1
|
Ren B, Sun Y, Xin P. Recent Advances in Artificial Anion Channels and Their Selectivity. Chempluschem 2024:e202400466. [PMID: 39212532 DOI: 10.1002/cplu.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nature performs critical physiological functions using a series of structurally and functionally diverse membrane proteins embedded in cell membranes, in which native ion protein channels modify the electrical potential inside and outside the cell membrane through charged ion movements. Consequently, the cell responds to external stimuli, playing an essential role in various life activities, such as nerve excitation conduction, neurotransmitter release, muscle movement, and control of cell differentiation. Supramolecular artificial channels, which mimic native protein channels in structure and function, adopt unimolecular or self-assembled structures, such as crown ethers, cyclodextrins, cucurbiturils, column arenes, cyclic peptide nanotubes, and metal-organic artificial channels, in channel construction strategies. Owing to the various driving forces involved, artificial synthetic ion channels can be divided into artificial cation and anion channels in terms of ion selectivity. Cation selectivity usually originates from ion coordination, whereas anion selectivity is related to hydrogen bonding, ion pairing, and anion-dipole interactions. Several studies have been conducted on artificial cation channels, and several reviews have summarized them in detail; however, the research on anions is still in the initial stages, and related reviews have rarely been reported. Hence, this article primarily focuses on the recent research on anion channels.
Collapse
Affiliation(s)
- Bowen Ren
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
2
|
Rather IA, Ahmad M, Talukdar P, Ali R. Probing and evaluating transmembrane chloride ion transport in double walled trifluorophenyl/phthalimide extended calix[4]pyrrole-based supramolecular receptors. J Mater Chem B 2024; 12:5950-5956. [PMID: 38804847 DOI: 10.1039/d3tb02880a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Therapeutic applications have sparked increased interest in the use of synthetic anion receptors for ion transport across lipid membranes. In this context, the construction of synthetic transmembrane transporters for the physiologically important chloride ion is currently of enormous interest. As a result, considerable effort is being devoted to the design and synthesis of artificial transmembrane chloride ion transporters. However, only inadequate progress has been made in developing macrocyclic chloride ion transporters using the fundamental principles of supramolecular chemistry, and hence this field entails fostering investigations. In this investigation, the synthesis of two new double walled trifluorophenyl/phthalimide extended calix[4]pyrrole (C4P) receptors (3 and 7) has been successfully reported. 1H-NMR titration and HRMS studies confirmed the 1 : 1 binding stoichiometry of the chloride ion with these receptors in the solution phase (only receptor 3b was studied by 1H-NMR). Regarding ion transport of 3b and 7, when studied in the HPTS-based vesicular system, 3b showed better activity with an EC50 value of 0.39 μM. The detailed ion transport studies on 3b have revealed that ion transport occurs through the Cl-/NO3- antiport mode.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India.
