pyrrolidine substituents results in rather high HOMO and LUMO levels of -5.31 and -3.37 eV when compared with the parental unsubstituted NDI. UHV-STM measurements of a sub-monolayer of the rigid tripodal NDI chromophores spray deposited on Au(111) show that these molecules mainly tend to adsorb flat in a pairwise fashion on the surface and form unordered films. However, the STML experiments also revealed a few molecular clusters, which might consist of upright oriented molecules protruding from the molecular island and show electroluminescence photon spectra with high electroluminescence yields of up to 6×10-3 . These results demonstrate the promising potential of the NDI tripodal chromophores for the fabrication of molecular devices profiting from optical features of the molecular layer.
Collapse
Affiliation(s)
- Nico Balzer
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
| | - Jan Lukášek
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
| | - Michal Valášek
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
| | - Vibhuti Rai
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
| | - Qing Sun
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
| | - Lukas Gerhard
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
| | - Wulf Wulfhekel
- Institute of Quantum Materials and TechnologiesKarlsruhe Institute of Technology76021KarlsruheGermany
- Physikalisches InstitutKarlsruhe Institute of TechnologyWolfgang-Gaede-Straße 176131KarlsruheGermany
| | - Marcel Mayor
- Institute of NanotechnologyKarlsruhe Institute of TechnologyP.O. Box 364076021KarlsruheGermany
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen UniversityGuangzhou, Guangdong510275P. R. China
| |
Collapse
|
2
|
Paraja M, Matile S. Primary Anion–π Catalysis of Epoxide‐Opening Ether Cyclization into Rings of Different Sizes: Access to New Reactivity. Angew Chem Int Ed Engl 2020; 59:6273-6277. [DOI: 10.1002/anie.202000579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva Geneva Switzerland
| |
Collapse
|
3
|
Primary Anion–π Catalysis of Epoxide‐Opening Ether Cyclization into Rings of Different Sizes: Access to New Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Zhang Z, Wu C, Pan Q, Shao F, Sun Q, Chen S, Li Z, Zhao Y. Interfacial synthesis of crystalline two-dimensional cyano-graphdiyne. Chem Commun (Camb) 2020; 56:3210-3213. [DOI: 10.1039/c9cc09617e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-defined crystalline cyano-functionalized graphdiyne (CN-GDY) is synthesized at a liquid/liquid interface through alkyne–alkyne coupling reactions.
Collapse
Affiliation(s)
- Zhaohui Zhang
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
- College of Materials Science and Engineering
| | - Chenyu Wu
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Qingyan Pan
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Feng Shao
- Department of Chemistry
- Faculty of Science
- National University of Singapore
- Singapore 117543
- Singapore
| | - Qingzhu Sun
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Siqi Chen
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Zhibo Li
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Yingjie Zhao
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
5
|
Core-insertion of palladium in naphthalenediimides: Opto-electronic properties, structural insights and coupling studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.09.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhou Y, Xue B, Wu C, Chen S, Liu H, Jiu T, Li Z, Zhao Y. Sulfur-substituted perylene diimides: efficient tuning of LUMO levels and visible-light absorptionviasulfur redox. Chem Commun (Camb) 2019; 55:13570-13573. [DOI: 10.1039/c9cc07040k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of sulfide and sulfone substituted perylene diimides (PDIs) with different LUMO levels covering a range of 0.72 eV were synthesized through simple sulfur redox chemistry.
Collapse
Affiliation(s)
- Yongxin Zhou
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Bo Xue
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Chenyu Wu
- University of New South Wales
- Sydney
- Australia
| | - Siqi Chen
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Hui Liu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Tonggang Jiu
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Yingjie Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
7
|
Zhang X, Hao X, Liu L, Pham AT, López-Andarias J, Frontera A, Sakai N, Matile S. Primary Anion−π Catalysis and Autocatalysis. J Am Chem Soc 2018; 140:17867-17871. [DOI: 10.1021/jacs.8b11788] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Zhang
- Department of Organic Chemistry, University of Geneva, Geneva CH 1211, Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Geneva CH 1211, Switzerland
| | - Le Liu
- Department of Organic Chemistry, University of Geneva, Geneva CH 1211, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, Geneva CH 1211, Switzerland
| | | | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Palma de Mallorca 07122, Spain
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva CH 1211, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva CH 1211, Switzerland
| |
Collapse
|
8
|
Abstract
This review article highlights the emergence of eclectic molecular design principles to realize remarkably strong electron deficient arylenediimide molecules, aspects of their stability and associated applications.
Collapse
Affiliation(s)
- Sharvan Kumar
- Supramolecular and Material Chemistry Lab
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Jyoti Shukla
- Supramolecular and Material Chemistry Lab
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Yogendra Kumar
- Supramolecular and Material Chemistry Lab
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| |
Collapse
|
9
|
Weißenstein A, Grande V, Saha-Möller CR, Würthner F. Water-soluble naphthalene diimides: synthesis, optical properties, and colorimetric detection of biogenic amines. Org Chem Front 2018. [DOI: 10.1039/c8qo00611c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biocompatible water-soluble naphthalene diimides (NDIs) were synthesized and a core-dichlorinated NDI was shown to detect primary amines and biogenic diamines.
Collapse
Affiliation(s)
| | - Vincenzo Grande
- Center for Nanosystems Chemistry (CNC)
- Universität Würzburg
- 97074 Würzburg
- Germany
| | | | - Frank Würthner
- Institut für Organische Chemie
- Universität Würzburg
- 97074 Würzburg
- Germany
- Center for Nanosystems Chemistry (CNC)
| |
Collapse
|
10
|
Wang C, Matile S. Anion-π Catalysts with Axial Chirality. Chemistry 2017; 23:11955-11960. [DOI: 10.1002/chem.201702672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Chao Wang
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland
| |
Collapse
|
11
|
Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem Rev 2016; 116:11685-11796. [DOI: 10.1021/acs.chemrev.6b00160] [Citation(s) in RCA: 557] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammad Al Kobaisi
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sidhanath V. Bhosale
- Polymers
and Functional Materials Division, CSIR-Indian Institute of Chemical Technology
, Hyderabad, Telangana-500007, India
| | - Kay Latham
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Aaron M. Raynor
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sheshanath V. Bhosale
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| |
Collapse
|
12
|
Miros FN, Matile S. Core-Substituted Naphthalenediimides: LUMO Levels Revisited, in Comparison with Preylenediimides with Sulfur Redox Switches in the Core. ChemistryOpen 2016; 5:219-26. [PMID: 27551658 PMCID: PMC4984407 DOI: 10.1002/open.201500222] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Indexed: 11/25/2022] Open
Abstract
Core‐substituted naphthalenediimides (NDIs) attract increasing attention to bind, transport, and transform electrons, anions, anionic intermediates, and anionic transition states, and to shine as most colorful rainbow fluorophores. The energy level of their lowest unoccupied molecular orbital (LUMO) is decisive for many of these applications. Here, differential pulse voltammetry (DPV) measurements for a consistent series of NDIs are reported to extract exact LUMO levels under identical conditions. The influence of primary and secondary substituents in the core and on the primary imides is compared with general trends for the reliable prediction of LUMO levels in functional systems. Emphasis is on sulfur redox switches in the NDI core because of their frequent use as isostructural probes for π acidity. The same sulfur redox chemistry is expanded to perylenediimides (PDIs), and LUMO engineering is discussed in a broader context, including also fullerenes, aminonaphthalimides (ANIs), and aminoperyleneimides (APIs). The result is a comprehensive reference table that graphically maps out the LUMO space covered by the leading families of electronaccepting aromatics. This graphical summary of general trends in the π‐acidic space is expected to be both inspiring and quite useful in practice.
Collapse
Affiliation(s)
- François N Miros
- Department of Organic Chemistry University of Geneva Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Quai Ernest-Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
13
|
Miros FN, Zhao Y, Sargsyan G, Pupier M, Besnard C, Beuchat C, Mareda J, Sakai N, Matile S. Enolate Stabilization by Anion-π Interactions: Deuterium Exchange in Malonate Dilactones on π-Acidic Surfaces. Chemistry 2015; 22:2648-57. [DOI: 10.1002/chem.201504008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/04/2023]
Affiliation(s)
- François N. Miros
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
| | - Yingjie Zhao
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
- Institute of Polymers; ETH Zurich; Zurich Switzerland
- Qingdao University of Science and Technology; P. R. China
| | - Gevorg Sargsyan
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
- South Texas College; McAllen Texas USA
| | - Marion Pupier
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
| | - Céline Besnard
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
| | - César Beuchat
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
- AKYADO; Remaufens Switzerland
| | - Jiri Mareda
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
| | - Naomi Sakai
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
| | - Stefan Matile
- Department of Organic Chemistry; University of Geneva; Geneva Switzerland), Fax
| |
Collapse
|
14
|
Zhao Y, Benz S, Sakai N, Matile S. Selective acceleration of disfavored enolate addition reactions by anion-π interactions. Chem Sci 2015; 6:6219-6223. [PMID: 30090238 PMCID: PMC6054047 DOI: 10.1039/c5sc02563j] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 01/17/2023] Open
Abstract
In chemistry and biology, cation-π interactions contribute significantly to many important transformations. In sharp contrast, reactions accomplished with support from the complementary anion-π interactions are essentially unknown. In this report, we show that anion-π interactions can determine the selectivity of the enolate chemistry of malonate half thioesters. Their addition to enolate acceptors is central in natural product biosynthesis but fails without enzymes because non-productive decarboxylation dominates. The newly designed and synthesized anion-π tweezers invert this selectivity by accelerating the disfavored and decelerating the favored process. The discrimination of anionic tautomers of different planarization and charge delocalization on π-acidic surfaces is expected to account for this intriguing "tortoise-and-hare catalysis." Almost exponentially increasing selectivity with increasing π acidity of the catalyst supports that contributions from anion-π interactions are decisive.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; ; Tel: +41 22 379 6523
| | - Sebastian Benz
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; ; Tel: +41 22 379 6523
| | - Naomi Sakai
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; ; Tel: +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry , University of Geneva , Geneva , Switzerland . ; http://www.unige.ch/sciences/chiorg/matile/ ; ; Tel: +41 22 379 6523
| |
Collapse
|
15
|
Zhao Y, Cotelle Y, Avestro AJ, Sakai N, Matile S. Asymmetric Anion-π Catalysis: Enamine Addition to Nitroolefins on π-Acidic Surfaces. J Am Chem Soc 2015; 137:11582-5. [DOI: 10.1021/jacs.5b07382] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yingjie Zhao
- Department
of Organic Chemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Yoann Cotelle
- Department
of Organic Chemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Alyssa-Jennifer Avestro
- Department
of Organic Chemistry, University of Geneva, Geneva CH-1211, Switzerland
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Naomi Sakai
- Department
of Organic Chemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|