1
|
Basavarajappa A, Wang X, Miljanić OŠ. Cycloglycolurils: Hybrid Glycoluril-Cyclobenzil Macrocycles. Org Lett 2024. [PMID: 38626464 DOI: 10.1021/acs.orglett.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Two novel glycoluril macrocycles have been synthesized from cyclotetrabenzil and cyclotribenzoin precursors using solvent-free condensations with urea. The crystal structure of the cyclotetra(p-phenylene)glycoluril macrocycle shows a twisted ring conformation, while that of the cyclotri(m-phenylene)glycoluril hybrid exhibits a distinct tubular supramolecular packing. These structures establish a potentially broad new class of macrocycles with intriguing guest binding properties owing to their available N-H motifs.
Collapse
Affiliation(s)
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| |
Collapse
|
2
|
Ashirov T, Puangsamlee T, Robles A, Fritz PW, Piech K, Miljanić OŠ, Coskun A. Eutectic Molten Salt Synthesis of Highly Microporous Macrocyclic Porous Organic Polymers for CO 2 Capture. Helv Chim Acta 2023; 106. [DOI: https:/doi.org/10.1002/hlca.202300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2024]
Abstract
AbstractThe development of porous materials is of great interest for the capture of CO2 from various emission sources, which is essential to mitigate its detrimental environmental impact. In this direction, porous organic polymers (POPs) have emerged as prime candidates owing to their structural tunability, physiochemical stability and high surface areas. In an effort to transfer an intrinsic property of a cyclotetrabenzoin‐derived macrocycle – its high CO2 affinity – into porous networks, herein we report the synthesis of three‐dimensional (3D) macrocycle‐based POPs through the polycondensation of an octaketone macrocycle with phenazine‐2,3,7,8‐tetraamine hydrochloride. This polycondensation was performed under ionothermal conditions, using a eutectic salt mixture in the temperature range of 200 to 300 °C. The resulting polymers, named 3D‐mmPOPs, showed reaction temperature‐dependent surface areas and gas uptake properties. 3D‐mmPOP‐250 synthesized at 250 °C exhibited a surface area of 752 m2 g−1 and high microporosity originating from the macrocyclic units, thus resulting in an excellent CO2 binding enthalpy of 40.6 kJ mol−1 and CO2 uptake capacity of 3.51 mmol g−1 at 273 K, 1.1 bar.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Thamon Puangsamlee
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Alexandra Robles
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Patrick W. Fritz
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Krzysztof Piech
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Ali Coskun
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| |
Collapse
|
3
|
Song X, Wang Y, Wang C, Wang D, Zhuang G, Kirlikovali KO, Li P, Farha OK. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J Am Chem Soc 2022; 144:10663-10687. [PMID: 35675383 DOI: 10.1021/jacs.2c02598] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs), self-assembled from strategically pre-designed molecular tectons with complementary hydrogen-bonding patterns, are rapidly evolving into a novel and important class of porous materials. In addition to their common features shared with other functionalized porous materials constructed from modular building blocks, the intrinsically flexible and reversible H-bonding connections endow HOFs with straightforward purification procedures, high crystallinity, solution processability, and recyclability. These unique advantages of HOFs have attracted considerable attention across a broad range of fields, including gas adsorption and separation, catalysis, chemical sensing, and electrical and optical materials. However, the relatively weak H-bonding interactions within HOFs can potentially limit their stability and potential use in further applications. To that end, this Perspective highlights recent advances in the development of chemically and thermally robust HOF materials and systematically discusses relevant design rules and synthesis strategies to access highly stable HOFs.
Collapse
Affiliation(s)
- Xiyu Song
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guowei Zhuang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Kent O Kirlikovali
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Čierna M, Berkeš D, Baran P, Šoral M, Kolarovič A, Jakubec P. Stereochemical switch driven by crystallization: Interplay between stoichiometry and configuration of the products. Chirality 2022; 34:948-954. [PMID: 35470504 DOI: 10.1002/chir.23451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
An intriguing example of a crystallization-induced stereochemical switch in the configuration of aza-Michael reaction products is described. Depending on both the stereochemical purity and stoichiometric ratio of the chiral amine used, the reaction delivers crystalline diastereomers of a different stereochemistry. The optically pure diastereomer smoothly converts to its racemic epimer salt upon the addition of a complementary chiral amine.