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| |
Collapse
|
3
|
Ahmad M, Roy NJ, Singh A, Mondal D, Mondal A, Vijayakanth T, Lahiri M, Talukdar P. Photocontrolled activation of doubly o-nitrobenzyl-protected small molecule benzimidazoles leads to cancer cell death. Chem Sci 2023; 14:8897-8904. [PMID: 37621434 PMCID: PMC10445434 DOI: 10.1039/d3sc01786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability. Here, in this work, we report o-nitrobenzyl-linked, benzimidazole-based singly and doubly protected photocaged protransporters 2a, 2b, 3a, and 3b, respectively, and benzimidazole-2-amine-based active transporters 1a-1d. Among the active compounds, trifluoromethyl-based anionophore 1a showed efficient ion transport activity (EC50 = 1.2 ± 0.2 μM). Detailed mechanistic studies revealed Cl-/NO3- antiport as the main ion transport process. Interestingly, double protection with photocages was found to be necessary to achieve the complete "OFF-state" that could be activated by external light. The procarriers were eventually activated inside the MCF-7 cancer cells to induce phototoxic cell death.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Naveen J Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Anurag Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 6997801 Israel
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
4
|
Mondal A, Ahmad M, Mondal D, Talukdar P. Progress and prospects toward supramolecular bioactive ion transporters. Chem Commun (Camb) 2023; 59:1917-1938. [PMID: 36691926 DOI: 10.1039/d2cc06761g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The majority of cellular physiological processes depend on natural ion channels, which are pore-forming membrane-embedded proteins that let ions flow across the cell membranes selectively. This selective movement of ions across the membranes balances the osmolality within and outside the cell. However, mutations in the genes that encode essential membrane transport proteins or structural reorganisation of these proteins can cause life-threatening diseases like cystic fibrosis. Artificial ion transport systems have opened up a way to replace dysfunctional natural ion channels to cure such diseases through channel replacement therapy. Moreover, recent research has also demonstrated the ability of these systems to kill cancer cells, reigniting interest in the field among scientists. Our contributions to the recent progress in the design and development of artificial chloride ion transporters and their effect on biological systems have been discussed in this review. This review would provide current vistas and future directions toward the development of novel ion transporters with improved biocompatibility and desired anti-cancer properties. Additionally, it strongly emphasises stimuli-responsive ion transport systems, which are crucial for obtaining target-specificity and may speed up the application of these systems in clinical therapeutics.
Collapse
Affiliation(s)
- Abhishek Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Manzoor Ahmad
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Debashis Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirkii Wigury 101, Warsaw 02-089, Poland
| | - Pinaki Talukdar
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
5
|
Ahmad M, Mondal D, Roy NJ, Vijayakanth T, Talukdar P. Reversible Stimuli‐Responsive Transmembrane Ion Transport using Phenylhydrazone‐Based Photoswitches. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manzoor Ahmad
- Indian Institute of Science Education and Research Pune Chemistry Department INDIA
| | - Debashis Mondal
- Indian Institute of Science Education and Research Pune Chemistry Department INDIA
| | - Naveen J. Roy
- Indian Institute of Science Education and Research Pune Chemistry Department INDIA
| | | | - Pinaki Talukdar
- Indian Institute of Science Education and Research Pune Department of Chemistry Main BuildingDr. Homi Bhabha Road, Pashan 411008 Pune INDIA
| |
Collapse
|
6
|
Malla JA, Ahmad M, Talukdar P. Molecular Self-Assembly as a Tool to Construct Transmembrane Supramolecular Ion Channels. CHEM REC 2021; 22:e202100225. [PMID: 34766703 DOI: 10.1002/tcr.202100225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Self-assembly has become a powerful tool for building various supramolecular architectures with applications in material science, environmental science, and chemical biology. One such area is the development of artificial transmembrane ion channels that mimic naturally occurring channel-forming proteins to unveil various structural and functional aspects of these complex biological systems, hoping to replace the defective protein channels with these synthetically accessible moieties. This account describes our recent approaches to construct supramolecular ion channels using synthetic molecules and their applications in medicinal chemistry.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
7
|
Yudina ON, Gening ML, Talukdar P, Gerbst AG, Tsvetkov YE, Nifantiev NE. Synthesis of a cyclic tetramer of 3-amino-3-deoxyallose with axially oriented amino groups. Carbohydr Res 2021; 511:108476. [PMID: 34800752 DOI: 10.1016/j.carres.2021.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022]
Abstract
A linear tetramer of β-(1 → 6)-linked 3-azido-3-deoxy-d-allose containing glycosyl donor and glycosyl acceptor functions in the terminal monosaccharide units was prepared starting from 3-azido-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-allofuranose. Cyclization of the linear tetramer under glycosylation conditions afforded the corresponding cyclic tetrasaccharide in 77% yield; its deprotection and reduction of the azido groups resulted in the formation of the cyclic tetramer of 3-amino-3-deoxy-d-allose with axial amino groups, a potential scaffold for the synthesis of tetravalent functional clusters.
Collapse
Affiliation(s)
- Olga N Yudina
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp, 119991, Moscow, Russian Federation.
| |
Collapse
|
8
|
Ahmad M, Chattopadhayay S, Mondal D, Vijayakanth T, Talukdar P. Stimuli-Responsive Anion Transport through Acylhydrazone-Based Synthetic Anionophores. Org Lett 2021; 23:7319-7324. [PMID: 34519509 DOI: 10.1021/acs.orglett.1c02249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoswitchable acylhydrazone-based synthetic anionophores are reported. Single-crystal X-ray structure and 1H NMR titration studies confirmed the chloride binding in solid and solution states. The ion transport activity of 1a was greatly attenuated through a phototriggered E to Z photoisomerization process, and the photoisomerized deactivated state showed high kinetic stability due to an intramolecular hydrogen bond. Switchable "OFF-ON" transport activity was achieved by the application of light and acid-catalyzed reactivation process.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
9
|
Noncatalytic selective 6-O-acetylation of methyl 2,3-di-O-benzoyl-α-d-glucopyranoside with acetic acid and acetic anhydride. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-3026-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Chizhov AO, Gening ML, Tsvetkov YE, Nifantiev NE. Tandem Electrospray Mass Spectrometry of Cyclic N-Substituted Oligo-β-(1→6)-D-glucosamines. Int J Mol Sci 2020; 21:E8284. [PMID: 33167433 PMCID: PMC7663939 DOI: 10.3390/ijms21218284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022] Open
Abstract
High-resolution electrospray mass spectra (MS and MS/MS CID) of positive ions of a series of protonated, ammoniated, and metallated molecules of cyclic N-substituted oligo-β-(1→6)-D-glucosamines differing in cycle size and N-acyl substituents were registered and interpreted. It was shown that the main type of fragmentation is a cleavage of glycosidic bonds of a cycle, and in some cases fragmentation of amide side chains is possible. If labile fragments in substituents (e.g., carbohydrate chains) are present, a decay of the cycle and an elimination of labile fragments are of comparable possibility. It was found that in some cases rearrangements with loss of an internal carbohydrate residue (IRL), or an internal part of a side chain, are feasible.
Collapse
Affiliation(s)
- Alexander O. Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninskii Prosp., Moscow 119991, Russia; (M.L.G.); (Y.E.T.); (N.E.N.)
| | | | | | | |
Collapse
|
11
|
Gening ML, Pier GB, Nifantiev NE. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:13-21. [PMID: 33388124 DOI: 10.1016/j.ddtec.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Poly-β-(1→6)-N-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by Staphylococcus aureus and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-N-acetylated derivative (dPNAG, containing around 15% of residual N-acetates) and their conjugates with Tetanus Toxoid (TT) revealed the crucial role of de-N-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH2) and nona-β-(1→6)-d-glucosamines (9GlcNH2) were tested in vitro and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH2-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.
Collapse
Affiliation(s)
- Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
12
|
Ahmad M, Metya S, Das A, Talukdar P. A Sandwich Azobenzene-Diamide Dimer for Photoregulated Chloride Transport. Chemistry 2020; 26:8703-8708. [PMID: 32129531 DOI: 10.1002/chem.202000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/15/2022]
Abstract
There has been a tremendous evolution for artificial ion transport systems, especially gated synthetic systems, which closely mimic their natural congeners. Herein, we demonstrate a trans-azobenzene-based photoregulatory anionophoric system that transports chloride by forming a sandwich dimeric complex. Further studies confirmed a carrier-mediated chloride-anion antiport mechanism, and the supramolecular interactions involved in chloride recognition within the sandwich complex were revealed from theoretical studies. Reversible trans-cis photoisomerization of the azobenzene was achieved without any significant contribution from the thermal cis→trans isomerization at room temperature. Photoregulatory transport activity across the lipid bilayer membrane inferred an outstanding off-on response of the azobenzene photoswitch.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Surajit Metya
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Aloke Das
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
13
|
Chizhov AO, Gening ML, Pinsker OA, Tsvetkov YE, Nifantiev NE. Isomeric Effects in Collisionally-induced Dissociation of β-(1→6)-linked Cyclic Tetrasaccharides of the Glcp2GlcpN2 Composition. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819130057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Chizhov AO, Tsvetkov YE, Nifantiev NE. Gas-Phase Fragmentation of Cyclic Oligosaccharides in Tandem Mass Spectrometry. Molecules 2019; 24:molecules24122226. [PMID: 31207901 PMCID: PMC6631135 DOI: 10.3390/molecules24122226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/05/2023] Open
Abstract
Modern mass spectrometry, including electrospray and MALDI, is applied for analysis and structure elucidation of carbohydrates. Cyclic oligosaccharides isolated from different sources (bacteria and plants) have been known for decades and some of them (cyclodextrins and their derivatives) are widely used in drug design, as food additives, in the construction of nanomaterials, etc. The peculiarities of the first- and second-order mass spectra of cyclic oligosaccharides (natural, synthetic and their derivatives and modifications: cyclodextrins, cycloglucans, cyclofructans, cyclooligoglucosamines, etc.) are discussed in this minireview.
Collapse
Affiliation(s)
- Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prosp., 47, 119991 Moscow, Russia.
| | - Yury E Tsvetkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prosp., 47, 119991 Moscow, Russia.
| | - Nikolay E Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninskii Prosp., 47, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Gas-phase fragmentation studies of cyclic oligo-β-(1→6)-D-glucosamines by electrospray ionization mass spectrometry using a hybrid high-resolution mass spectrometer. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2050-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Vereshchagin AN. Classical and interdisciplinary approaches to the design of organic and hybrid molecular systems. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1950-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Roy A, Gautam A, Malla JA, Sarkar S, Mukherjee A, Talukdar P. Self-assembly of small-molecule fumaramides allows transmembrane chloride channel formation. Chem Commun (Camb) 2018; 54:2024-2027. [DOI: 10.1039/c7cc08693h] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermolecular hydrogen bonding of N1,N4-dicyclohexylfumaramide favors the formation of self-assembled ion channels, which facilitates selective Cl− transport across a lipid bilayer membrane.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Amitosh Gautam
- Department of Chemistry, Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Sohini Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
18
|
Rational design of complex molecular structures starting from readily available precursors. Russ Chem Bull 2017. [DOI: 10.1007/s11172-016-1470-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Roy A, Biswas O, Talukdar P. Bis(sulfonamide) transmembrane carriers allow pH-gated inversion of ion selectivity. Chem Commun (Camb) 2017; 53:3122-3125. [DOI: 10.1039/c7cc00165g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bis(sulfonamide) based synthetic carriers are reported for inversion of ion selectivity upon deviation of pH within a narrow window. A liposomal membrane potential is also generated when potassium ions are passively transported by these carriers.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Oindrila Biswas
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
20
|
Roy A, Saha D, Mandal PS, Mukherjee A, Talukdar P. pH-Gated Chloride Transport by a Triazine-Based Tripodal Semicage. Chemistry 2016; 23:1241-1247. [DOI: 10.1002/chem.201605033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhati Roy
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Debasis Saha
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Prashant Sahebrao Mandal
- Department of Chemistry; Institute of Chemical Technology, Matunga; Mumbai- 400019, Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry; Indian Institute of Science Education and Research Pune; Dr. Homi Bhabha Road, Pashan Pune 411008, Maharashtra India
| |
Collapse
|
21
|
Saha T, Gautam A, Mukherjee A, Lahiri M, Talukdar P. Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity. J Am Chem Soc 2016; 138:16443-16451. [DOI: 10.1021/jacs.6b10379] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tanmoy Saha
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Amitosh Gautam
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Arnab Mukherjee
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Mayurika Lahiri
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Pinaki Talukdar
- Department
of Chemistry and ‡Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
22
|
Ananikov VP, Galkin KI, Egorov MP, Sakharov AM, Zlotin SG, Redina EA, Isaeva VI, Kustov LM, Gening ML, Nifantiev NE. Challenges in the development of organic and hybrid molecular systems. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|