• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624693)   Today's Articles (2917)   Subscriber (49413)
For: Matsunami A, Kayaki Y, Ikariya T. Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation. Chemistry 2015;21:13513-7. [DOI: 10.1002/chem.201502412] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/07/2022]
Number Cited by Other Article(s)
1
Wen H, Liu Y, Liu S, Peng Z, Wu X, Yuan H, Jiang J, Li B. Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;20:e2305405. [PMID: 38072804 DOI: 10.1002/smll.202305405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/18/2023] [Indexed: 05/03/2024]
2
Kushwaha S, Awasthi MK, Das A, Pathak B, Singh SK. Diruthenium Catalyst for Hydrogen Production from Aqueous Formic Acid. Inorg Chem 2023;62:8080-8092. [PMID: 37196200 DOI: 10.1021/acs.inorgchem.2c04079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
3
Gomez-España A, Lopez-Morales JL, Español-Sanchez B, García-Orduña P, Lahoz FJ, Iglesias M, Fernández-Alvarez FJ. Iridium-(κ2-NSi) catalyzed dehydrogenation of formic acid: effect of auxiliary ligands on the catalytic performance. Dalton Trans 2023;52:6722-6729. [PMID: 37129044 DOI: 10.1039/d3dt00744h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
4
Tensi L, Yakimov AV, Trotta C, Domestici C, De Jesus Silva J, Docherty SR, Zuccaccia C, Copéret C, Macchioni A. Single-Site Iridium Picolinamide Catalyst Immobilized onto Silica for the Hydrogenation of CO2 and the Dehydrogenation of Formic Acid. Inorg Chem 2022;61:10575-10586. [PMID: 35766898 PMCID: PMC9348825 DOI: 10.1021/acs.inorgchem.2c01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
5
Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
6
Salman MS, Rambhujun N, Pratthana C, Srivastava K, Aguey-Zinsou KF. Catalysis in Liquid Organic Hydrogen Storage: Recent Advances, Challenges, and Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
7
Onishi N, Kanega R, Kawanami H, Himeda Y. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid. Molecules 2022;27:455. [PMID: 35056770 PMCID: PMC8781907 DOI: 10.3390/molecules27020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 11/16/2022]  Open
8
Guzman J, Urriolabeitia A, Polo V, Fernández Buenestado M, Iglesias M, Fernandez-Alvarez FJ. Dehydrogenation of Formic Acid Using Iridium-NSi Species as Catalyst Precursors. Dalton Trans 2022;51:4386-4393. [DOI: 10.1039/d1dt04335h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
9
Johnee Britto N, Jaccob M. DFT Probe into the Mechanism of Formic Acid Dehydrogenation Catalyzed by Cp*Co, Cp*Rh, and Cp*Ir Catalysts with 4,4'-Amino-/Alkylamino-Functionalized 2,2'-Bipyridine Ligands. J Phys Chem A 2021;125:9478-9488. [PMID: 34702035 DOI: 10.1021/acs.jpca.1c05542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
10
Mo XF, Liu C, Chen ZW, Ma F, He P, Yi XY. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO2 Hydrogenation under Ambient Conditions. Inorg Chem 2021;60:16584-16592. [PMID: 34637291 DOI: 10.1021/acs.inorgchem.1c02487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
11
Buil ML, Cabeza JA, Esteruelas MA, Izquierdo S, Laglera-Gándara CJ, Nicasio AI, Oñate E. Alternative Conceptual Approach to the Design of Bifunctional Catalysts: An Osmium Germylene System for the Dehydrogenation of Formic Acid. Inorg Chem 2021;60:16860-16870. [PMID: 34657436 PMCID: PMC8564761 DOI: 10.1021/acs.inorgchem.1c02893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
12
Patra S, Deka H, Singh SK. Bis-Imidazole Methane Ligated Ruthenium(II) Complexes: Synthesis, Characterization, and Catalytic Activity for Hydrogen Production from Formic Acid in Water. Inorg Chem 2021;60:14275-14285. [PMID: 34461719 DOI: 10.1021/acs.inorgchem.1c01784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
13
Shen X, Wang W, Wang Q, Liu J, Huang F, Sun C, Yang C, Chen D. Mechanism of iron complexes catalyzed in the N-formylation of amines with CO2 and H2: the superior performance of N-H ligand methylated complexes. Phys Chem Chem Phys 2021;23:16675-16689. [PMID: 34337631 DOI: 10.1039/d1cp00608h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
14
Johnee Britto N, Jaccob M. Deciphering the Mechanistic Details of Manganese-Catalyzed Formic Acid Dehydrogenation: Insights from DFT Calculations. Inorg Chem 2021;60:11038-11047. [PMID: 34240859 DOI: 10.1021/acs.inorgchem.1c00757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions. CHEMSUSCHEM 2021;14:2655-2681. [PMID: 33963668 DOI: 10.1002/cssc.202100602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
16