Collapse
Affiliation(s)
- Michaela Čierna
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Bratislava, Slovakia
| | - Dušan Berkeš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Baran
- Department of Chemistry and Biochemistry, Juniata College, Huntington, Pennsylvania, USA
| | - Michal Šoral
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Kolarovič
- Department of Chemistry, Faculty of Education, Trnava University, Trnava, Slovakia
| | - Pavol Jakubec
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
5
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Kunde T, Pausch T, Schmidt BM. Porous Organic Compounds – Small Pores on the Rise. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
7
|
Wang YT, McHale C, Wang X, Chang CK, Chuang YC, Kaveevivitchai W, Miljanić OŠ, Chen TH. Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO 2 Separations by Pressure Swing Adsorption*. Angew Chem Int Ed Engl 2021; 60:14931-14937. [PMID: 33779028 DOI: 10.1002/anie.202102813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/16/2022]
Abstract
A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2 separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2 molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2 at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2 capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate-adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2 and CH4 are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2 separations from flue and natural gases.
Collapse
Affiliation(s)
- Yao-Ting Wang
- School of Pharmacy, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan.,Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan
| | - Corie McHale
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard 112, Houston, TX, 77204-5003, USA
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard 112, Houston, TX, 77204-5003, USA
| | - Chung-Kai Chang
- National Synchrotron Radiation Research Center, No. 101, Hsin Ann Rd., Hsinchu, 30076, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, No. 101, Hsin Ann Rd., Hsinchu, 30076, Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard 112, Houston, TX, 77204-5003, USA
| | - Teng-Hao Chen
- School of Pharmacy, National Cheng Kung University, No.1, University Rd., Tainan City, 70101, Taiwan
| |
Collapse
|
8
|
Wang Y, McHale C, Wang X, Chang C, Chuang Y, Kaveevivitchai W, Miljanić OŠ, Chen T. Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO
2
Separations by Pressure Swing Adsorption**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yao‐Ting Wang
- School of Pharmacy National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
- Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
| | - Corie McHale
- Department of Chemistry University of Houston 3585 Cullen Boulevard 112 Houston TX 77204-5003 USA
| | - Xiqu Wang
- Department of Chemistry University of Houston 3585 Cullen Boulevard 112 Houston TX 77204-5003 USA
| | - Chung‐Kai Chang
- National Synchrotron Radiation Research Center No. 101, Hsin Ann Rd. Hsinchu 30076 Taiwan
| | - Yu‐Chun Chuang
- National Synchrotron Radiation Research Center No. 101, Hsin Ann Rd. Hsinchu 30076 Taiwan
| | - Watchareeya Kaveevivitchai
- Department of Chemical Engineering and Hierarchical Green-Energy Materials Research Center National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Boulevard 112 Houston TX 77204-5003 USA
| | - Teng‐Hao Chen
- School of Pharmacy National Cheng Kung University No.1, University Rd. Tainan City 70101 Taiwan
| |
Collapse
|
9
|
Yoo DJ, Heeney M, Glöcklhofer F, Choi JW. Tetradiketone macrocycle for divalent aluminium ion batteries. Nat Commun 2021; 12:2386. [PMID: 33888712 PMCID: PMC8062564 DOI: 10.1038/s41467-021-22633-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Contrary to early motivation, the majority of aluminium ion batteries developed to date do not utilise multivalent ion storage; rather, these batteries rely on monovalent complex ions for their main redox reaction. This limitation is somewhat frustrating because the innate advantages of metallic aluminium such as its low cost and high air stability cannot be fully taken advantage of. Here, we report a tetradiketone macrocycle as an aluminium ion battery cathode material that reversibly reacts with divalent (AlCl2+) ions and consequently achieves a high specific capacity of 350 mAh g−1 along with a lifetime of 8000 cycles. The preferred storage of divalent ions over their competing monovalent counterparts can be explained by the relatively unstable discharge state when using monovalent AlCl2+ ions, which exert a moderate resonance effect to stabilise the structure. This study opens an avenue to realise truly multivalent aluminium ion batteries based on organic active materials, by tuning the relative stability of discharged states with carrier ions of different valence states. Aluminium ion batteries have been developed based on the storage of monovalent complex ions, impairing their original motivation of storing multivalent ions. Here, the authors demonstrate the divalent ion storage of tetradiketone macrocycles by tuning the relative stability of discharged states.
Collapse
Affiliation(s)
- Dong-Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK.
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea. .,Department of Materials Science and Engineering, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
|
11
|
McHale CM, Karas LJ, Wang X, Wu JI, Miljanić OŠ. Cyclobenzoin Esters as Hosts for Thin Guests. Org Lett 2021; 23:2253-2257. [PMID: 33635676 DOI: 10.1021/acs.orglett.1c00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclotetrabenzoin esters can host terminal triple bonds of alkynes and nitriles in their cavities, as revealed by cocrystal structures of four such complexes. Within cyclotetrabenzoin cavities, π-clouds of triple bonds establish favorable and virtually equidistant interactions with the four aromatic walls of the cyclotetrabenzoin skeleton. Binding is selective for aliphatic nitriles and terminal alkynes, with their aromatic counterparts residing outside of the cyclotetrabenzoin cavity.
Collapse
Affiliation(s)
- Corie M McHale
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Lucas J Karas
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Judy I Wu
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| |
Collapse
|
12
|
Eisterhold AM, Puangsamlee T, Otterbach S, Bräse S, Weis P, Wang X, Kutonova KV, Miljanić OŠ. Expanded Cyclotetrabenzoins. Org Lett 2021; 23:781-785. [PMID: 33410695 DOI: 10.1021/acs.orglett.0c04014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclobenzoins are shape-persistent macrocycles of interest in the preparation of optoelectronic and porous materials. New cyclotetrabenzoins derived from biphenyl, naphthalene, and tolane skeletons were synthesized using N-heterocyclic carbene-catalyzed benzoin condensation. Their preparation proceeded with different regioselectivity than that observed in the cyanide-catalyzed preparation of the parent cyclotetrabenzoin. Crystal structures of two new cyclotetrabenzoin acetic esters have been obtained. Alkyne groups of the tolane-based cyclotetrabenzoin were postsynthetically functionalized with Co2(CO)6 moieties.
Collapse
Affiliation(s)
- Andrew M Eisterhold
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Thamon Puangsamlee
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Steffen Otterbach
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131 Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 2, 76131 Karlsruhe, Germany
| | - Xiqu Wang
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| | - Ksenia V Kutonova
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, 76131 Karlsruhe, Germany
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard #112, Houston, Texas 77204-5003, United States
| |
Collapse
|
13
|
Tominaga M, Hyodo T, Hikami Y, Yamaguchi K. Solvent-dependent alignments and halogen-related interactions in inclusion crystals of adamantane-based macrocycle with pyridazine moieties. CrystEngComm 2021. [DOI: 10.1039/d0ce01576h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six inclusion crystals were formed from crystallization of an adamantane-based macrocycle bearing pyridazine parts in various solvents. In inclusion crystals with cyclic ethers, halogen⋯halogen interactions between the macrocycles were observed.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Yuya Hikami
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus
- Tokushima Bunri University
- Sanuki
- Japan
| |
Collapse
|
14
|
Phan NM, Percástegui EG, Johnson DW. Dynamic Covalent Chemistry as a Facile Route to Unusual Main-Group Thiolate Assemblies and Disulfide Hoops and Cages. Chempluschem 2020; 85:1270-1282. [PMID: 32529751 DOI: 10.1002/cplu.202000257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Dynamic Covalent Chemistry (DCC) - combining the robustness of covalent bonds with the self-correcting nature of supramolecular chemistry - facilitates the modular synthesis of complex molecular assemblies in high yields. Although numerous reactions form covalent bonds, only a small set of chemical transformations affect covalent bond formation reversibly under suitable conditions for DCC. Further progress in this area still requires the identification of dynamic motifs and greater insights into their reversibility. We have fruitfully employed DCC of both thiolate coordination to main-group elements and disulfide formation for the facile self-assembly of: (1) metal/metalloid-thiolate assemblies, and (2) purely organic cyclic and caged disulfides, thioethers, and even hydrocarbons, many of which have remained elusive by traditional stepwise synthesis yet form readily through our methods. In this Minireview, we highlight the approaches to prepare these unusual compounds and the factors inducing structural transformations or favoring the formation of certain products over others, given a set of external stimuli or reaction conditions.
Collapse
Affiliation(s)
- Ngoc-Minh Phan
- Department of Chemistry, Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA
| | - Edmundo G Percástegui
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, México.,Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, C.P.50200, Toluca, Estado de México, México
| | - Darren W Johnson
- Department of Chemistry, Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA
| |
Collapse
|
15
|
Abstract
N-Heteroacenes and N-heteroarenes are the heterocyclic congeners of the acenes and arenes, in which one or several perimeter C-H bonds have been substituted by pyridine-type nitrogen atoms. They are formally segments out of N-doped nanographenes. Position and number of the nitrogens vary greatly, making N-heteroacenes and N-heteroarenes define a vast class of N-nanographene segments; they display modular electronic and structural properties. The nitrogen atoms in the perimeter lead to finely tunable frontier molecular orbital positions and therefore improved electron affinity and higher oxidative stability but conversely also require and allow different synthetic approaches than those reported for the synthesis of their hydrocarbon and nanographene analogues. The chemistry of N-heteroarenes, despite being known for more than a century, has made significant progress in the last years and established these materials both as powerful n-channel semiconductors in thin film transistors and as useful emitters in organic light emitting diodes (OLEDs) and in photovoltaic devices. The electronegative nitrogen atoms impart a deep LUMO into the azaacenes and azaarenes, improve electron injection, and enable powerful electron transport but also charge separation in bulk-heterojunction type organic photovoltaic (OPV) devices. At the same time, azaacenes and azaarenes are fundamentally exciting materials that push the limits of structure and stability, constantly displaying novel topologies and structures as variations of a simple leitmotif; we expect a bright future for esthetically pleasing yet highly functional N-heterocyclic species. Firstly, we discuss novel structures and structural elements that have evolved during the last years in N-heteroacene and N-heteroarene chemistry and delineate their properties. An important aspect is the oligomerization or better multimerization of azaacene and azaarene units into novel and surprising topologies, in which multiple azaarenes or azaacenes are stitched together. Examples are tetrahedral assemblies of tetraazapentacenes but also cyclic tetramers of different types of azaacenes and linearly bent, S-shaped, formally dimeric species. An exciting aspect of the exploration of the structural manifold of azaacenes is their electronic interaction in such assemblies and their solid-state microstructure. A further aspect of this work is the increase in size of the azaacenes and concepts that allow stabilization of the larger congeners. The attachment of four benzo units to the azaacene core is a powerful concept that stabilizes tetraazaheptacenes and should also be useful to achieve persistent tetraazanonacenes. Secondly, we describe the success of N-heteroacenes and N-heteroarenes in organic electronic devices; specifically, the use of symmetrical halogenated tetraazapentacenes as superb n-channel transistor materials with air stable and persistent radical anions as charge carriers; we discuss the structural reason for their success. Use of azaacenes and azaarenes is not restricted to transistors, but they are also applied in bulk heterojunction photovoltaic devices and in brightly emitting OLEDs. Azaacenes and azaarenes are attractive segments out of hetero-nanographenes and objects of study, starting from fundamental structural and topological questions, ranging to powerful applications in organic electronics. The general interest in azaacenes is witnessed by the constantly increasing number of groups who discover and work on these materials as novel functional and flexible species.
Collapse
Affiliation(s)
- Uwe H. F. Bunz
- Organisch-Chemisches Institut and Centre of Advanced Materials, Ruprecht Karls Universitat Heidelberg, Im Neuenheimer Feld 225 and 270, 69120 Heidelberg, FRG
| | - Jan Freudenberg
- Organisch-Chemisches Institut and Centre of Advanced Materials, Ruprecht Karls Universitat Heidelberg, Im Neuenheimer Feld 225 and 270, 69120 Heidelberg, FRG
| |
Collapse
|
16
|
Lin RB, He Y, Li P, Wang H, Zhou W, Chen B. Multifunctional porous hydrogen-bonded organic framework materials. Chem Soc Rev 2019; 48:1362-1389. [PMID: 30676603 PMCID: PMC11061856 DOI: 10.1039/c8cs00155c] [Citation(s) in RCA: 520] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs) represent an interesting type of polymeric porous materials that can be self-assembled through H-bonding between organic linkers. To realize permanent porosity in HOFs, stable and robust open frameworks can be constructed by judicious selection of rigid molecular building blocks and hydrogen-bonded units with strong H-bonding interactions, in which the framework stability might be further enhanced through framework interpenetration and other types of weak intermolecular interactions such as ππ interactions. Owing to the reversible and flexible nature of H-bonding connections, HOFs show high crystallinity, solution processability, easy healing and purification. These unique advantages enable HOFs to be used as a highly versatile platform for exploring multifunctional porous materials. Here, the bright potential of HOF materials as multifunctional materials is highlighted in some of the most important applications for gas storage and separation, molecular recognition, electric and optical materials, chemical sensing, catalysis, and biomedicine.
Collapse
Affiliation(s)
- Rui-Biao Lin
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Renée Haver
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory Oxford OX1 3TA
| | - Harry L. Anderson
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory Oxford OX1 3TA
| |
Collapse
|
18
|
Hashim MI, Le HTM, Chen TH, Chen YS, Daugulis O, Hsu CW, Jacobson AJ, Kaveevivitchai W, Liang X, Makarenko T, Miljanić OŠ, Popovs I, Tran HV, Wang X, Wu CH, Wu JI. Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. J Am Chem Soc 2018; 140:6014-6026. [PMID: 29656637 DOI: 10.1021/jacs.8b02869] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous molecular crystals are an emerging class of porous materials that is unique in being built from discrete molecules rather than being polymeric in nature. In this study, we examined the effects of molecular structure of the precursors on the formation of porous solid-state structures with a series of 16 rigid aromatics. The majority of these precursors possess pyrazole groups capable of hydrogen bonding, as well as electron-rich aromatics and electron-poor tetrafluorobenzene rings. These precursors were prepared using a combination of Pd- and Cu-catalyzed cross-couplings, careful manipulations of protecting groups on the nitrogen atoms, and solvothermal syntheses. Our study varied the geometry and dimensions of precursors, as well as the presence of groups capable of hydrogen bonding and [π···π] stacking. Thirteen derivatives were crystallographically characterized, and four of them were found to be porous with surface areas between 283 and 1821 m2 g-1. Common to these four porous structures were (a) rigid trigonal geometry, (b) [π···π] stacking of electron-poor tetrafluorobenzenes with electron-rich pyrazoles or tetrazoles, and
Collapse
Affiliation(s)
- Mohamed I Hashim
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ha T M Le
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Teng-Hao Chen
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Yu-Sheng Chen
- Center for Advanced Radiation Source (ChemMatCARS) , The University of Chicago , c/o APS/ANL, 9700 South Cass Drive , Argonne , Illinois 60439 , United States
| | - Olafs Daugulis
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Wei Hsu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Allan J Jacobson
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States.,Texas Center for Superconductivity , 202 UH Science Center , Houston , Texas 77204-5002 , United States
| | - Watchareeya Kaveevivitchai
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiao Liang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Tatyana Makarenko
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ognjen Š Miljanić
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Ilja Popovs
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Hung Vu Tran
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Xiqu Wang
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Chia-Hua Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| | - Judy I Wu
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard #112 , Houston , Texas 77204-5003 , United States
| |
Collapse
|
19
|
Hahn S, Koser S, Hodecker M, Seete P, Rominger F, Miljanić OŠ, Dreuw A, Bunz UHF. Phenylene Bridged Cyclic Azaacenes: Dimers and Trimers. Chemistry 2018; 24:6968-6974. [DOI: 10.1002/chem.201705704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Hahn
- Organisch Chemisches Institut; Ruprecht-Karls-Universität, Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Silke Koser
- Organisch Chemisches Institut; Ruprecht-Karls-Universität, Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Manuel Hodecker
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen (IWR); Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Pascal Seete
- Organisch Chemisches Institut; Ruprecht-Karls-Universität, Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch Chemisches Institut; Ruprecht-Karls-Universität, Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Ognjen Š. Miljanić
- Department of Chemistry; University of Houston; 112 Fleming Building Houston Texas 77204-5003 USA
| | - Andreas Dreuw
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen (IWR); Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 205 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch Chemisches Institut; Ruprecht-Karls-Universität, Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials (CAM); Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
20
|
Alrayyani M, Miljanić OŠ. Benzoins and cyclobenzoins in supramolecular and polymer chemistry. Chem Commun (Camb) 2018; 54:11989-11997. [DOI: 10.1039/c8cc07407k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzoin condensation is one of the oldest rigorously described organic reactions, having been discovered in 1832 by Liebig and Wöhler. This Feature Article summarizes our work on cyclobenzoins: a class of macrocyclic compounds prepared by a benzoin cyclooligomerization of simple aromatic dialdehydes.
Collapse
|
21
|
Alrayyani M, Wang X, Miljanić OŠ. Confinement of Water Pentamers within the Crystals of a Reduced Cyclotribenzoin. Chemistry 2017; 23:16476-16478. [DOI: 10.1002/chem.201704883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Maymounah Alrayyani
- Department of Chemistry University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
- Chemistry Department Faculty of Science King Abdulaziz University Jeddah 23218 Saudi Arabia
| | - Xiqu Wang
- Department of Chemistry University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
22
|
Hahn S, Alrayyani M, Sontheim A, Wang X, Rominger F, Miljanić OŠ, Bunz UHF. Synthesis and Characterization of Heterobenzenacyclo‐octaphanes Derived from Cyclotetrabenzoin. Chemistry 2017; 23:10543-10550. [DOI: 10.1002/chem.201701125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Sebastian Hahn
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Maymounah Alrayyani
- Department of Chemistry University of Houston, Fleming Building Houston Texas 77204-5003 USA
- Chemistry Department Faculty of Science King Abdulaziz University Jeddah 23218 Saudi Arabia
| | - Anna Sontheim
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Xiqu Wang
- Department of Chemistry University of Houston, Fleming Building Houston Texas 77204-5003 USA
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston, Fleming Building Houston Texas 77204-5003 USA
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
23
|
Chen Z, