1
|
Gupta A, Saulanki P, Bharatam PV. Neutral Cyclic Nitreones: Electronic Structure Analysis Reveals an Unorthodox Perspective of Several Zwitterionic Heterocyclic Species. J Phys Chem A 2025; 129:2854-2865. [PMID: 40065583 DOI: 10.1021/acs.jpca.4c08235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Nitreones are compounds with the general formula L → N+ ← L'. These compounds exhibit medicinal properties and have found applications in phase transfer catalysis. A few nitreones are cyclic; protonated cycloguanil (an antimalarial agent) is the most prominent example. Recently, a few more cyclic compounds were experimentally reported, in which the central N+ was shown to exhibit nitreone character. This led to attention being paid to the chemistry of neutral cyclic nitreones. A thorough literature search led to two sets of cyclic nitreones: C → N ← C type and P → N ← P type. In this work, we report quantum chemical analysis in exploring the electronic structure of neutral cyclic nitreones. Molecular orbital analysis, electron density analysis, charge, electron localization function (ELF), complexation energy values, and Tolman electronic parameter (TEP) all indicate that the studied compounds do carry nitrogen in the N(I) oxidation state and the two lone pairs are at the central nitrogen; thus, they qualify to be considered as cyclic nitreones.
Collapse
Affiliation(s)
- Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali 160062 Punjab, India
| | - Pooja Saulanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali 160062 Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali 160062 Punjab, India
| |
Collapse
|
2
|
Patra N, Gupta A, Bharatam PV. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods. J Comput Chem 2025; 46:e27520. [PMID: 39476222 DOI: 10.1002/jcc.27520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 01/01/2025]
Abstract
Cyclic nitrenium ions containing five-membered and six-membered rings are available, however, the seven-membered cyclic nitrenium ions (azepinium ions) are rare. The chemistry of these species is related to their stability originating from the aromaticity due to 6π electrons. Very few theoretical and experimental studies have been conducted on the azepinium ions. Related clozapine and olanzapine cations (diazepinium ions) were observed during drug metabolism studies. In this work, quantum chemical analysis has been carried out to estimate the stability, aromaticity, and electrophilicity of several derivatives of azepinium ions. A few of the designed azepinium ions carry ΔES-T values in the range of 50 kcal/mol favoring singlet state; π donating groups at the 2nd position increase the singlet-triplet energy differences. Most of the substituents reduce the NICS(1) values compared to the parent system. Ring fusion with heterocyclic five-membered rings generally increases the aromaticity and the stability of the azepinium ion ring systems. The electrophilicity parameters estimated in terms of HIA, FIA, and ω values indicate that it is possible to fine-tune the chemical properties of azepinium ions with appropriate modulation.
Collapse
Affiliation(s)
- Nabajyoti Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
3
|
Mukhopadhyay J, Sahoo SC, Bharatam PV. (Imidazol-2-ylidene) → S coordination interactions and its modulation upon S-oxidation. Dalton Trans 2024; 53:17050-17058. [PMID: 39356278 DOI: 10.1039/d4dt02286f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
(NHC) → E coordination interactions are being explored in many chemical species, including carbones and nitreones. (NHC) → S interactions are rare, but increasing attention is being paid to the compounds containing such interactions. The electron deficiency at the S centre is responsible for triggering electron donation from the NHC unit in (NHC) → SR(+) systems. It is well known that the positive charge at the sulfur centre increases upon single oxidation and further increases upon double oxidation. This implies that (NHC) → S interactions may become explicit after S-oxidation in the (NHC) → SR(+) systems. To explore this hypothesis, we performed quantum chemical design and synthesis of (NHC) → SR(+), (NHC) → S(O)R(+), and (NHC) → S(O)2R(+) complexes in which the ligands are imidazol-2-ylidene derivatives. Eight derivatives of the (imidazol-2-ylidene) → SR(+) systems were generated, and their sulfoxide and sulfone derivatives were obtained by oxidation using urea-H2O2 and mCPBA, respectively. The crystal structures of three compounds belonging to a series were determined. A comparison of the geometric, energetic and electronic characteristics confirmed the hypothesis that the (NHC) → S coordination interaction becomes comparatively stronger with an increase in oxygen atoms at the sulfur centre.
Collapse
Affiliation(s)
- Joy Mukhopadhyay
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160062, India.
| |
Collapse
|
4
|
Mukhopadhyay J, Bhagat S, Sahoo SC, Bharatam PV. L→S Coordination Complexes Containing Benzothiazol-2-ylidene Ligand: Quantum Chemical Analysis and Synthesis. Chempluschem 2024; 89:e202400150. [PMID: 38554142 DOI: 10.1002/cplu.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/01/2024]
Abstract
(NHC)→E coordination interactions were known where NHC is an N-heterocyclic carbene, and E is a main group element (B, C, N, Si, P). Recently, it was suggested that compounds with (NHC)→S coordination chemistry are also possible. This work reports quantum chemical analysis and synthesis of (NHC)→S-R(+) complexes in which benzothiazol-2-ylidene acts as a ligand. A Density functional study established that (NHC)→S interaction can best be described as a coordination interaction. Synthetic efforts were made, initially, to generate divalent sulfur compounds containing benzothiazole substituents. N-alkylation of the heterocyclic ring in these sulfides using methyl triflate led to the generation of the desired products with (NHC)→S coordination chemistry, which involves the in situ generation of NHC ring ligands. The observed changes in the 13C NMR spectra, before and after methylation, confirmed the change in the electronic character of the C-S bond from a covalent character to a coordination character.
Collapse
Affiliation(s)
- Joy Mukhopadhyay
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Srikant Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| |
Collapse
|
5
|
Wanjari PJ, Rath A, Sathe RY, Bharatam PV. Identification of CYP3A4 inhibitors as potential anti-cancer agents using pharmacoinformatics approach. J Mol Model 2023; 29:156. [PMID: 37097473 DOI: 10.1007/s00894-023-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Biguanide derivatives exhibit a wide variety of therapeutic applications, including anti-cancer effects. Metformin is an effective anti-cancer agent against breast cancer, lung cancer, and prostate cancer. In the crystal structure (PDB ID: 5G5J), it was found that metformin is found in the active site of CYP3A4, and the associated anti-cancer effect was explored. Taking clues from this work, pharmacoinformatics research has been carried out on a series of known and virtual biguanide, guanylthiourea (GTU), and nitreone derivatives. This exercise led to the identification of more than 100 species that exhibit greater binding affinity toward CYP3A4 in comparison to that of metformin. Selected six molecules were subjected to molecular dynamics simulations, and the results are presented in this work.
Collapse
Affiliation(s)
- Pravin J Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Asutosh Rath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Rohit Y Sathe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
6
|
Ovais Dar M, Kapse RY, Dubey G, Singh T, Thiruvenkatam V, Bharatam PV. Electronic Structure Analysis and Synthesis of Nitroso
N
‐Heterocyclic Imines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammad Ovais Dar
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| | - Rahul Y. Kapse
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| | - Gurudutt Dubey
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
- Current address Discipline of Chemistry Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Tejender Singh
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
- Current address Tata Institute of Fundamental Research (TIFR) Hyderabad Gopanpally Hyderabad 500046 Telangana India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 Gujarat India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Sector 67, S.A.S. Nagar 160062 Punjab India
| |
Collapse
|
7
|
Pilathottathil F, Unnikrishnan S, Kaliyamoorthy A. Heteroarylation of Sulfenate Ions In Situ Generated from β-Sulfinyl Esters under Transition-Metal-Free Conditions. J Org Chem 2022; 87:14980-14990. [PMID: 36268936 DOI: 10.1021/acs.joc.2c02153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heteroaryl sulfoxides are an integral part of several bioactive molecules and pharmaceuticals. We have described a transition-metal-free route for the direct sulfinylation of 2-halobenzothiazoles and 2-halobenzimidazoles using β-sulfinyl esters as the source of the sulfenate ion in the presence of a Brønsted base such as LiOtBu, and the corresponding heteroaryl sulfoxides were isolated in yields of 30 to 94%. Moreover, we hypothesized a plausible concerted nucleophilic aromatic substitution (cSNAr) pathway for the direct incorporation of sulfinyl functionality into the 2-haloheteroarenes.
Collapse
Affiliation(s)
- Fathima Pilathottathil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Sreelakshmi Unnikrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| | - Alagiri Kaliyamoorthy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Kerala 695551, India
| |
Collapse
|
8
|
Wanjari PJ, Saha N, Dubey G, Bharatam PV. Metal-free methods for the generation of benzimidazoles and 2-aminobenzimidazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Tian J, Cordier M, Bour C, Auffrant A, Gandon V. A cyclic divalent N(I) species isoelectronic to carbodiphosphoranes. Chem Commun (Camb) 2022; 58:5741-5744. [PMID: 35466973 DOI: 10.1039/d2cc01637k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a rare type of diphosphazenium cation is described. Its synthesis features a unique oxidative dealkylation of an iminophosphorane-phosphole by a silver(I) salt. DFT study of this compound reveals the low valent character of the N(I) center.
Collapse
Affiliation(s)
- Jiaxin Tian
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| |
Collapse
|
10
|
Dubey G, Mahawar N, Singh T, Saha N, Sahoo SC, Bharatam PV. Thiazetidin-2-ylidenes as four membered N-heterocyclic carbenes: theoretical studies and the generation of complexes with N + center. Phys Chem Chem Phys 2022; 24:629-633. [PMID: 34933326 DOI: 10.1039/d1cp04732a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thiazetidin-2-ylidenes have been designed as four membered N-heterocyclic carbenes (NHCs) using quantum chemical studies. These species are smaller analogs of thiazol-2-ylidenes, possess high singlet stability (57 kcal mol-1) and large nucleophilicity (3.4 eV). The possible existence of these carbenes has been established by synthesizing and crystalizing compounds with NHC→N+←(thiazetidin-2-ylidene) coordination bonds.
Collapse
Affiliation(s)
- Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160062, Punjab, India.
| | - Nutan Mahawar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160062, Punjab, India.
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160062, Punjab, India.
| | - Nirjhar Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160062, Punjab, India.
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar-160062, Punjab, India.
| |
Collapse
|
11
|
Deb R, Balakrishna P, Majumdar M. Recent Developments in the Chemistry of Pn(I) (Pn=N, P, As, Sb, Bi) Cations. Chem Asian J 2021; 17:e202101133. [PMID: 34786856 DOI: 10.1002/asia.202101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Indexed: 12/16/2022]
Abstract
The Group 15 Pn(I) cations (Pn=N, P, As, Sb and Bi), which are isoelectronic with the donor-stabilized carbones, have emerged recently. Despite the presence of two lone pair of electrons, the Pn(I) cations are weakly nucleophilic due to their inherent positive charge. Strongly electron-donating supporting ligands including zwitterionic forms have been used to enhance their Lewis basicity. Furthermore, the chelating effect of cyclic ligand systems proved effective in increasing their nucleophilicity. The strategies involved in successfully isolating the fleeting Sb(I) and Bi(I) cations as the recent most achievements in this field have been discussed. The syntheses, structure, bonding situations and reactivity of the Pn(I) cations are discussed. An outlook on the periodic trends and future applications of these electronically unique electron-rich cationic moieties have been provided.
Collapse
Affiliation(s)
- Rahul Deb
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| | - P Balakrishna
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| |
Collapse
|
12
|
Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV. Mesoionic and N-Heterocyclic Carbenes Coordinated N + Center: Experimental and Computational Analysis. Chempluschem 2021; 86:1416-1420. [PMID: 34636173 DOI: 10.1002/cplu.202100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
N-Heterocyclic carbenes, carbocyclic carbenes, remote N-heterocyclic carbenes and N-heterocyclic silylenes are known to form L→N+ coordination bonds. However, mesoionic carbenes (MICs) are not reported to form coordination bonds with cationic nitrogen. Herein, synthesis and quantum chemical studies were performed on 1,2,3-triazol-5-ylidene stabilized N+ center. Six compounds with MIC→N+ ←NHC were synthesized. Density functional theory calculations and energy decomposition analysis were carried out to explore the bonding situation between MIC and N+ center. The C→N+ bond lengths were in the range of 1.295-1.342 Å and bond dissociation energies were <400 kcal/mol. Natural bond orbital analysis supported the presence of excess electron density (>3 electrons) at the N+ center. The computational and X-ray diffraction analysis results confirmed the presence of divalent NI character of center nitrogen and MIC→N+ ←NHC coordination interactions.
Collapse
Affiliation(s)
- Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Shruti Awari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| |
Collapse
|
13
|
Singh T, Sahoo SC, Bharatam PV. Compound with possible N → N coordination bond: Synthesis, crystal structure and electronic structure analysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Munz D, Meyer K. Charge frustration in ligand design and functional group transfer. Nat Rev Chem 2021; 5:422-439. [PMID: 37118028 DOI: 10.1038/s41570-021-00276-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Molecules with different resonance structures of similar importance, such as heterocumulenes and mesoionics, are prominent in many applications of chemistry, including 'click chemistry', photochemistry, switching and sensing. In coordination chemistry, similar chameleonic/schizophrenic entities are referred to as ambidentate/ambiphilic or cooperative ligands. Examples of these had remained, for a long time, limited to a handful of archetypal compounds that were mere curiosities. In this Review, we describe ambiphilicity - or, rather, 'charge frustration' - as a general guiding principle for ligand design and functional group transfer. We first give a historical account of organic zwitterions and discuss their electronic structures and applications. Our discussion then focuses on zwitterionic ligands and their metal complexes, such as those of ylidic and redox-active ligands. Finally, we present new approaches to single-atom transfer using cumulated small molecules and outline emerging areas, such as bond activation and stable donor-acceptor ligand systems for reversible 1e- chemistry or switching.
Collapse
|
15
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
16
|
Quantum chemical study in exploring the role of donor→acceptor interactions in 1,3-bis carbene-stabilized guanidinium cations. J Mol Model 2021; 27:87. [PMID: 33598784 DOI: 10.1007/s00894-021-04707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Guanidinium species are highly basic and hence mostly exist in cationic state. Because these cations carry electron-deficient centers, they can be stabilized with the help of electron-donating ligands like N-heterocyclic carbenes. A few novel guanidinium cationic species stabilized by electron-donating ligands were designed and quantum chemically evaluated. It was shown that strong hydrogen bonds and tautomerism are the important characteristics of these species. Further, the possibility of donor→acceptor coordination interactions in these species have been explored between the electron-donating carbenes and the central guanidinium unit. The results suggest that the title compounds can be considered as ligand-stabilized guanidinium cations similar to the ligand-stabilized N+ and N3+ centers.
Collapse
|
17
|
Siddiqui MM, Sarkar SK, Nazish M, Morganti M, Köhler C, Cai J, Zhao L, Herbst-Irmer R, Stalke D, Frenking G, Roesky HW. Donor-Stabilized Antimony(I) and Bismuth(I) Ions: Heavier Valence Isoelectronic Analogues of Carbones. J Am Chem Soc 2021; 143:1301-1306. [DOI: 10.1021/jacs.0c12084] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mujahuddin M. Siddiqui
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Samir Kumar Sarkar
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Mohd Nazish
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Massimiliano Morganti
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Christian Köhler
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Jiali Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic InnovationCenter for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Gernot Frenking
- Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Herbert W. Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Sofi FA, Bharatam PV. Synthesis of Drugs and Biorelevant N-heterocycles Employing Recent Advances in C-N Bond Formation. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200909114144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
C-N bond formation is a particularly important step in the generation of many
biologically relevant heterocyclic molecules. Several methods have been reported for this
purpose over the past few decades. Well-known named reactions like Ullmann-Goldberg
coupling, Buchwald-Hartwig coupling and Chan-Lam coupling are associated with the C-N
bond formation reactions. Several reviews covering this topic have already been published.
However, no comprehensive review covering the synthesis of drugs/ lead compounds using
the C-N bond formation reactions was reported. In this review, we cover many modern
methods of the C-N bond formation reactions, with special emphasis on metal-free and
green chemistry methods. We also report specific strategies adopted for the synthesis of
drugs, which involve the C-N bond formation reactions. Examples include anti-cancer,
antidepressant, anti-inflammatory, anti-atherosclerotic, anti-histaminic, antibiotics, antibacterial, anti-rheumatic,
antiepileptic and anti-diabetic agents. Many recently developed lead compounds generated using the C-N bond
formation reactions are also covered in this review. Examples include MAP kinase inhibitors, TRKs inhibitors,
Polo-like Kinase inhibitors and MPS1 inhibitors.
Collapse
Affiliation(s)
- Firdoos Ahmad Sofi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar 160 062, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S Nagar 160 062, Punjab, India
| |
Collapse
|
19
|
Wilson DWN, Myers WK, Goicoechea JM. Synthesis and decarbonylation chemistry of gallium phosphaketenes. Dalton Trans 2020; 49:15249-15255. [PMID: 33084675 DOI: 10.1039/d0dt03174g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of gallium phosphaketenyl complexes supported by a 1,2-bis(aryl-imino)acenaphthene ligand (Dipp-Bian) are reported. Photolysis of one such species induced decarbonylation to afford a gallium substituted diphosphene. Addition of Lewis bases, specifically trimethylphosphine and the gallium carbenoid Ga(Nacnac) (Nacnac = HC[C(Me)N-(C6H3)-2,6-iPr2]2), resulted in displacement of the phosphaketene carbonyl to yield base-stabilised phosphinidenes. In several of these transformations, the redox non-innocence of the Dipp-Bian ligand was found to give rise to radical intermediates and/or side-products.
Collapse
Affiliation(s)
- Daniel W N Wilson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | - William K Myers
- Department of Chemistry, University of Oxford, Centre for Advanced ESR, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
20
|
Patel N, Arfeen M, Singh T, Bhagat S, Sakhare A, Bharatam PV. Divalent N I Compounds: Identifying new Carbocyclic Carbenes to Design Nitreones using Quantum Chemical Methods. J Comput Chem 2020; 41:2624-2633. [PMID: 32964506 DOI: 10.1002/jcc.26417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Nitreones are compounds with oxidation state 1 at the nitrogen, these compounds carry formal positive charge as well as two lone pairs of electrons at nitrogen center. These compounds are also known as divalent NI compounds and can be represented with the general formula L → N+ ← L, where L is an electron donating ligand. In the recent past, several divalent NI compounds have been reported with L = N-heterocyclic carbene (NHC), remote N-heterocyclic carbene (rNHC), carbocyclic carbene (CCC) and diaminocarbene. Recently, our group reported that a novel six-membered CCC (cyclohexa-2,5-diene-4-[diaminomethynyl]-1-ylidene) can stabilize N+ center in nitreones. As an independent carbene, this species is very unstable. In this work, modulation of this CCC using (a) annulation, (b) heterocyclic ring modification, (c) substitutions adjacent to the carbenic carbon, (d) exocyclic double bond insertion and (e) ring contraction, has been reported. These modulations and quantum chemical analyses helped in the identification of five new six-membered CCCs which carry improved donation and stability properties. Further, these CCCs were employed in the design of new divalent NI compounds (nitreones) which carry coordination bonds between ligands and N+ center. The molecular and electronic structure properties, and the donor→acceptor coordination interactions present in the resultant low oxidation state divalent NI compounds have been explored.
Collapse
Affiliation(s)
- Neha Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
- Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bengaluru, Karnataka, India
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Shweta Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Ajay Sakhare
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| |
Collapse
|
21
|
Singh T, Bharatam PV. Donor→acceptor coordination interactions in 1,3-bis(NHC)triazenyl Cations: An electronic structure analysis. J Comput Chem 2019; 40:2207-2215. [PMID: 31144352 DOI: 10.1002/jcc.25872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022]
Abstract
Donor→acceptor coordination interactions (L → N) between ligands and nitrogen center as in L → N⊕ ← L were reported in the recent past. This article describes the possibility of L → N coordination interactions in triazenyl cation species L → N3 ⊕ ← L. A few 1,3-bis(NHC)triazenyl cation species were experimentally known, the electronic structure analysis reported in this work reveals the presence of L → N (donor→acceptor) interactions in these species. Molecular orbital analysis, NBO charge analysis, energy decomposition analysis, and so forth, confirm the possibility of L → N coordination bond character. Ten molecules with the general formula L → N3 ⊕ ← L have been designed carrying L → N3 ⊕ ← L interactions. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| |
Collapse
|
22
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Singh T, George A, Parameswaran P, Bharatam PV. Enols, Diamino Enols, and Breslow Intermediates: A Comparative Quantum Chemical Analysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tejender Singh
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67; 160 062 S.A.S. Nagar - Punjab India
| | - Anjana George
- Department of Chemistry; National Institute of Technology Calicut; NIT Calicut Campus P.O. 673 601 Kozhikode - Kerala India
| | - Pattiyil Parameswaran
- Department of Chemistry; National Institute of Technology Calicut; NIT Calicut Campus P.O. 673 601 Kozhikode - Kerala India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67; 160 062 S.A.S. Nagar - Punjab India
| |
Collapse
|
24
|
Chourasiya SS, Kathuria D, Wani AA, Bharatam PV. Azines: synthesis, structure, electronic structure and their applications. Org Biomol Chem 2019; 17:8486-8521. [DOI: 10.1039/c9ob01272a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Azines (2,3-diaza-1,3-butadienes): structure, electronic structure, tautomerism, and their applications in organic synthesis, medicinal chemistry and materials chemistry.
Collapse
Affiliation(s)
- Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Deepika Kathuria
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Aabid Abdullah Wani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| |
Collapse
|
25
|
Bhagat S, Arfeen M, Das G, Patel N, Bharatam PV. Electronic and ligating properties of carbocyclic carbenes: A theoretical investigation. J Comput Chem 2018; 40:726-733. [PMID: 30549074 DOI: 10.1002/jcc.25756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 11/05/2022]
Abstract
Carbocyclic carbenes (CCCs) are a class of nucleophilic carbenes which are very similar to N-heterocyclic carbenes (NHCs) in terms of their reactivity, but they do not contain a stabilizing heteroatom in their cyclic ring system. In this study, 17 representative known CCCs and 34 newly designed CCCs are evaluated using quantum chemical methods, and the results are compared in terms of their stability, nucleophilicity, and proton affinity (PA) parameters. The results are divided on the basis of ring size of the known and reported CCCs. The stability, nucleophilicity, PA, complexation energy, and bond strength-related parameters were estimated using M06/6-311++G(d,p) method. The results indicated that the CCCs known in the literature are strong σ-electron donating species and have considerable π-accepting properties. This study led to the design and identification of a few new CCCs with dimethylamine and diaminomethynyl substituents which can be singlet stable and are substantially nucleophilic. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shweta Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Gourav Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Neha Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
26
|
Abstract
Phase-transfer catalysts (PTCs), currently, are one of the most important tools of chemists for performing organic reactions. PTCs accelerate several types of reactions in biphasic systems, giving excellent yields of the desired product. Most of the PTCs belong to the general formula NR4+X-. In the recent past, several compounds possessing a novel scaffold with the general formula NL2+X- have been reported as PTCs. In the NL2+ species, a nitrogen atom with a formal positive charge accepts electron density from electron-donating ligands. Electronic structure studies reported in the literature confirmed the possibility of L → N coordination (donor-acceptor) interactions in these species, and thus, this class of compounds are known as divalent NI compounds. These species are reported to exhibit better catalytic potential in comparison to the traditional NR4+ systems. Some of the NL2+ systems are found to be useful in asymmetric phase-transfer catalysis. Thus, these systems offer extensive opportunities for exploring the catalytic properties and novel mechanistic aspects associated with their unique electronic structure. In this paper, the synthesis, electronic, and structural properties and the applications in catalysis of the NL2+-based PTCs are reviewed with their bright future scope in catalytic organic chemistry.
Collapse
Affiliation(s)
- Neha Patel
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, Sahibzada Ajit Singh Nagar 160 062 , Punjab , India
| | - Radhika Sood
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, Sahibzada Ajit Singh Nagar 160 062 , Punjab , India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Sector 67, Sahibzada Ajit Singh Nagar 160 062 , Punjab , India
| |
Collapse
|
27
|
Patel N, Arfeen M, Sood R, Khullar S, Chakraborti AK, Mandal SK, Bharatam PV. Can Remote N-Heterocyclic Carbenes Coordinate with Main Group Elements? Synthesis, Structure, and Quantum Chemical Analysis of N + -Centered Complexes. Chemistry 2018; 24:6418-6425. [PMID: 29504658 DOI: 10.1002/chem.201705999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/11/2022]
Abstract
Remote N-heterocyclic carbenes (rNHCs), such as N-methyl-4-pyridylidene, are known to form coordination complexes with TMs. Herein, it is established that rNHCs can also coordinate to the N+ centre. Synthesis of some novel divalent NI complexes with the general formula (rNHC)→N+ ←(NHC) and (rNHC)→N+ ←(rNHC) was achieved, and X-ray diffraction studies supported the coordination bond character between the rNHCs and the N+ centre. Quantum chemical analysis established the presence of divalent NI character at the central nitrogen in these systems.
Collapse
Affiliation(s)
- Neha Patel
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Minhajul Arfeen
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Radhika Sood
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Sadhika Khullar
- Department of Chemistry, D.A.V. University, Jalandhar-Pathankot National Highway, Jalandhar, 144012, Punjab, India
| | - Asit K Chakraborti
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Sanjay K Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Sector 81, S.A.S., Nagar, 140 308, Punjab, India
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| |
Collapse
|
28
|
|
29
|
|
30
|
Yang T, Andrada DM, Frenking G. Dative versus electron-sharing bonding in N-oxides and phosphane oxides R3EO and relative energies of the R2EOR isomers (E = N, P; R = H, F, Cl, Me, Ph). A theoretical study. Phys Chem Chem Phys 2018; 20:11856-11866. [DOI: 10.1039/c8cp00951a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Quantum chemical calculations using ab initio methods at the CCSD(T)/def2-TZVPP level and density functional theory using BP86 and M06-2X functionals in conjunction with def2-TZVPP basis sets have been carried out on the title molecules.
Collapse
Affiliation(s)
- Tao Yang
- Fachbereich Chemie
- Philipps-Universität Marburg
- Marburg 35032
- Germany
| | - Diego M. Andrada
- Fachbereich Chemie
- Philipps-Universität Marburg
- Marburg 35032
- Germany
| | - Gernot Frenking
- Fachbereich Chemie
- Philipps-Universität Marburg
- Marburg 35032
- Germany
- Institute of Advanced Synthesis
| |
Collapse
|
31
|
|
32
|
Morosaki T, Fujii T. Recent Advances in Heteroatom-Stabilized Carbones and Their Metal Complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2017. [DOI: 10.1016/bs.adomc.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
|
34
|
Karaaslan C, Kaiser M, Brun R, Göker H. Synthesis and potent antiprotozoal activity of mono/di amidino 2-anilinobenzimidazoles versus Plasmodium falciparum and Trypanosoma brucei rhodesiense. Bioorg Med Chem 2016; 24:4038-4044. [DOI: 10.1016/j.bmc.2016.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|