1
|
Aguilar Rico F, Derogar M, Cubo L, Quiroga AG. Synthetic routes and chemical structural analysis for guiding the strategies on new Pt(II) metallodrug design. Dalton Trans 2024; 53:14949-14960. [PMID: 39177496 DOI: 10.1039/d4dt00967c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Metals in medicine is a distinct and mature field of investigation. Its progress in recent times cannot be denied, as it provides opportunities to advance our knowledge of the properties, speciation, reactivity and biological effects of metals in a medicinal context. The development of novel Pt(II) compounds to combat cancer continues to make valuable contributions but it has not yet achieved a complete cure. The chemistry of this field is basic for drug design improvements and our analysis of the chemical procedures is a practical tool for achieving effective Pt(II) anticancer drugs. We present chemical approaches in a manner that can be used to strategically plot new synthetic routes choosing right pathways. Clarifying the chemical challenge will help the scientific community to be aware of the ease and/or difficulty of the procedure before and after further studies, such as speciation, reactivity and biological action which are also very arduous and costly. The work provides information to tackle many challenges in chemistry, combining the knowledge on the Pt(II) reagent preparation together with the reactivity of the biological units used in the Pt(II) drug design. We discuss and include the description of the chemical reactions, the importance of multiple steps and the right order of such reactions to achieve the final drugs, analyzing the coordination principles as well as the organic and organometallic basis. This thorough study of the routes helps to detect the simpler or more complicated reactivity and will serve to improve the synthesis performance with possible post-modifications.
Collapse
Affiliation(s)
- Francisco Aguilar Rico
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Maryam Derogar
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Leticia Cubo
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Adoracion G Quiroga
- Inorganic Chemistry Department, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- IadChem, Institute for Advance Research in Chemistry, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Varney AM, Smitten KL, Southam HM, Fairbanks SD, Robertson CC, Thomas JA, McLean S. In Vitro and In Vivo Studies on a Mononuclear Ruthenium Complex Reveals It is a Highly Effective, Fast-Acting, Broad-Spectrum Antimicrobial in Physiologically Relevant Conditions. ACS Infect Dis 2024; 10:3346-3357. [PMID: 39106475 PMCID: PMC11406528 DOI: 10.1021/acsinfecdis.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The crystal structure of a previously reported antimicrobial RuII complex that targets bacterial DNA is presented. Studies utilizing clinical isolates of Gram-negative bacteria that cause catheter-associated urinary tract infection, (CA)UTI, in media that model urine and plasma reveal that good antimicrobial activity is maintained in all conditions tested. Experiments with a series of Staphylococcus aureus clinical isolates show that, unlike the majority of previously reported RuII-based antimicrobial leads, the compound retains its potent activity even in MRSA strains. Furthermore, experiments using bacteria in early exponential growth and at different pHs reveal that the compound also retains its activity across a range of conditions that are relevant to those encountered in clinical settings. Combinatorial studies involving cotreatment with conventional antibiotics or a previously reported analogous dinuclear RuII complex showed no antagonistic effects. In fact, although all combinations show distinct additive antibacterial activity, in one case, this effect approaches synergy. It was found that the Galleria Mellonella model organism infected with a multidrug resistant strain of the ESKAPE pathogen Acinetobacter baumannii could be successfully treated and totally cleared within 48 h after a single dose of the lead complex with no detectable deleterious effect to the host.
Collapse
Affiliation(s)
- Adam M Varney
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
- Medical Technologies Innovation Facility (MTIF), Clifton Lane, Nottingham NG11 8NS, U.K
| | - Kirsty L Smitten
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
- School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Hannah M Southam
- School of Bioscience, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K
| | - Simon D Fairbanks
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| |
Collapse
|
3
|
Vučelj S, Hasić R, Ašanin D, Šmit B, Caković A, Bogojeski J, Serafinović MĆ, Marković BS, Stojanović B, Pavlović S, Stanisavljević I, Ćorović I, Stojanović MD, Jovanović I, Soldatović TV, Stojanović B. Modes of Interactions with DNA/HSA Biomolecules and Comparative Cytotoxic Studies of Newly Synthesized Mononuclear Zinc(II) and Heteronuclear Platinum(II)/Zinc(II) Complexes toward Colorectal Cancer Cells. Int J Mol Sci 2024; 25:3027. [PMID: 38474273 DOI: 10.3390/ijms25053027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
A series of mono- and heteronuclear platinum(II) and zinc(II) complexes with 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine ligand were synthesized and characterized. The DNA and protein binding properties of [ZnCl2(terpytBu)] (C1), [{cis-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C2), [{trans-PtCl(NH3)2(μ-pyrazine)ZnCl(terpytBu)}](ClO4)2 (C3), [{cis-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C4) and [{trans-PtCl(NH3)2(μ-4,4'-bipyridyl)ZnCl(terpytBu)}](CIO4)2 (C5) (where terpytBu = 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine), were investigated by electronic absorption, fluorescence spectroscopic, and molecular docking methods. Complexes featuring transplatin exhibited lower Kb and Ksv constant values compared to cisplatin analogs. The lowest Ksv value belonged to complex C1, while C4 exhibited the highest. Molecular docking studies reveal that the binding of complex C1 to DNA is due to van der Waals forces, while that of C2-C5 is due to conventional hydrogen bonds and van der Waals forces. The tested complexes exhibited variable cytotoxicity toward mouse colorectal carcinoma (CT26), human colorectal carcinoma (HCT116 and SW480), and non-cancerous mouse mesenchymal stem cells (mMSC). Particularly, the mononuclear C1 complex showed pronounced selectivity toward cancer cells over non-cancerous mMSC. The C1 complex notably induced apoptosis in CT26 cells, effectively arrested the cell cycle in the G0/G1 phase, and selectively down-regulated Cyclin D.
Collapse
Affiliation(s)
- Samir Vučelj
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Rušid Hasić
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Darko Ašanin
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Biljana Šmit
- Institute for Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Angelina Caković
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Jovana Bogojeski
- Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | | | - Bojana Simović Marković
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Surgery, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Sladjana Pavlović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Isidora Stanisavljević
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Irfan Ćorović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- General Hospital of Novi Pazar, Department of Internal Medicine, Generala Živkovića 1, 36300 Novi Pazar, Serbia
| | - Milica Dimitrijević Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Ivan Jovanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Tanja V Soldatović
- Department of Natural-Mathematical Sciences, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
| | - Bojana Stojanović
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
- Faculty of Medical Sciences, Department of Pathophysiology, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
4
|
Lerchbammer-Kreith Y, Hejl M, Sommerfeld NS, Weng-Jiang X, Odunze U, Mellor RD, Workman DG, Jakupec MA, Schätzlein AG, Uchegbu IF, Galanski MS, Keppler BK. Quaternary Ammonium Palmitoyl Glycol Chitosan (GCPQ) Loaded with Platinum-Based Anticancer Agents-A Novel Polymer Formulation for Anticancer Therapy. Pharmaceuticals (Basel) 2023; 16:1027. [PMID: 37513938 PMCID: PMC10386324 DOI: 10.3390/ph16071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Quaternary ammonium palmitoyl glycol chitosan (GCPQ) has already shown beneficial drug delivery properties and has been studied as a carrier for anticancer agents. Consequently, we synthesised cytotoxic platinum(IV) conjugates of cisplatin, carboplatin and oxaliplatin by coupling via amide bonds to five GCPQ polymers differing in their degree of palmitoylation and quaternisation. The conjugates were characterised by 1H and 195Pt NMR spectroscopy as well as inductively coupled plasma mass spectrometry (ICP-MS), the latter to determine the amount of platinum(IV) units per GCPQ polymer. Cytotoxicity was evaluated by the MTT assay in three human cancer cell lines (A549, non-small-cell lung carcinoma; CH1/PA-1, ovarian teratocarcinoma; SW480, colon adenocarcinoma). All conjugates displayed a high increase in their cytotoxic activity by factors of up to 286 times compared to their corresponding platinum(IV) complexes and mostly outperformed the respective platinum(II) counterparts by factors of up to 20 times, also taking into account the respective loading of platinum(IV) units per GCPQ polymer. Finally, a biodistribution experiment was performed with an oxaliplatin-based GCPQ conjugate in non-tumour-bearing BALB/c mice revealing an increased accumulation in lung tissue. These findings open promising opportunities for further tumouricidal activity studies especially focusing on lung tissue.
Collapse
Affiliation(s)
- Yvonne Lerchbammer-Kreith
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Xian Weng-Jiang
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Uchechukwu Odunze
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ryan D Mellor
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - David G Workman
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Andreas G Schätzlein
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
5
|
Mishra S, Tripathy SK, Paul D, Laha P, Santra MK, Patra S. Asymmetrically Coordinated Heterodimetallic Ir-Ru System: Synthesis, Computational, and Anticancer Aspects. Inorg Chem 2023; 62:7003-7013. [PMID: 37097171 DOI: 10.1021/acs.inorgchem.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we present an unprecedented formation of a heterodinuclear complex [{(ppy)2IrIII}(μ-phpy){RuII(tpy)}](ClO4)2 {[1](ClO4)2} using terpyridyl/phenylpyridine as ancillary ligands and asymmetric phpy as a bridging ligand. The asymmetric binding mode (N∧N-∩-N∧N∧C-) of the phpy ligand in {[1](ClO4)2} is confirmed by 1H, 13C, 1H-1H correlated spectroscopy (COSY), high-resolution mass spectrum (HRMS), single-crystal X-ray crystallography techniques, and solution conductivity measurements. Theoretical investigation suggests that the highest occupied molecular orbital (HOMO) and the least unoccupied molecular orbital (LUMO) of [1]2+ are located on iridium/ppy and phpy, respectively. The complex displays a broad low energy charge transfer (CT) band within 450-575 nm. The time-dependent density functional theory (TDDFT) analysis suggests this as a mixture of metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT), where both ruthenium, iridium, and ligands are involved. Complex {[1](ClO4)2} exhibits RuIIIrIII/RuIIIIrIII- and RuIIIIrIII/RuIIIIrIV-based oxidative couples at 0.83 and 1.39 V, respectively. The complex shows anticancer activity and selectivity toward human breast cancer cells (IC50; MCF-7: 9.3 ± 1.2 μM, and MDA-MB-231: 8.6 ± 1.2 μM) over normal breast cells (MCF 10A: IC50 ≈ 21 ± 1.3 μM). The Western blot analysis and fluorescence microscopy images suggest that combined apoptosis and autophagy are responsible for cancer cell death.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Suman Kumar Tripathy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Debasish Paul
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Paltan Laha
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| | - Manas Kumar Santra
- National Centre for Cell Science, NCCS Complex, Pune University Campus Ganeshkhind, Pune 411007, Maharashtra, India
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni 752050, Odisha, India
| |
Collapse
|
6
|
Liu T, Pan C, Shi H, Huang T, Huang YL, Deng YY, Ni WX, Man WL. Cytotoxic cis-ruthenium(III) bis(amidine) complexes. Dalton Trans 2023. [PMID: 37000490 DOI: 10.1039/d3dt00328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
In chemotherapy, the search for ruthenium compounds as alternatives to platinum compounds is proposed because of their unique properties. However, the geometry effect of ruthenium complexes is sparely investigated. In this paper, we report the synthesis of a series of bis(acetylacetonato)ruthenium(III) complexes bearing two amidines (1-) in a cis configuration. These complexes are highly cytotoxic against various cancer cell lines, including a cisplatin-resistant cell line. In vitro studies suggested that the representative complex can induce cell cycle G0/G1 phase arrest, decrease the mitochondrial membrane potential, elevate the intracellular reactive oxygen species level, and cause DNA damage and caspase-mediated mitochondrial pathway apoptosis in NCI-H460 cells. In vivo, it can effectively inhibit tumor xenograft growth in nude mouse models with no body weight loss. In combination with the reported trans-bis(amidine)ruthenium(III) complexes, we found that ruthenium(III) bis(amidine) complexes could be cytotoxic in both trans and cis geometries, which is in contrast to platinum-based compounds.
Collapse
Affiliation(s)
- Tao Liu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Chen Pan
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Huatian Shi
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
| | - Tao Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Yong-Liang Huang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Yang-Yang Deng
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong, 515041, P.R. China.
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
| |
Collapse
|
7
|
Smitten K, Southam HM, Fairbanks S, Graf A, Chauvet A, Thomas JA. Clearing an ESKAPE Pathogen in a Model Organism; A Polypyridyl Ruthenium(II) Complex Theranostic that Treats a Resistant Acinetobacter baumannii Infection in Galleria mellonella. Chemistry 2023; 29:e202203555. [PMID: 36420820 PMCID: PMC10946903 DOI: 10.1002/chem.202203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80 mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96 h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.
Collapse
Affiliation(s)
- Kirsty Smitten
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Simon Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Arthur Graf
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Adrien Chauvet
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Jim A Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
8
|
Elgar C, Yusoh NA, Tiley PR, Kolozsvári N, Bennett LG, Gamble A, Péan EV, Davies ML, Staples CJ, Ahmad H, Gill MR. Ruthenium(II) Polypyridyl Complexes as FRET Donors: Structure- and Sequence-Selective DNA-Binding and Anticancer Properties. J Am Chem Soc 2023; 145:1236-1246. [PMID: 36607895 PMCID: PMC9853847 DOI: 10.1021/jacs.2c11111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ruthenium(II) polypyridyl complexes (RPCs) that emit from metal-to-ligand charge transfer (MLCT) states have been developed as DNA probes and are being examined as potential anticancer agents. Here, we report that MLCT-emissive RPCs that bind DNA undergo Förster resonance energy transfer (FRET) with Cy5.5-labeled DNA, forming mega-Stokes shift FRET pairs. Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-"light switch" complexes [Ru(dppz)2(5,5'dmb)]2+ and [Ru(PIP)2(5,5'dmb)]2+ (dppz = dipyridophenazine, 5,5'dmb = 5,5'-dimethyl-2,2'-bipyridine, PIP = 2-phenyl-imidazo[4,5-f][1,10]phenanthroline). Binding affinities toward duplex, G-quadruplex, three-way junction, and mismatch DNA were determined, and derived FRET donor-acceptor proximities provide information on potential binding sites. Molecules characterized by this method demonstrate encouraging anticancer properties, including synergy with the PARP inhibitor Olaparib, and mechanistic studies indicate that [Ru(PIP)2(5,5'dmb)]2+ acts to block DNA replication fork progression.
Collapse
Affiliation(s)
- Christopher
E. Elgar
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Nur Aininie Yusoh
- UPM-MAKNA
Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Paul R. Tiley
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Natália Kolozsvári
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.
| | - Laura G. Bennett
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Amelia Gamble
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Emmanuel V. Péan
- SPECIFIC
IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - Matthew L. Davies
- SPECIFIC
IKC, Materials Science and Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, U.K.
| | - Christopher J. Staples
- North
West Cancer Research Institute, School of Medical Sciences, Bangor University, Bangor LL57 2DG, U.K.
| | - Haslina Ahmad
- UPM-MAKNA
Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia,Department
of Chemistry, Faculty of Science, Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Martin R. Gill
- Department
of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K.,
| |
Collapse
|
9
|
Heterodimetallic Iridium-Rhenium System: Synthesis, Computational and Photocatalytic Aspects. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Angew Chem Int Ed Engl 2022; 61:e202117449. [PMID: 35416386 PMCID: PMC9323417 DOI: 10.1002/anie.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/05/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10‐phenanthroline, tpphz=tetrapyridophenazine) “RuRuPhen” blocks the transformation of G‐actin monomers to F‐actin filaments with no disassembly of pre‐formed F‐actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G‐actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late‐stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Paul J. Jarman
- Department of Biomedical Science University of Sheffield UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering University of Sheffield UK
| | | | - Marcella Bassetto
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Hannes Maib
- Department of Biomedical Science University of Sheffield UK
| | - John Palmer
- Department of Biomedical Science University of Sheffield UK
| | | | | | - Carl Smythe
- Department of Biomedical Science University of Sheffield UK
| |
Collapse
|
11
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117449. [PMID: 38505667 PMCID: PMC10947085 DOI: 10.1002/ange.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - Vanessa Hearnden
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | - Marcella Bassetto
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Hannes Maib
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - John Palmer
- Department of Biomedical ScienceUniversity of SheffieldUK
| | | | | | - Carl Smythe
- Department of Biomedical ScienceUniversity of SheffieldUK
| |
Collapse
|
12
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Ma L, Li L, Zhu G. Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00205a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs are among the most widely used antineoplastics in clinical settings. Their therapeutic applications and outcomes are, however, greatly hampered by drug resistance, systemic toxicity, and the lack...
Collapse
|
14
|
Tsolis T, Nikolaou N, Ypsilantis K, Kougioumtzi A, Kordias D, Magklara A, Garoufis A. Synthesis, characterization, interactions with 9-MeG and cytotoxic activity of heterobimetallic Ru II-Pt II complexes bridged with 2, 2'-bipyrimidine. J Inorg Biochem 2021; 219:111435. [PMID: 33819801 DOI: 10.1016/j.jinorgbio.2021.111435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/23/2023]
Abstract
The complexes [(η6-bz)Ru(bpm)Cl]PF6, (1)PF6, [(η6-bz)ClRu(μ-bpm)PtCl2]PF6, (2)PF6, [(η6-cym)ClRu(μ-bpm)PtCl2]PF6, (3)PF6, [(η6-cym)ClRu(μ-bpm)PdCl2]PF6, (4)PF6, [Pt(bpm)(cbdca)], (5) and [(η6-cym)ClRu(μ-bpm)Pt(cbdca)]PF6, (6)PF6, (bz = benzene, bpm = 2,2'-bipyrimidine, cym = p-cymene, cbdcaH2 = 1,1-cyclobutanedicarboxylic acid),were synthesized and characterized by means of 1H NMR and high-resolution ESI mass spectrometry. The complexes were transformed to the corresponding chloride salts to become soluble in aqueous media, and to be studied regarding their biological properties. However, while the heterobimetallic complexes (3)Cl and (6)Cl were almost stable, (2)Cl and (4)Cl were decomposed. The interaction of 9-MeG (9-MeG = 9-methylguanine) with (3)Cl and (6)Cl revealed that it coordinates only to the platinum center through N7. Decomposition of the heterobimetallic complexes takes place after the coordination of 9-MeG, mainly forming the complex [Pt(bpm)(9-MeG-N7)Cl]+. Notably, the cytotoxic activity of (6)Cl in cancer cells was found to be moderate when compared to cisplatin, but higher in comparison with its corresponding monomers.
Collapse
Affiliation(s)
- Theodoros Tsolis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Neofyta Nikolaou
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | | | - Anastasia Kougioumtzi
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, 45110 Ioannina, Greece; Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Kordias
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, 45110 Ioannina, Greece; Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Angeliki Magklara
- Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, 45110 Ioannina, Greece; Laboratory of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center of Ioannina (U.R.C.I.), Ioannina, Greece
| | - Achilleas Garoufis
- Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
15
|
Varney AM, Smitten KL, Thomas JA, McLean S. Transcriptomic Analysis of the Activity and Mechanism of Action of a Ruthenium(II)-Based Antimicrobial That Induces Minimal Evolution of Pathogen Resistance. ACS Pharmacol Transl Sci 2021; 4:168-178. [PMID: 33615170 PMCID: PMC7887750 DOI: 10.1021/acsptsci.0c00159] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 01/30/2023]
Abstract
Increasing concern over rising levels of antibiotic resistance among pathogenic bacteria has prompted significant research into developing efficacious alternatives to antibiotic treatment. Previously, we have reported on the therapeutic activity of a dinuclear ruthenium(II) complex against pathogenic, multi-drug-resistant bacterial pathogens. Herein, we report that the solubility properties of this lead are comparable to those exhibited by orally available therapeutics that in comparison to clinically relevant antibiotics it induces very slow evolution of resistance in the uropathogenic, therapeutically resistant, E. coli strain EC958, and this resistance was lost when exposure to the compound was temporarily removed. With the aim of further investigating the mechanism of action of this compound, the regulation of nine target genes relating to the membrane, DNA damage, and other stress responses provoked by exposure to the compound was also studied. This analysis confirmed that the compound causes a significant transcriptional downregulation of genes involved in membrane transport and the tricarboxylic acid cycle. By contrast, expression of the chaperone protein-coding gene, spy, was significantly increased suggesting a requirement for repair of damaged proteins in the region of the outer membrane. The complex was also found to display activity comparable to that in E. coli in a range of other therapeutically relevant Gram-negative pathogens.
Collapse
Affiliation(s)
- Adam M. Varney
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, United
Kingdom
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, United
Kingdom
| | - Samantha McLean
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
16
|
Sudhindra P, Ajay Sharma S, Roy N, Moharana P, Paira P. Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Malarz K, Zych D, Gawecki R, Kuczak M, Musioł R, Mrozek-Wilczkiewicz A. New derivatives of 4'-phenyl-2,2':6',2″-terpyridine as promising anticancer agents. Eur J Med Chem 2020; 212:113032. [PMID: 33261897 DOI: 10.1016/j.ejmech.2020.113032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Terpyridine derivatives are known from their broad application including anticancer properties. In this work we present the newly synthesized 4'-phenyl-2,2':6',2″-terpyridine group with high antiproliferative activity. We suggest that these compounds influence cellular redox homeostasis. Cancer cells are particularly susceptible to any changes in the redox balance because of their handicapped and inefficient antioxidant cellular systems. The antiproliferative activity of the studied compounds was tested on five different cell lines that represent several types of tumours; glioblastoma, leukemia, breast, pancreatic and colon. Additionally, we also tested their selectivity towards normal cells. We performed molecular biology studies in order to detect the response of a cell to its treatment with the compounds that were tested. We looked at the in-depth changes in the proteins and cellular pathways that lead to cell cycle inhibition (G0/G1 and S), and consequently, death on the apoptosis and autophagy pathways. We proved that the studied compounds targeted DNA as well. Special attention was paid to the targets connected with ROS generation.
Collapse
Affiliation(s)
- Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland.
| | - Dawid Zych
- Wroclaw School of Information Technology, Ks. M. Lutra 4, 54-239, Wrocław, Poland
| | - Robert Gawecki
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
| | - Michał Kuczak
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006, Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006, Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland.
| |
Collapse
|
18
|
Tandem α/β-alkylation and transfer hydrogenation by heterodimetallic ruthenium-iridium complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Bertrand B, Gontard G, Botuha C, Salmain M. Pincer‐Based Heterobimetallic Pt(II)/Ru(II), Pt(II)/Ir(III), and Pt(II)/Cu(I) Complexes: Synthesis and Evaluation of Antiproliferative Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Benoît Bertrand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Geoffrey Gontard
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Candice Botuha
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM) Sorbonne Université 75005 Paris France
| |
Collapse
|
20
|
Zhang SQ, Gao LH, Zhao H, Wang KZ. Recent Progress in Polynuclear Ruthenium Complex-Based DNA Binders/Structural Probes and Anticancer Agents. Curr Med Chem 2020; 27:3735-3752. [DOI: 10.2174/0929867326666181203143422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/27/2023]
Abstract
Ruthenium complexes have stood out by several mononuclear complexes which have entered
into clinical trials, such as imidazolium [trans-RuCl4(1H-imidazole)(DMSO-S)] (NAMI-A) and
([Ru(II)(4,4'-dimethyl-2,2'-bipyridine)2-(2(2'-,2'':5'',2'''-terthiophene)-imidazo[4,5-f] [1,10]phenanthroline)]
2+) (TLD-1433), opening a new avenue for developing promising ruthenium-based anticancer
drugs alternative to Cisplatin. Polynuclear ruthenium complexes were reported to exhibit synergistic
and/or complementary effects: the enhanced DNA structural recognition and DNA binding as well as
in vitro anticancer activities. This review overviews some representative polynuclear ruthenium
complexes acting as DNA structural probes, DNA binders and in vitro anticancer agents, which were
developed during last decades. These complexes are reviewed according to two main categories of
homo-polynuclear and hetero-polynuclear complexes, each of which is further clarified into the metal
centers linked by rigid and flexible bridging ligands. The perspective, challenges and future efforts
for investigations into these exciting complexes are pointed out or suggested.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Hua Gao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Hua Zhao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Ke-Zhi Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Raza A, Archer SA, Fairbanks SD, Smitten KL, Botchway SW, Thomas JA, MacNeil S, Haycock JW. A Dinuclear Ruthenium(II) Complex Excited by Near-Infrared Light through Two-Photon Absorption Induces Phototoxicity Deep within Hypoxic Regions of Melanoma Cancer Spheroids. J Am Chem Soc 2020; 142:4639-4647. [PMID: 32065521 PMCID: PMC7146853 DOI: 10.1021/jacs.9b11313] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
dinuclear photo-oxidizing RuII complex [{Ru(TAP2)}2(tpphz)]4+ (TAP = 1,4,5,8- tetraazaphenanthrene,
tpphz = tetrapyrido[3,2-a:2′,3′-c:3″,2′′-h:2‴,3′′′-j]phenazine), 14+, is readily
taken up by live cells localizing in mitochondria and nuclei. In this
study, the two-photon absorption cross section of 14+ is quantified and its use as a two-photon absorbing phototherapeutic
is reported. It was confirmed that the complex is readily photoexcited
using near-infrared, NIR, and light through two-photon absorption,
TPA. In 2-D cell cultures, irradiation with NIR light at low power
results in precisely focused phototoxicity effects in which human
melanoma cells were killed after 5 min of light exposure. Similar
experiments were then carried out in human cancer spheroids that provide
a realistic tumor model for the development of therapeutics and phototherapeutics.
Using the characteristic emission of the complex as a probe, its uptake
into 280 μm spheroids was investigated and confirmed that the
spheroid takes up the complex. Notably TPA excitation results in more
intense luminescence being observed throughout the depth of the spheroids,
although emission intensity still drops off toward the necrotic core.
As 14+ can directly photo-oxidize DNA without
the mediation of singlet oxygen or other reactive oxygen species,
phototoxicity within the deeper, hypoxic layers of the spheroids was
also investigated. To quantify the penetration of these phototoxic
effects, 14+ was photoexcited through TPA
at a power of 60 mW, which was progressively focused in 10 μm
steps throughout the entire z-axis of individual
spheroids. These experiments revealed that, in irradiated spheroids
treated with 14+, acute and rapid photoinduced
cell death was observed throughout their depth, including the hypoxic
region.
Collapse
Affiliation(s)
- Ahtasham Raza
- Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, U.K
| | - Stuart A Archer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Simon D Fairbanks
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Kirsty L Smitten
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, U.K
| | - James A Thomas
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, U.K
| | - Sheila MacNeil
- Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, U.K
| | - John W Haycock
- Materials Science & Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD, U.K
| |
Collapse
|
22
|
Gupta D, Silva M, Radziun K, Martinez DC, Hill CJ, Marshall J, Hearnden V, Puertas-Mejia MA, Reilly GC. Fucoidan Inhibition of Osteosarcoma Cells Is Species and Molecular Weight Dependent. Mar Drugs 2020; 18:E104. [PMID: 32046368 PMCID: PMC7074035 DOI: 10.3390/md18020104] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.
Collapse
Affiliation(s)
- Dhanak Gupta
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Melissa Silva
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Karolina Radziun
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
- Cell Bank, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Diana C. Martinez
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Christopher J. Hill
- Department of Molecular Biology and Biotechnology (MBB), University of Sheffield, Sheffield S10 2TN, UK;
| | - Julie Marshall
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
| | - Miguel A. Puertas-Mejia
- Institute of Chemistry, University of Antioquia, Medellín A.A.1226, Colombia; (M.S.); (M.A.P.-M.)
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; (D.G.); (K.R.); (D.C.M.); (V.H.)
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
23
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Maugeri A, Navarra M. Anticancer study of heterobimetallic platinum(II)-ruthenium(II) and platinum(II)-rhodium(III) complexes with bridging dithiooxamide ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Rana U, Chakraborty C, Kanao M, Morita H, Minowa T, Higuchi M. DNA-binding, cytotoxicity and apoptosis induction of Pt/Fe-based heterometallo-supramolecular polymer for anticancer drug application. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Smitten KL, Southam HM, de la Serna JB, Gill MR, Jarman PJ, Smythe CGW, Poole RK, Thomas JA. Using Nanoscopy To Probe the Biological Activity of Antimicrobial Leads That Display Potent Activity against Pathogenic, Multidrug Resistant, Gram-Negative Bacteria. ACS NANO 2019; 13:5133-5146. [PMID: 30964642 DOI: 10.1021/acsnano.8b08440] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Medicinal leads that are also compatible with imaging technologies are attractive, as they facilitate the development of therapeutics through direct mechanistic observations at the molecular level. In this context, the uptake and antimicrobial activities of several luminescent dinuclear RuII complexes against E. coli were assessed and compared to results obtained for another ESKAPE pathogen, the Gram-positive major opportunistic pathogen Enterococcus faecalis, V583. The most promising lead displays potent activity, particularly against the Gram-negative bacteria, and potency is retained in the uropathogenic multidrug resistant EC958 ST131 strain. Exploiting the inherent luminescent properties of this complex, super-resolution STED nanoscopy was used to image its initial localization at/in cellular membranes and its subsequent transfer to the cell poles. Membrane damage assays confirm that the complex disrupts the bacterial membrane structure before internalization. Mammalian cell culture and animal model studies indicate that the complex is not toxic to eukaryotes, even at concentrations that are several orders of magnitude higher than its minimum inhibitory concentration (MIC). Taken together, these results have identified a lead molecular architecture for hard-to-treat, multiresistant, Gram-negative bacteria, which displays activities that are already comparable to optimized natural product-based leads.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry , The University of Sheffield , Western Bank , Sheffield S3 7HF , U.K
| | - Hannah M Southam
- Department of Molecular Biology and Biotechnology , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex at Harwell , Science and Technology Facilities Council , Harwell-Oxford , Didcot OX11 0QX , U.K
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Martin R Gill
- Department of Chemistry , The University of Sheffield , Western Bank , Sheffield S3 7HF , U.K
| | - Paul J Jarman
- Department of Biomedical Science , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Carl G W Smythe
- Department of Biomedical Science , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Jim A Thomas
- Department of Chemistry , The University of Sheffield , Western Bank , Sheffield S3 7HF , U.K
| |
Collapse
|
26
|
Ramu V, Upendar Reddy G, Liu J, Hoffmann P, Sollapur R, Wyrwa R, Kupfer S, Spielmann C, Bonnet S, Neugebauer U, Schiller A. Two‐Photon‐Induced CO‐Releasing Molecules as Molecular Logic Systems in Solution, Polymers, and Cells. Chemistry 2019; 25:8453-8458. [DOI: 10.1002/chem.201901396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Vadde Ramu
- Institute for Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University Jena Humboldtstr. 8 07743 Jena Germany
| | - Gandra Upendar Reddy
- Institute for Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University Jena Humboldtstr. 8 07743 Jena Germany
| | - Jingjing Liu
- Institute for Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University Jena Humboldtstr. 8 07743 Jena Germany
| | - Patrick Hoffmann
- Center for Sepsis Control and Care (CSCC)Jena University Hospital Am Klinikum 1 07747 Jena Germany
- Leibniz Institute of Photonic Technology Albert-Einstein-Str. 9 07745 Jena Germany
| | - Rudrakant Sollapur
- Institute of Optics and Quantum ElectronicsFriedrich Schiller University Jena Max Wien Platz 1 07743 Jena Germany
| | - Ralf Wyrwa
- INNOVENT e.V., Biomaterials Department Prüssingstraße 27B 07745 Jena Germany
| | - Stephan Kupfer
- Institute for Physical Chemistry (IPC) and Abbe Center of Photonics (ACP)Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Christian Spielmann
- Institute of Optics and Quantum ElectronicsFriedrich Schiller University Jena Max Wien Platz 1 07743 Jena Germany
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryGorlaeus LaboratoriesLeiden University 2300 RA Leiden The Netherlands
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC)Jena University Hospital Am Klinikum 1 07747 Jena Germany
- Institute for Physical Chemistry (IPC) and Abbe Center of Photonics (ACP)Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology Albert-Einstein-Str. 9 07745 Jena Germany
| | - Alexander Schiller
- Institute for Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University Jena Humboldtstr. 8 07743 Jena Germany
| |
Collapse
|
27
|
Sheet SK, Sen B, Khatua S. Organoiridium(III) Complexes as Luminescence Color Switching Probes for Selective Detection of Nerve Agent Simulant in Solution and Vapor Phase. Inorg Chem 2019; 58:3635-3645. [PMID: 30843684 DOI: 10.1021/acs.inorgchem.8b03044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, cationic organoiridium(III) complex based photoluminescent (PL) probes have been developed to selectively detect the chemical warfare nerve agent mimic, diethyl chlorophosphate(DCP) at nanomolar range by distinct bright green to orange-red luminescence color switching (on-off-on) in solution as well as in the vapor phase. Interference of other chemical warfare agents (CWAs) and their mimics was not observed either by PL spectroscopy or with the naked-eye in solution and gas phase. The detection was attained via a simultaneous nucleophilic attack of two -OH groups of the 4,7-dihydroxy-1,10-phenanthroline ligand with DCP by forming bulkier phosphotriester. The detailed reaction mechanism was established through extensive 1H NMR titration, 31P NMR, and ESI-MS analysis. Finally, a test paper strip and solid poly(ethylene oxide) (PEO) film with iridium(III) complex 1[PF6] were fabricated for the vapor-phase detection of DCP. The solution and vapor-phase detection properties of these luminescent Ir(III) complexes can offer a worthy approach into the design of new metal complex based PL switching probes for chemical warfare agents.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry , North Eastern Hill University , Shillong , Meghalaya 793022 , India
| |
Collapse
|
28
|
Zhu M, Jia Z, Qu Y, Qi Z, Zhao H, Wang N, Xing J, Liu J, Gao E. Four Ni(II), Co(III), Cd(II) complexes based on 5-(pyrazol-1-yl)nicotinic acid: synthesis, X-ray single crystal structure, in vitro cytotoxicity, apoptosis and molecular docking studies. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1564911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Zhili Jia
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Yun Qu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenzhen Qi
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Hongwei Zhao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Ning Wang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jialing Xing
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Jiaxing Liu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| | - Enjun Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang, China
| |
Collapse
|
29
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
30
|
Jarman PJ, Noakes F, Fairbanks S, Smitten K, Griffiths IK, Saeed HK, Thomas JA, Smythe C. Exploring the Cytotoxicity, Uptake, Cellular Response, and Proteomics of Mono- and Dinuclear DNA Light-Switch Complexes. J Am Chem Soc 2018; 141:2925-2937. [DOI: 10.1021/jacs.8b09999] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paul J. Jarman
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, U.K
| | - Felicity Noakes
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, U.K
- Department of Chemistry, University of Sheffield, Sheffield S10 2TN, U.K
| | - Simon Fairbanks
- Department of Chemistry, University of Sheffield, Sheffield S10 2TN, U.K
| | - Kirsty Smitten
- Department of Chemistry, University of Sheffield, Sheffield S10 2TN, U.K
| | | | - Hiwa K. Saeed
- Department of Chemistry, University of Sheffield, Sheffield S10 2TN, U.K
| | - Jim A. Thomas
- Department of Chemistry, University of Sheffield, Sheffield S10 2TN, U.K
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
31
|
Ma L, Lin X, Li C, Xu Z, Chan CY, Tse MK, Shi P, Zhu G. A Cancer Cell-Selective and Low-Toxic Bifunctional Heterodinuclear Pt(IV)-Ru(II) Anticancer Prodrug. Inorg Chem 2018; 57:2917-2924. [PMID: 29436828 DOI: 10.1021/acs.inorgchem.8b00053] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although different types of metal-based anticancer complexes have been synthesized, novel complexes to reduce the serious side effect of cisplatin and conquer cancer metastasis are still highly desired. Here, we report the synthesis, characterization, and biological activity of a novel heterodinuclear Pt(IV)-Ru(II) anticancer prodrug. The Pt(IV)-Ru(II) complex exhibits good stability in both water and PBS solution. Biological evaluation revealed that this bifunctional Pt(IV)-Ru(II) complex utilizes the advantages of two metal centers to have both cytotoxicity and antimetastatic property as designed. Although the complex has comparable cytotoxicities to cisplatin in tested cancer cell lines, this prodrug selectively kills cancer but not normal cells, and the IC50 values of the Pt(IV)-Ru(II) complex are 7-10 times higher than those of cisplatin toward normal cells. The cancer cell selectivity is further demonstrated by a cancer-normal cell coculture system. In addition, the antimetastatic properties of the heterodinuclear complex are assessed by using highly metastatic human breast cancer cells, and the results show that the migration and invasion of cancer cells are effectively restrained after the treatment. Moreover, the Pt(IV)-Ru(II) complex displays lower toxicity than cisplatin in developing zebrafish embryos. We, therefore, report an example of heterodinuclear Pt(IV)-Ru(II) complex not only to defeat both drug resistance and cancer metastasis but also having significantly improved cancer cell selectivity and reduced in vivo toxicity than cisplatin.
Collapse
Affiliation(s)
- Lili Ma
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Xudong Lin
- Department of Biomedical Engineering , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China
| | - Cai Li
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Zoufeng Xu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| | - Chun-Yin Chan
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China
| | - Man-Kit Tse
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China
| | - Peng Shi
- Department of Biomedical Engineering , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China
| | - Guangyu Zhu
- Department of Chemistry , City University of Hong Kong , 83 Tat Chee Ave , Hong Kong SAR , People's Republic of China.,City University of Hong Kong Shenzhen Research Institute , Shenzhen 518057 , People's Republic of China
| |
Collapse
|
32
|
Gill MR, Jarman PJ, Halder S, Walker MG, Saeed HK, Thomas JA, Smythe C, Ramadan K, Vallis KA. A three-in-one-bullet for oesophageal cancer: replication fork collapse, spindle attachment failure and enhanced radiosensitivity generated by a ruthenium(ii) metallo-intercalator. Chem Sci 2018; 9:841-849. [PMID: 29629151 PMCID: PMC5870190 DOI: 10.1039/c7sc03712k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
Substitutionally inert ruthenium(ii) polypyridyl complexes have been developed as DNA intercalating agents yet cellular DNA damage responses to this binding modality are largely unexplored. Here, we show the nuclear-targeting complex [Ru(phen)2(tpphz)]2+ (phen = 1,10-phenanthroline, tpphz = tetrapyridophenazine) generates rapid and pronounced stalling of replication fork progression in p53-deficient human oesophageal cancer cells. In response, replication stress and double-strand break (DSB) DNA damage response (DDR) pathways are activated and cell proliferation is inhibited by growth arrest. Moreover, mitotic progression is compromised by [Ru(phen)2(tpphz)]2+, where the generation of metaphase chromosome spindle attachment failure results in spindle assembly checkpoint (SAC) activation. This dual mechanism of action results in preferential growth inhibition of rapidly-proliferating oesophageal cancer cells with elevated mitotic indices. In addition to these single-agent effects, [Ru(phen)2(tpphz)]2+ functions as a radiosensitizer with efficiency comparable to cisplatin, which occurs through a synergistic enhancement of DNA damage. These results establish that DNA replication is the target for [Ru(phen)2(tpphz)]2+ and provide the first experimental evidence that ruthenium-based intercalation targets multiple genome integrity pathways in cancer cells, thereby achieving enhanced selectivity compared to existing DNA-damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Martin R Gill
- CRUK/MRC Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK . ;
| | - Paul J Jarman
- Department of Chemistry , University of Sheffield , Sheffield , UK
- Department of Biomedical Science , University of Sheffield , Sheffield , UK
| | - Swagata Halder
- CRUK/MRC Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK . ;
| | - Michael G Walker
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Hiwa K Saeed
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Jim A Thomas
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Carl Smythe
- Department of Biomedical Science , University of Sheffield , Sheffield , UK
| | - Kristijan Ramadan
- CRUK/MRC Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK . ;
| | - Katherine A Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK . ;
| |
Collapse
|
33
|
Bellam R, Jaganyi D, Mambanda A, Robinson R. Role of a 2,3-bis(pyridyl)pyrazinyl chelate bridging ligand in the reactivity of Ru(ii)–Pt(ii) dinuclear complexes on the substitution of chlorides by thiourea nucleophiles – a kinetic study. NEW J CHEM 2018. [DOI: 10.1039/c8nj02096e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Effect of a bridged ligand on the chloride substitution from hetero bimetallic Ru(ii)–Pt(ii)dichlo complexes by thiourea nucleolus was studied in a methanol medium (I = 0.10 M) under pseudo-first-order conditions.
Collapse
Affiliation(s)
- Rajesh Bellam
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Scottsville
- South Africa
| | | | - Allen Mambanda
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Scottsville
- South Africa
| | - Ross Robinson
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Scottsville
- South Africa
| |
Collapse
|
34
|
Derrat HS, Robertson CC, Meijer AJHM, Thomas JA. Turning intercalators into groove binders: synthesis, photophysics and DNA binding properties of tetracationic mononuclear ruthenium(ii)-based chromophore–quencher complexes. Dalton Trans 2018; 47:12300-12307. [DOI: 10.1039/c8dt02633e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite incorporating an extended planar polyaromatic ligand two newly synthesized RuII complexes are not DNA intercalators but groove binders.
Collapse
Affiliation(s)
- Hanan S. Derrat
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
- Department of Chemistry
| | | | | | - Jim A. Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| |
Collapse
|
35
|
Swavey S, Wang M, Lundy N, Allen J. Photoreactions of DNA with a bimetallic ruthenium(II) polypyridyl complex bridged by an organic chromophore. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Ramu V, Aute S, Taye N, Guha R, Walker MG, Mogare D, Parulekar A, Thomas JA, Chattopadhyay S, Das A. Photo-induced cytotoxicity and anti-metastatic activity of ruthenium(ii)–polypyridyl complexes functionalized with tyrosine or tryptophan. Dalton Trans 2017; 46:6634-6644. [DOI: 10.1039/c7dt00670e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synergestic effect of oxygen, light, and photosensitizer has found application in photodyanmic therapy (PDT).
Collapse
Affiliation(s)
- Vadde Ramu
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Sunil Aute
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | - Nandaraj Taye
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
| | - Rweetuparna Guha
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
| | | | - Devaraj Mogare
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
| | - Apoorva Parulekar
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
| | - Jim A. Thomas
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Laboratory
- National Centre for Cell Science
- Pune
- India
- Indian Institute of Chemical Biology
| | - Amitava Das
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
- CSIR-Central Salt and marine Chemicals Research Institute
| |
Collapse
|
37
|
Gotham VJB, Hobbs MC, Burgin R, Turton D, Smythe C, Coldham I. Synthesis and activity of a novel inhibitor of nonsense-mediated mRNA decay. Org Biomol Chem 2016; 14:1559-63. [PMID: 26740124 PMCID: PMC4730866 DOI: 10.1039/c5ob02482j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A new route to a tetracyclic lactam was developed and the product, called VG1, was found to inhibit nonsense-mediated mRNA decay at μM concentrations.
During efforts to prepare the known compound NMDI1, a new tetracyclic compound, called VG1, was prepared in six steps. This compound was found to have good activity as an inhibitor of nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Victoria J B Gotham
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK. and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melanie C Hobbs
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Ryan Burgin
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - David Turton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Iain Coldham
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
38
|
Pal S, Ramu V, Taye N, Mogare DG, Yeware AM, Sarkar D, Reddy DS, Chattopadhyay S, Das A. GSH Induced Controlled Release of Levofloxacin from a Purpose-Built Prodrug: Luminescence Response for Probing the Drug Release in Escherichia coli and Staphylococcus aureus. Bioconjug Chem 2016; 27:2062-70. [PMID: 27506475 DOI: 10.1021/acs.bioconjchem.6b00324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluoroquinolones are third-generation broad spectrum bactericidal antibiotics and work against both Gram-positive and Gram-negative bacteria. Levofloxacin (L), a fluoroquinolone, is widely used in anti-infective chemotherapy and treatment of urinary tract infection and pneumonia. The main pathogen for urinary tract infections is Escherichia coli, and Streptococcus pneumoniae is responsible for pneumonia, predominantly a lower respiratory tract infection. Poor permeability of L leads to the use of higher dose of this drug and excess drug in the outer cellular fluid leads to central nervous system (CNS) abnormality. One way to counter this is to improve the lipophilicity of the drug molecule, and accordingly, we have synthesized two new Levofloxacin derivatives, which participated in the spatiotemporal release of drug via disulfide bond cleavage induced by glutathione (GSH). Recent studies with Streptococcus mutants suggest that it is localized in epithelial lining fluid (ELF) of the normal lower respiratory tract and the effective [GSH] in ELF is ∼430 μM. E. coli typically cause urinary tract infections and the concentration of GSH in porcine bladder epithelium is reported as 0.6 mM for a healthy human. Thus, for the present study we have chosen two important bacteria (Gram + ve and Gram - ve), which are operational in regions having high extracellular GSH concentration. Interestingly, this supports our design of new lipophilic Levofloxacin based prodrugs, which released effective drug on reaction with GSH. Higher lipophilicity favored improved uptake of the prodrugs. Site specific release of the drug (L) could be achieved following a glutathione mediated biochemical transformation process through cleavage of a disulfide bond of these purpose-built prodrugs. Further, appropriate design helped us to demonstrate that it is possible also to control the kinetics of the drug release from respective prodrugs. Associated luminescence enhancement helps in probing the release of the drug from the prodrug in bacteria and helps in elucidating the mechanistic pathway of the transformation. Such an example is scarce in the contemporary literature.
Collapse
Affiliation(s)
- Suman Pal
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Vadde Ramu
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Nandaraj Taye
- Chromatin and Disease Biology Lab, National Centre for Cell Science , Ganeshkhind, Pune 411007, India
| | - Devraj G Mogare
- Chromatin and Disease Biology Lab, National Centre for Cell Science , Ganeshkhind, Pune 411007, India
| | - Amar M Yeware
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dhiman Sarkar
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Samit Chattopadhyay
- Chromatin and Disease Biology Lab, National Centre for Cell Science , Ganeshkhind, Pune 411007, India
| | - Amitava Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.,Central Salt and Marine Chemical Research Institute , G.B. Marg, Bhavnagar 364002, India
| |
Collapse
|
39
|
Gill MR, Harun SN, Halder S, Boghozian RA, Ramadan K, Ahmad H, Vallis KA. A ruthenium polypyridyl intercalator stalls DNA replication forks, radiosensitizes human cancer cells and is enhanced by Chk1 inhibition. Sci Rep 2016; 6:31973. [PMID: 27558808 PMCID: PMC4997316 DOI: 10.1038/srep31973] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022] Open
Abstract
Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
Collapse
Affiliation(s)
- Martin R. Gill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Siti Norain Harun
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Malaysia
| | - Swagata Halder
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ramon A. Boghozian
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Kristijan Ramadan
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Haslina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Malaysia
| | - Katherine A. Vallis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Chen J, Li K, Swavey S, Church KM. A Ruthenium(II) Polypyridyl Nucleoside as a Potential Photodynamic Therapy Agent. ChemistrySelect 2016. [DOI: 10.1002/slct.201600126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun Chen
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| | - Kaiyu Li
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| | - Shawn Swavey
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| | - Kevin M. Church
- University of Dayton SupraMolecular Applied; Research and Technology Center; Department of Chemistry; University of Dayton; 300 College Park Dayton, OH 45469 USA
| |
Collapse
|
41
|
Karmakar S, Purkait K, Chatterjee S, Mukherjee A. Anticancer activity of a cis-dichloridoplatinum(ii) complex of a chelating nitrogen mustard: insight into unusual guanine binding mode and low deactivation by glutathione. Dalton Trans 2016; 45:3599-615. [DOI: 10.1039/c5dt04459f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A platinum(ii) complex (2) of a chelating nitrogen mustard shows potency against MIA PaCa2.2displays anti-angiogenic potential and displays excellent cytotoxicity profile even in presence of GSH in hypoxia.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Kallol Purkait
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Saptarshi Chatterjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur Campus
- Nadia-741246
- India
| |
Collapse
|
42
|
Burke BP, Seemann J, Archibald SJ. Advanced Chelator Design for Metal Complexes in Imaging Applications. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Ma L, Ma R, Wang Z, Yiu SM, Zhu G. Heterodinuclear Pt(iv)–Ru(ii) anticancer prodrugs to combat both drug resistance and tumor metastasis. Chem Commun (Camb) 2016; 52:10735-8. [DOI: 10.1039/c6cc04354b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Putting spear and shield together: heterodinuclear Pt(iv)–Ru(ii) complexes effectively and quickly kill cisplatin-resistant cancer cells and impede cancer cell migration.
Collapse
Affiliation(s)
- Lili Ma
- Department of Biology and Chemistry
- City University of Hong Kong
- China
| | - Rong Ma
- Department of Biology and Chemistry
- City University of Hong Kong
- China
| | - Zhigang Wang
- Department of Biology and Chemistry
- City University of Hong Kong
- China
| | - Shek-Man Yiu
- Department of Biology and Chemistry
- City University of Hong Kong
- China
| | - Guangyu Zhu
- Department of Biology and Chemistry
- City University of Hong Kong
- China
- City University of Hong Kong Shenzhen Research Institute
- Shenzhen
| |
Collapse
|
44
|
Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes. Molecules 2015; 20:17244-74. [PMID: 26393560 PMCID: PMC6332046 DOI: 10.3390/molecules200917244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022] Open
Abstract
Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.
Collapse
|
45
|
Ramu V, Ali F, Taye N, Garai B, Alam A, Chattopadhyay S, Das A. New imaging reagents for lipid dense regions in live cells and the nucleus in fixed MCF-7 cells. J Mater Chem B 2015; 3:7177-7185. [PMID: 32262824 DOI: 10.1039/c5tb01309g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new uracil (U) and 5-flurouracil (5-FU) labeled ruthenium(ii)-polypyridyl based cellular imaging reagents are reported. Confocal laser scanning microscopic images with live and paraformaldehyde (PFA) fixed MCF-7 cells are examined using these two low-cytotoxic reagents. Experimental results show that these two complexes, appropriately functionalized with U (1) and 5-FU (2), have specific affinity for the lipid dense regions like the endoplasmic reticulum, cell membrane, and cytoplasmic vacuoles in live MCF-7 cells, and dye internalization in these regions happened following an endocytosis pathway. Interestingly, these two complexes are found to be localized in the nucleus of the PFA fixed cells. For fixed cells, presumably the lipid layer disruption helped in the explicit localization of the complexes 1 and 2 in the cell nucleus through specific interaction with cellular DNA. Poor and non-specific internalization of an analogous model complex 3, without having a U or 5-FU moiety, reveals the definite influence of U or 5-FU as well as the role of lipophilicity of the respective complex 1 and 2 in the cellular internalization process. Apart from these, a large Stokes shift (∼160 nm) and an appreciably long lived 3MLCT excited state (∼320 ns) in aq. buffer medium (pH 7.4) are other key features for complexes 1 and 2. Unlike the common nuclear DNA staining reagents like DAPI, these low-cytotoxic reagents are found to be highly stable towards photo-bleaching upon irradiation with 455 nm at the MLCT band for these complexes.
Collapse
Affiliation(s)
- Vadde Ramu
- Organic Chemistry Division, National Chemical Laboratory, Pune, 411008, India.
| | | | | | | | | | | | | |
Collapse
|