1
|
Sakallioglu IT, Barletta RG, Dussault PH, Powers R. Deciphering the mechanism of action of antitubercular compounds with metabolomics. Comput Struct Biotechnol J 2021; 19:4284-4299. [PMID: 34429848 PMCID: PMC8358470 DOI: 10.1016/j.csbj.2021.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB), one of the oldest and deadliest bacterial diseases, continues to cause serious global economic, health, and social problems. Current TB treatments are lengthy, expensive, and routinely ineffective against emerging drug resistant strains. Thus, there is an urgent need for the identification and development of novel TB drugs possessing comprehensive and specific mechanisms of action (MoAs). Metabolomics is a valuable approach to elucidating the MoA, toxicity, and potency of promising chemical leads, which is a critical step of the drug discovery process. Recent advances in metabolomics methodologies for deciphering MoAs include high-throughput screening techniques, the integration of multiple omics methods, mass spectrometry imaging, and software for automated analysis. This review describes recently introduced metabolomics methodologies and techniques for drug discovery, highlighting specific applications to the discovery of new antitubercular drugs and the elucidation of their MoAs.
Collapse
Affiliation(s)
- Isin T. Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, Lincoln, NE 68583-0905, USA
| | - Patrick H. Dussault
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
2
|
Hoki JS, Le HH, Mellott KE, Zhang YK, Fox BW, Rodrigues PR, Yu Y, Helf MJ, Baccile JA, Schroeder FC. Deep Interrogation of Metabolism Using a Pathway-Targeted Click-Chemistry Approach. J Am Chem Soc 2020; 142:18449-18459. [PMID: 33053303 DOI: 10.1021/jacs.0c06877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Untargeted metabolomics indicates that the number of unidentified small-molecule metabolites may exceed the number of protein-coding genes for many organisms, including humans, by orders of magnitude. Uncovering the underlying metabolic networks is essential for elucidating the physiological and ecological significance of these biogenic small molecules. Here we develop a click-chemistry-based enrichment strategy, DIMEN (deep interrogation of metabolism via enrichment), that we apply to investigate metabolism of the ascarosides, a family of signaling molecules in the model organism C. elegans. Using a single alkyne-modified metabolite and a solid-phase azide resin that installs a diagnostic moiety for MS/MS-based identification, DIMEN uncovered several hundred novel compounds originating from diverse biosynthetic transformations that reveal unexpected intersection with amino acid, carbohydrate, and energy metabolism. Many of the newly discovered transformations could not be identified or detected by conventional LC-MS analyses without enrichment, demonstrating the utility of DIMEN for deeply probing biochemical networks that generate extensive yet uncharacterized structure space.
Collapse
Affiliation(s)
- Jason S Hoki
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Karlie E Mellott
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Pedro R Rodrigues
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yan Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Maximilian J Helf
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat Chem 2019; 11:653-661. [PMID: 31182822 DOI: 10.1038/s41557-019-0276-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/26/2019] [Indexed: 11/09/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are giant enzyme machines that activate amino acids in an assembly line fashion. As NRPSs are not restricted to the incorporation of the 20 proteinogenic amino acids, their efficient manipulation would enable microbial production of a diverse range of peptides; however, the structural requirements for reprogramming NRPSs to facilitate the production of new peptides are not clear. Here we describe a new fusion point inside the condensation domains of NRPSs that results in the development of the exchange unit condensation domain (XUC) concept, which enables the efficient production of peptides, even containing non-natural amino acids, in yields up to 280 mg l-1. This allows the generation of more specific NRPSs, reducing the number of unwanted peptide derivatives, but also the generation of peptide libraries. The XUC might therefore be suitable for the future optimization of peptide production and the identification of bioactive peptide derivatives for pharmaceutical and other applications.
Collapse
|
4
|
Sibbersen C, Schou Oxvig AM, Bisgaard Olesen S, Nielsen CB, Galligan JJ, Jørgensen KA, Palmfeldt J, Johannsen M. Profiling of Methylglyoxal Blood Metabolism and Advanced Glycation End-Product Proteome Using a Chemical Probe. ACS Chem Biol 2018; 13:3294-3305. [PMID: 30508371 DOI: 10.1021/acschembio.8b00732] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methylglyoxal (MG) is quantitatively the most important precursor to advanced glycation end-products (AGEs), and evidence is accumulating that it is also a causally linked to diabetes and aging related diseases. Living systems primarily reside on the glyoxalase system to detoxify MG into benign d-lactate. The flux to either glycation or detoxification, accordingly, is a key parameter for how well a system handles the ubiquitous glyoxal burden. Furthermore, insight into proteins and in particular their individual modification sites are central to understanding the involvement of MG and AGE in diabetes and aging related diseases. Here, we present a simple method to simultaneously monitor the flux of MG both to d-lactate and to protein AGE formation in a biological sample by employing an alkyne-labeled methylglyoxal probe. We apply the method to blood and plasma to demonstrate the impact of blood cell glyoxalase activity on plasma protein AGE formation. We move on to isolate proteins modified by the MG probe and accordingly can present the first general inventory of more than 100 proteins and 300 binding sites of the methylglyoxal probe on plasma as well as erythrocytic proteins. Some of the data could be validated against a number of in vivo and in vitro targets for advanced glycation previously known from the literature; the majority of proteins and specific sites however were previously unknown and may guide future research into MG and AGE to elucidate how these are functionally linked to diabetic disease and aging.
Collapse
Affiliation(s)
- Christian Sibbersen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Anne-Mette Schou Oxvig
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Sarah Bisgaard Olesen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | | | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | | | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus 8200, Denmark
| |
Collapse
|
5
|
Gregor R, David S, Meijler MM. Chemical strategies to unravel bacterial-eukaryotic signaling. Chem Soc Rev 2018; 47:1761-1772. [PMID: 29260158 DOI: 10.1039/c7cs00606c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The common language of bacteria and higher life forms is a lexicon of small molecules that the research community is only beginning to decipher. While many new signaling molecules have been discovered in recent years, the identification of their targets is mostly lagging. This review will focus on the latest chemical-probe based research aimed at understanding how bacteria interact chemically with mammals and plants. In general, chemical biology strategies remain under-utilized in this complex field of research, with a few key exceptions, and we hope that this review encourages others to implement these techniques in their research. Specifically, we highlight the chemical biology techniques used in recent studies, especially activity-based protein profiling, that have been applied to unravel the chemical mechanisms of interkingdom interactions.
Collapse
Affiliation(s)
- R Gregor
- Department of Chemistry and National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| | | | | |
Collapse
|
6
|
Wesche F, He Y, Bode HB. Solid-phase enrichment and analysis of electrophilic natural products. Beilstein J Org Chem 2017; 13:405-409. [PMID: 28382178 PMCID: PMC5355884 DOI: 10.3762/bjoc.13.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
In search for new natural products, which may lead to the development of new drugs for all kind of applications, novel methods are needed. Here we describe the identification of electrophilic natural products in crude extracts via their reactivity against azide as a nucleophile followed by their subsequent enrichment using a cleavable azide-reactive resin (CARR). Using this approach, natural products carrying epoxides and α,β-unsaturated enones as well as several unknown compounds were identified in crude extracts from entomopathogenic Photorhabdus bacteria.
Collapse
Affiliation(s)
- Frank Wesche
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Yue He
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Review of sample preparation strategies for MS-based metabolomic studies in industrial biotechnology. Anal Chim Acta 2016; 938:18-32. [DOI: 10.1016/j.aca.2016.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
|
8
|
Castro-Falcón G, Hahn D, Reimer D, Hughes CC. Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action. ACS Chem Biol 2016; 11:2328-36. [PMID: 27294329 DOI: 10.1021/acschembio.5b00924] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
New methods are urgently needed to find novel natural products as structural leads for the development of new drugs against emerging diseases such as cancer and multiresistant bacterial infections. Here we introduce a reactivity-guided drug discovery approach for electrophilic natural products, a therapeutically relevant class of natural products that covalently modify their cellular targets, in crude extracts. Using carefully designed halogenated aromatic reagents, the process furnishes derivatives that are UV-active and highly conspicuous via mass spectrometry by virtue of an isotopically unique bromine or chlorine tag. In addition to the identification of high-value metabolites, the process facilitates the difficult task of structure elucidation by providing derivatives that are primed for X-ray crystallographic analysis. We show that a cysteine probe efficiently and chemoselectively labels enone-, β-lactam-, and β-lactone-based electrophilic natural products (parthenolide, andrographolide, wortmannin, penicillin G, salinosporamide), while a thiophenol probe preferentially labels epoxide-based electrophilic natural products (triptolide, epoxomicin, eponemycin, cyclomarin, salinamide). Using the optimized method, we were able to detect and isolate the epoxide-bearing natural product tirandalydigin from Salinispora and thereby link an orphan gene cluster to its gene product.
Collapse
Affiliation(s)
- Gabriel Castro-Falcón
- Center for Marine Biotechnology
and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Dongyup Hahn
- Center for Marine Biotechnology
and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Daniela Reimer
- Center for Marine Biotechnology
and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Chambers C. Hughes
- Center for Marine Biotechnology
and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Potter GT, Jayson GC, Miller GJ, Gardiner JM. An Updated Synthesis of the Diazo-Transfer Reagent Imidazole-1-sulfonyl Azide Hydrogen Sulfate. J Org Chem 2016; 81:3443-6. [DOI: 10.1021/acs.joc.6b00177] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Garrett T. Potter
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Gordon C. Jayson
- Institute
of Cancer Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester M20 4BX, U.K
| | - Gavin J. Miller
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - John M. Gardiner
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
10
|
Capehart SL, Carlson EE. Mass spectrometry-based assay for the rapid detection of thiol-containing natural products. Chem Commun (Camb) 2016; 52:13229-13232. [DOI: 10.1039/c6cc07111b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To expedite discovery of thiol-containing compounds, we devised a selective solid-supported reagent for their immobilization, followed by cleavage of a photocleavable linker to yield stable natural product conjugates for direct detection by mass spectrometry.
Collapse
Affiliation(s)
| | - Erin E. Carlson
- Department of Chemistry
- University of Minnesota
- SE Minneapolis
- USA
- Department of Medicinal Chemistry
| |
Collapse
|
11
|
Bozhüyük KAJ, Zhou Q, Engel Y, Heinrich A, Pérez A, Bode HB. Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. Curr Top Microbiol Immunol 2016; 402:55-79. [PMID: 28091935 DOI: 10.1007/82_2016_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the first natural products (NP) from Photorhabdus and Xenorhabdus bacteria have been known now for almost 30 years, a huge variety of new compounds have been identified in the last 5-10 years, mainly due to the application of modern mass spectrometry. Additionally, application of molecular methods that allow the activation of NP production in several different strains as well as efficient heterologous expression methods have led to the production and validation of many new compounds. In this chapter we discuss the benefit of using Photorhabdus as a model system for microbial chemical ecology. We also examine non-ribosomal peptide synthetases as the most important pathway for NP production. Finally, we discuss the origin and function of all currently known NPs and the development of the molecular and chemical tools used to identify these NPs faster.
Collapse
Affiliation(s)
- Kenan A J Bozhüyük
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Qiuqin Zhou
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Yvonne Engel
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Antje Heinrich
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Alexander Pérez
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|