Nakamura H, Yoshida M, Matsunami A, Kuwata S, Kayaki Y. Oxy-tethered Cp*Ir(III) complex as a competent catalyst for selective dehydrogenation from formic acid. Chem Commun (Camb) 2021;57:5534-5537. [PMID: 33960337 DOI: 10.1039/d1cc01712h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
17
Menendez Rodriguez G, Zaccaria F, Tensi L, Zuccaccia C, Belanzoni P, Macchioni A. Understanding the Deactivation Pathways of Iridium(III) Pyridine-Carboxiamide Catalysts for Formic Acid Dehydrogenation. Chemistry 2021;27:2050-2064. [PMID: 33141938 DOI: 10.1002/chem.202003911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Indexed: 11/06/2022]
18
Wang WH, Wang H, Yang Y, Lai X, Li Y, Wang J, Himeda Y, Bao M. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic IrIII Complexes. CHEMSUSCHEM 2020;13:5015-5022. [PMID: 32662920 DOI: 10.1002/cssc.202001190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
19
Luque A, Iturmendi A, Rubio-Pérez L, Munárriz J, Polo V, Passarelli V, Iglesias M, Oro LA. Iridium catalysts featuring amine-containing ligands for the dehydrogenation of formic acid. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
20
Liu L, Gao H, Yang SQ, Chen XC, Lu Y, Liu Y, Xia F. Ir-catalyzed tandem hydroformylation-transfer hydrogenation of olefins with (trans-/cis-)formic acid as hydrogen source in presence of 1,10-phenanthroline. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
21
Guan C, Pan Y, Zhang T, Ajitha MJ, Huang K. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis. Chem Asian J 2020;15:937-946. [DOI: 10.1002/asia.201901676] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Indexed: 01/03/2023]
22
Kawanami H, Iguchi M, Himeda Y. Ligand Design for Catalytic Dehydrogenation of Formic Acid to Produce High-pressure Hydrogen Gas under Base-free Conditions. Inorg Chem 2020;59:4191-4199. [DOI: 10.1021/acs.inorgchem.9b01624] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
23
Iridium-Catalyzed Dehydrogenative Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
24
Tanaka K, Miki T, Murata K, Yamaguchi A, Kayaki Y, Kuwata S, Ikariya T, Watanabe M. Reductive Amination of Ketonic Compounds Catalyzed by Cp*Ir(III) Complexes Bearing a Picolinamidato Ligand. J Org Chem 2019;84:10962-10977. [DOI: 10.1021/acs.joc.9b01565] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Wang S, Huang H, Bruneau C, Fischmeister C. Iridium-Catalyzed Hydrogenation and Dehydrogenation of N-Heterocycles in Water under Mild Conditions. CHEMSUSCHEM 2019;12:179-184. [PMID: 30908892 DOI: 10.1002/cssc.201802275] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/22/2019] [Indexed: 05/20/2023]
26
Patra S, Awasthi MK, Rai RK, Deka H, Mobin SM, Singh SK. Dehydrogenation of Formic Acid Catalyzed by Water‐Soluble Ruthenium Complexes: X‐ray Crystal Structure of a Diruthenium Complex. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
27
Onishi N, Kanega R, Fujita E, Himeda Y. Carbon Dioxide Hydrogenation and Formic Acid Dehydrogenation Catalyzed by Iridium Complexes Bearing Pyridyl-pyrazole Ligands: Effect of an Electron-donating Substituent on the Pyrazole Ring on the Catalytic Activity and Durability. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801323] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
28
Sindhuja D, Vasanthakumar P, Bhuvanesh NSP, Karvembu R. An Acylthiourea Ligated Fe(II) Complex on Silica Nanoparticles for Transfer Hydrogenation of Carbonyl Compounds. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
29
Recent progress for reversible homogeneous catalytic hydrogen storage in formic acid and in methanol. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
30
Iturmendi A, Rubio-Pérez L, Pérez-Torrente JJ, Iglesias M, Oro LA. Impact of Protic Ligands in the Ir-Catalyzed Dehydrogenation of Formic Acid in Water. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
31
Matsunami A, Ikeda M, Nakamura H, Yoshida M, Kuwata S, Kayaki Y. Accessible Bifunctional Oxy-Tethered Ruthenium(II) Catalysts for Asymmetric Transfer Hydrogenation. Org Lett 2018;20:5213-5218. [PMID: 30102047 DOI: 10.1021/acs.orglett.8b02157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
32
Matsunami A, Kayaki Y, Kuwata S, Ikariya T. Nucleophilic Aromatic Substitution in Hydrodefluorination Exemplified by Hydridoiridium(III) Complexes with Fluorinated Phenylsulfonyl-1,2-diphenylethylenediamine Ligands. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
33
Dang LL, Lin YJ, Jin GX. Controllable assembly of rectangular macrocycles bearing different numbers of unsaturated sites based on half-sandwich iridium fragments. Dalton Trans 2018;47:6378-6385. [PMID: 29687128 DOI: 10.1039/c8dt00461g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Iglesias M, Oro LA. Mechanistic Considerations on Homogeneously Catalyzed Formic Acid Dehydrogenation. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800159] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
35
Menendez Rodriguez G, Domestici C, Bucci A, Valentini M, Zuccaccia C, Macchioni A. Hydrogen Liberation from Formic Acid Mediated by Efficient Iridium(III) Catalysts Bearing Pyridine-Carboxamide Ligands. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
36
Matsunami A, Kuwata S, Kayaki Y. Hydrogen Evolution from Formic Acid and Hydrodefluorination of Fluoroarenes by Bifunctional Iridium Catalysts—Beyond the Transfer Hydrogenation. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
37
Nakahara Y, Toda T, Matsunami A, Kayaki Y, Kuwata S. Protic NNN and NCN Pincer‐Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid. Chem Asian J 2017;13:73-80. [DOI: 10.1002/asia.201701474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/15/2017] [Indexed: 01/22/2023]
38
Cohen S, Borin V, Schapiro I, Musa S, De-Botton S, Belkova NV, Gelman D. Ir(III)-PC(sp3)P Bifunctional Catalysts for Production of H2 by Dehydrogenation of Formic Acid: Experimental and Theoretical Study. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
39
Sordakis K, Tang C, Vogt LK, Junge H, Dyson PJ, Beller M, Laurenczy G. Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols. Chem Rev 2017;118:372-433. [DOI: 10.1021/acs.chemrev.7b00182] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
40
Hatazawa M, Yoshie N, Seino H. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase. Inorg Chem 2017;56:8087-8099. [PMID: 28654277 DOI: 10.1021/acs.inorgchem.7b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
41
Matsunami A, Kuwata S, Kayaki Y. A Bifunctional Iridium Catalyst Modified for Persistent Hydrogen Generation from Formic Acid: Understanding Deactivation via Cyclometalation of a 1,2-Diphenylethylenediamine Motif. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01068] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
42
González Miera G, Martínez-Castro E, Martín-Matute B. Acceptorless Alcohol Dehydrogenation: OH vs NH Effect in Bifunctional NHC–Ir(III) Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00220] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
43
Wang L, Onishi N, Murata K, Hirose T, Muckerman JT, Fujita E, Himeda Y. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand. CHEMSUSCHEM 2017;10:1071-1075. [PMID: 27860395 DOI: 10.1002/cssc.201601437] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Indexed: 05/22/2023]
44
Dub PA, Scott BL, Gordon JC. Why Does Alkylation of the N-H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover? J Am Chem Soc 2017;139:1245-1260. [PMID: 28045260 DOI: 10.1021/jacs.6b11666] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
45
Guan C, Zhang DD, Pan Y, Iguchi M, Ajitha MJ, Hu J, Li H, Yao C, Huang MH, Min S, Zheng J, Himeda Y, Kawanami H, Huang KW. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand. Inorg Chem 2016;56:438-445. [DOI: 10.1021/acs.inorgchem.6b02334] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
46
Li J, Li J, Zhang D, Liu C. DFT Study on the Mechanism of Formic Acid Decomposition by a Well-Defined Bifunctional Cyclometalated Iridium(III) Catalyst: Self-Assisted Concerted Dehydrogenation via Long-Range Intermolecular Hydrogen Migration. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00564] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
47
Tondreau AM, Boncella JM. 1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2-Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00274] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
48
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angew Chem Int Ed Engl 2016;55:7296-343. [PMID: 27237963 DOI: 10.1002/anie.201507458] [Citation(s) in RCA: 470] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 12/20/2022]
49
Klankermayer J, Wesselbaum S, Beydoun K, Leitner W. Selektive katalytische Synthesen mit Kohlendioxid und Wasserstoff: Katalyse-Schach an der Nahtstelle zwischen Energie und Chemie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201507458] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
50
Tian C, Gong L, Meggers E. Chiral-at-metal iridium complex for efficient enantioselective transfer hydrogenation of ketones. Chem Commun (Camb) 2016;52:4207-10. [DOI: 10.1039/c6cc00972g] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA