1
|
Holzhauer L, Shekhovtsev V, Bruschi C, Gunther M, Fuhr O, Hodapp P, Bizzarri C, Wenzel W, Jung N, Bräse S. Identification of novel triazolylquinoxaline-based metal complexes supported by experimental and virtual screenings. Dalton Trans 2025. [PMID: 39831404 DOI: 10.1039/d4dt02068e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The formation of novel complexes from so far non-investigated ligands and different metal centers is important for the development of new functional materials such as (photo)catalysts or biologically active compounds. Still, promising strategies to quickly and systematically investigate the complexation behavior of selected ligands are rare. We developed an NMR-based screening approach to monitor changes within reaction mixtures containing metals and ligands on a small scale via a simple but reliable protocol. Based on the obtained data, we could draw conclusions on the formation of 2-(1',2',3'-triazol-1'yl)quinoxaline-based transition metal complexes. The NMR screening results obtained were confirmed by the repetition of selected experiments on a large scale, and wherever possible, the type of complex obtained was evaluated by crystal structure elucidation. We could show the versatile complexation of the selected ligands with copper, gold, and silver in a bridging, chelating, or monodentate manner. The calculated theoretical properties supported the experimental results and enabled initial in silico predictions of similar compounds before conducting the complexation experiments and structural analyses.
Collapse
Affiliation(s)
- Laura Holzhauer
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Vitalii Shekhovtsev
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Cecilia Bruschi
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Mathis Gunther
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Patrick Hodapp
- Institute for Biological Interfaces 3 - Soft Matter Synthesis Laboratory (IBG3-SML), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Holzhauer L, Liagre C, Fuhr O, Jung N, Bräse S. Scope of tetrazolo[1,5- a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof. Beilstein J Org Chem 2022; 18:1088-1099. [PMID: 36105720 PMCID: PMC9443424 DOI: 10.3762/bjoc.18.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
The conversion of tetrazolo[1,5-a]quinoxalines to 1,2,3-triazoloquinoxalines and triazoloimidazoquinoxalines under typical conditions of a CuAAC reaction has been investigated. Derivatives of the novel compound class of triazoloimidazoquinoxalines (TIQ) and rhenium(I) triazoloquinoxaline complexes as well as a new TIQ rhenium complex were synthesized. As a result, a small 1,2,3-triazoloquinoxaline library was obtained and the method could be expanded towards 4-substituted tetrazoloquinoxalines. The compatibility of various aliphatic and aromatic alkynes towards the reaction was investigated and the denitrogenative annulation towards imidazoloquinoxalines could be observed as a competing reaction depending on the alkyne concentration and the substitutions at the quinoxaline.
Collapse
Affiliation(s)
- Laura Holzhauer
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chloé Liagre
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Anithabanu P, Balasubramanian S, David Dayanidhi P, Nandhini T, Vaidyanathan VG. Physico-chemical characterization studies of collagen labelled with Ru(II) polypyridyl complex. Heliyon 2022; 8:e10173. [PMID: 36033328 PMCID: PMC9404281 DOI: 10.1016/j.heliyon.2022.e10173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The rich luminescence behaviour exerted by transition metal complexes has found significant role in the development of biomolecular and cellular probes. The conjugation of fluorophore to a protein has its own advantage over the label-free system due to its high sensitivity. While numerous proteins have been labelled with either organic or inorganic fluorophores, the conjugation of luminescent transition metal complexes with collagen has not yet been attempted. Here, in this study, the conjugation of a Ru(II) polypyridyl complex with collagen was carried out and its physico-chemical characterization was studied. The conjugation of Ru(II) to collagen was characterized by UV-Visible, fluorescence and ATR-FT-IR spectroscopy. The conjugation of Ru(II) did not alter the triple helical structure of the collagen as evidenced from CD spectral data. The luminescence behaviour of the Ru-tagged collagen was found to be similar to that of the commercially available fluorescein isothiocyanate (FITC) tagged collagen with increase in luminescence upon addition of collagenase. Gel-based collagenase assay showed that the digestion of collagen can be vizualized using UV light due to intrinsic fluorophore tag without carrying out the staining-destaining processes. Energy dispersive X-Ray analysis (EDAX) confirms the presence of Ru in Ru-collagen fibrils. To the best of our knowledge, this is the first report on the conjugation of a Ru(II) complex with the fibrous protein collagen that exhibits similar property as of FITC-collagen and can be used as an alternative.
Collapse
Affiliation(s)
- P Anithabanu
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Surabhya Balasubramanian
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - T Nandhini
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Newman B, Chen L, Henderson LC, Doeven EH, Francis PS, Hayne DJ. Water-Soluble Iridium(III) Complexes Containing Tetraethylene-Glycol-Derivatized Bipyridine Ligands for Electrogenerated Chemiluminescence Detection. Front Chem 2020; 8:583631. [PMID: 33195075 PMCID: PMC7593781 DOI: 10.3389/fchem.2020.583631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Four cationic heteroleptic iridium(III) complexes containing a 2,2′-bipyridine (bpy) ligand with one or two tetraethylene glycol (TEG) groups attached in the 4 or 4,4′ positions were synthesized to create new water-soluble electrogenerated chemiluminescence (ECL) luminophores bearing a convenient point of attachment for the development of ECL-labels. The novel TEG-derivatized bipyridines were incorporated into [Ir(C∧N)2(R-bpy-R′)]Cl complexes, where C∧N = 2-phenylpyridine anion (ppy) or 2-phenylbenzo[d]thiazole anion (bt), through reaction with commercially available ([Ir(C∧N)2(μ-Cl)]2 dimers. The novel [Ir(C∧N)2(Me-bpy-TEG)]Cl and [Ir(C∧N)2(TEG-bpy-TEG)]Cl complexes in aqueous solution largely retained the redox potentials and emission spectra of the parent [Ir(C∧N)2(Me-bpy-Me)]PF6 (where Me-bpy-Me = 4,4′methyl-2,2′-bipyridine) luminophores in acetonitrile, and exhibited ECL intensities similar to those of [Ru(bpy)3]2+ and the analogous [Ir(C∧N)2(pt-TEG]Cl complexes (where pt-TEG = 1-(TEG)-4-(2-pyridyl)-1,2,3-triazole). These complexes can be readily adapted for bioconjugation and considering the spectral distributions of [Ir(ppy)2(Me-bpy-TEG)]+ and [Ir(ppy)2(pt-TEG)]+, show a viable strategy to create ECL-labels with different emission colors from the same commercial [Ir(ppy)2(μ-Cl)]2 precursor.
Collapse
Affiliation(s)
- Ben Newman
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia.,Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Lifen Chen
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Egan H Doeven
- Center for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, VIC, Australia
| | - David J Hayne
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
6
|
Meng T, Liu T, Qin QP, Chen ZL, Zou HH, Wang K, Liang FP. Mitochondria-localizing dicarbohydrazide Ln complexes and their mechanism of in vitro anticancer activity. Dalton Trans 2020; 49:4404-4415. [DOI: 10.1039/d0dt00210k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dicarbohydrazide Ln complexes trigger SK-OV-3/DDP cell apoptosis via a mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Tong Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Zi-Lu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin 541004
- PR China
| |
Collapse
|
7
|
Chen L, Hayne DJ, Doeven EH, Agugiaro J, Wilson DJD, Henderson LC, Connell TU, Nai YH, Alexander R, Carrara S, Hogan CF, Donnelly PS, Francis PS. A conceptual framework for the development of iridium(iii) complex-based electrogenerated chemiluminescence labels. Chem Sci 2019; 10:8654-8667. [PMID: 31803440 PMCID: PMC6849491 DOI: 10.1039/c9sc01391a] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 01/29/2023] Open
Abstract
Translation of the highly promising electrogenerated chemiluminescence (ECL) properties of Ir(iii) complexes (with tri-n-propylamine (TPrA) as a co-reactant) into a new generation of ECL labels for ligand binding assays necessitates the introduction of functionality suitable for bioconjugation. Modification of the ligands, however, can affect not only the photophysical and electrochemical properties of the complex, but also the reaction pathways available to generate light. Through a combined theoretical and experimental study, we reveal the limitations of conventional approaches to the design of electrochemiluminophores and introduce a new class of ECL label, [Ir(C^N)2(pt-TOxT-Sq)]+ (where C^N is a range of possible cyclometalating ligands, and pt-TOxT-Sq is a pyridyltriazole ligand with trioxatridecane chain and squarate amide ethyl ester), which outperformed commercial Ir(iii) complex labels in two commonly used assay formats. Predicted limits on the redox potentials and emission wavelengths of Ir(iii) complexes capable of generating ECL via the dominant pathway applicable in microbead supported ECL assays were experimentally verified by measuring the ECL intensities of the parent luminophores at different applied potentials, and comparing the ECL responses for the corresponding labels under assay conditions. This study provides a framework to tailor ECL labels for specific assay conditions and a fundamental understanding of the ECL pathways that will underpin exploration of new luminophores and co-reactants.
Collapse
Affiliation(s)
- Lifen Chen
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - David J Hayne
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Egan H Doeven
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Johnny Agugiaro
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - David J D Wilson
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Luke C Henderson
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Timothy U Connell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton , Victoria 3168 , Australia
| | - Yi Heng Nai
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Richard Alexander
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| | - Serena Carrara
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Conor F Hogan
- Department of Chemistry and Physics , La Trobe Institute for Molecular Sciences (LIMS) , La Trobe University , Melbourne , Victoria 3086 , Australia
| | - Paul S Donnelly
- School of Chemistry , Bio21 Molecular Science and Biotechnology Institute , The University of Melbourne , Victoria 3010 , Australia
| | - Paul S Francis
- Deakin University , School of Life and Environmental Sciences , Centre for Regional and Rural Futures (CeRRF) , Institute for Frontier Materials (IFM) , Geelong , Victoria 3220 , Australia . ;
| |
Collapse
|
8
|
Kumar GR, Behera SK, Thilagar P. Room temperature phosphorescent triarylborane functionalized iridium complexes. Dalton Trans 2019; 48:6817-6823. [PMID: 31017596 DOI: 10.1039/c9dt00590k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a series of room temperature phosphorescent compounds 1-6 composed of triarylborane (TAB) and cyclometallated iridium complexes. The optical characteristics such as energy of transition and luminescence quantum yield of these compounds can be conveniently fine-tuned by judiciously varying the cyclometallating ligand and the spacer between boron and iridium centers. Compounds 1-6 exhibit bright phosphorescence with the emission color ranging from green to red under a N2 atmosphere. A maximum quantum yield of 0.95 was observed for complex 2. Complexes 1-6 exhibit a rare type of dual emission from singlet and triplet excited states under ambient conditions. The experimental observations are well supported by the theoretical calculations.
Collapse
Affiliation(s)
- George Rajendra Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | | | | |
Collapse
|
9
|
Omar SAE, Scattergood PA, McKenzie LK, Jones C, Patmore NJ, Meijer AJHM, Weinstein JA, Rice CR, Bryant HE, Elliott PIP. Photophysical and Cellular Imaging Studies of Brightly Luminescent Osmium(II) Pyridyltriazole Complexes. Inorg Chem 2018; 57:13201-13212. [PMID: 30351084 DOI: 10.1021/acs.inorgchem.8b01627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The series of complexes [Os(bpy)3- n(pytz) n][PF6]2 (bpy = 2,2'-bipyridyl, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole, 1 n = 0, 2 n = 1, 3 n = 2, 4 n = 3) were prepared and characterized and are rare examples of luminescent 1,2,3-triazole-based osmium(II) complexes. For 3 we present an attractive and particularly mild preparative route via an osmium(II) η6-arene precursor circumventing the harsh conditions that are usually required. Because of the high spin-orbit coupling constant associated with the Os(II) center the absorption spectra of the complexes all display absorption bands of appreciable intensity in the range of 500-700 nm corresponding to spin-forbidden ground-state-to-3MLCT transitions (MLCT = metal-to-ligand charge transfer), which occur at significantly lower energies than the corresponding spin-allowed 1MLCT transitions. The homoleptic complex 4 is a bright emitter (λmaxem = 614 nm) with a relatively high quantum yield of emission of ∼40% in deoxygenated acetonitrile solutions at room temperature. Water-soluble chloride salts of 1-4 were also prepared, all of which remain emissive in aerated aqueous solutions at room temperature. The complexes were investigated for their potential as phosphorescent cellular imaging agents, whereby efficient excitation into the 3MLCT absorption bands at the red side of the visible range circumvents autofluorescence from biological specimens, which do not absorb in this region of the spectrum. Confocal microscopy reveals 4 to be readily taken up by cancer cell lines (HeLa and EJ) with apparent lysosomal and endosomal localization, while toxicity assays reveal that the compounds have low dark and light toxicity. These complexes therefore provide an excellent platform for the development of efficient luminescent cellular imaging agents with advantageous photophysical properties that enable excitation and emission in the biologically transparent region of the optical spectrum.
Collapse
Affiliation(s)
| | | | - Luke K McKenzie
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism , University of Sheffield , Beech Hill Road , Sheffield S10 2RX , U.K
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | - Callum Jones
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism , University of Sheffield , Beech Hill Road , Sheffield S10 2RX , U.K
| | | | - Anthony J H M Meijer
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | - Julia A Weinstein
- Department of Chemistry , University of Sheffield , Brook Hill , Sheffield S3 7HF , U.K
| | | | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids, Department of Oncology and Metabolism , University of Sheffield , Beech Hill Road , Sheffield S10 2RX , U.K
| | | |
Collapse
|
10
|
Bright lights down under: Metal ion complexes turning the spotlight on metabolic processes at the cellular level. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Connell TU, Donnelly PS. Labelling proteins and peptides with phosphorescent d6 transition metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Sheet SK, Sen B, Aguan K, Khatua S. A cationic organoiridium(iii) complex-based AIEgen for selective light-up detection of rRNA and nucleolar staining. Dalton Trans 2018; 47:11477-11490. [DOI: 10.1039/c8dt02099j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclometalated Ir(iii) complex-based AIEgen has been developed to selectively detect and stain the cell rRNA which has been revealed by in vitro PL studies and cell imaging experiment.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Bhaskar Sen
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics
- North Eastern Hill University
- Shillong
- India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies
- Department of Chemistry
- North Eastern Hill University
- Shillong
- India
| |
Collapse
|
13
|
Scattergood PA, Sinopoli A, Elliott PI. Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Caporale C, Bader CA, Sorvina A, MaGee KDM, Skelton BW, Gillam TA, Wright PJ, Raiteri P, Stagni S, Morrison JL, Plush SE, Brooks DA, Massi M. Investigating Intracellular Localisation and Cytotoxicity Trends for Neutral and Cationic Iridium Tetrazolato Complexes in Live Cells. Chemistry 2017; 23:15666-15679. [PMID: 28782852 DOI: 10.1002/chem.201701352] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 12/20/2022]
Abstract
A family of five neutral cyclometalated iridium(III) tetrazolato complexes and their methylated cationic analogues have been synthesised and characterised. The complexes are distinguished by variations of the substituents or degree of π conjugation on either the phenylpyridine or tetrazolato ligands. The photophysical properties of these species have been evaluated in organic and aqueous media, revealing predominantly a solvatochromic emission originating from mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. These emissions are characterised by typically long excited-state lifetimes (∼hundreds of ns), and quantum yields around 5-10 % in aqueous media. Methylation of the complexes caused a systematic red-shift of the emission profiles. The behaviour and the effects of the different complexes were then examined in cells. The neutral species localised mostly in the endoplasmic reticulum and lipid droplets, whereas the majority of the cationic complexes localised in the mitochondria. The amount of complexes found within cells does not depend on lipophilicity, which potentially suggests diverse uptake mechanisms. Methylated analogues were found to be more cytotoxic compared to the neutral species, a behaviour that might to be linked to a combination of uptake and intracellular localisation.
Collapse
Affiliation(s)
- Chiara Caporale
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Christie A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Karen D M MaGee
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Brian W Skelton
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Todd A Gillam
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Phillip J Wright
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari"-, University of Bologna, viale del Risorgimento 4, Bologna, 40136, Italy
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sally E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Massimiliano Massi
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| |
Collapse
|
15
|
Büchel GE, Carney B, Tang J, Zeglis BM, Eppinger J, Reiner T. A Novel Technique for Generating and Observing Chemiluminescence in a Biological Setting. J Vis Exp 2017:54694. [PMID: 28362395 PMCID: PMC5407651 DOI: 10.3791/54694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Intraoperative imaging techniques have the potential to make surgical interventions safer and more effective; for these reasons, such techniques are quickly moving into the operating room. Here, we present a new approach that utilizes a technique not yet explored for intraoperative imaging: chemiluminescent imaging. This method employs a ruthenium-based chemiluminescent reporter along with a custom-built nebulizing system to produce ex vivo or in vivo images with high signal-to-noise ratios. The ruthenium-based reporter produces light following exposure to an aqueous oxidizing solution and re-reduction within the surrounding tissue. This method has allowed us to detect reporter concentrations as low as 6.9 pmol/cm2. In this work, we present a visual guide to our proof-of-concept in vivo studies involving subdermal and intravenous injections in mice. The results suggest that this technology is a promising candidate for further preclinical research and might ultimately become a useful tool in the operating room.
Collapse
Affiliation(s)
- Gabriel E Büchel
- Department of Radiology, Memorial Sloan Kettering Cancer Center; KAUST Catalysis Center, King Abdullah University of Science and Technology
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center; Department of Chemistry, Hunter College, and PhD Program in Chemistry, Graduate Center of City University of New York
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center; Department of Chemistry, Hunter College, and PhD Program in Chemistry, Graduate Center of City University of New York
| | - Jörg Eppinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center; Department of Radiology, Weill Cornell Medical College;
| |
Collapse
|
16
|
Investigating the cytotoxicity of platinum(II) complexes incorporating bidentate pyridyl-1,2,3-triazole “click” ligands. J Inorg Biochem 2016; 165:92-99. [DOI: 10.1016/j.jinorgbio.2016.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 01/04/2023]
|
17
|
Kumar SV, Scottwell SØ, Waugh E, McAdam CJ, Hanton LR, Brooks HJL, Crowley JD. Antimicrobial Properties of Tris(homoleptic) Ruthenium(II) 2-Pyridyl-1,2,3-triazole “Click” Complexes against Pathogenic Bacteria, Including Methicillin-Resistant Staphylococcus aureus (MRSA). Inorg Chem 2016; 55:9767-9777. [DOI: 10.1021/acs.inorgchem.6b01574] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sreedhar V. Kumar
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Synøve Ø. Scottwell
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Emily Waugh
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - C. John McAdam
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Lyall R. Hanton
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Heather J. L. Brooks
- Department
of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand
| | - James D. Crowley
- Department
of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
18
|
Büchel GE, Carney B, Shaffer TM, Tang J, Austin C, Arora M, Zeglis BM, Grimm J, Eppinger J, Reiner T. Near-Infrared Intraoperative Chemiluminescence Imaging. ChemMedChem 2016; 11:1978-82. [PMID: 27471800 DOI: 10.1002/cmdc.201600301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/15/2016] [Indexed: 11/11/2022]
Abstract
Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce(4+) in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9 pmol cm(-2) of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the in vivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies.
Collapse
Affiliation(s)
- Gabriel E Büchel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,King Abdullah University of Science and Technology (KAUST), KAUSTCatalysis Center (KCC), Thuwal, 23955-6900, Saudi Arabia
| | - Brandon Carney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and PhD Program in Chemistry, The Graduate Center of the, City University of New York, New York, NY, 10018, USA
| | - Travis M Shaffer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and PhD Program in Chemistry, The Graduate Center of the, City University of New York, New York, NY, 10018, USA
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christine Austin
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Manish Arora
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Department of Chemistry, Hunter College and PhD Program in Chemistry, The Graduate Center of the, City University of New York, New York, NY, 10018, USA
| | - Jan Grimm
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.,Program of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jörg Eppinger
- King Abdullah University of Science and Technology (KAUST), KAUSTCatalysis Center (KCC), Thuwal, 23955-6900, Saudi Arabia.
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Connell TU, White JM, Smith TA, Donnelly PS. Luminescent Iridium(III) Cyclometalated Complexes with 1,2,3-Triazole "Click" Ligands. Inorg Chem 2016; 55:2776-90. [PMID: 26938838 DOI: 10.1021/acs.inorgchem.5b02607] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of cyclometalated iridium(III) complexes with either 4-(2-pyridyl)-1,2,3-triazole or 1-(2-picolyl)-1,2,3-triazole ancillary ligands to give complexes with either 5- or 6-membered chelate rings were synthesized and characterized by a combination of X-ray crystallography, electron spin ionization-high-resolution mass spectroscopy (ESI-HRMS), and nuclear magnetic resonance (NMR) spectroscopy. The electronic properties of the complexes were probed using absorption and emission spectroscopy, as well as cyclic voltammetry. The relative stability of the complexes formed from each ligand class was measured, and their excited-state properties were compared. The emissive properties are, with the exception of complexes that contain a nitroaromatic substituent, insensitive to functionalization of the ancillary pyridyl-1,2,3-triazole ligand but tuning of the emission maxima was possible by modification of the cyclometalating ligands. It is possible to prepare a wide range of optimally substituted pyridyl-1,2,3-triazoles using copper Cu(I)-catalyzed azide alkyne cycloaddition, which is a commonly used "click" reaction, and this family of ligands represent an useful alternative to bipyridine ligands for the preparation of luminescent iridium(III) complexes.
Collapse
Affiliation(s)
- Timothy U Connell
- School of Chemistry and ‡Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Jonathan M White
- School of Chemistry and ‡Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Trevor A Smith
- School of Chemistry and ‡Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and ‡Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne , Melbourne, Victoria 3010, Australia
| |
Collapse
|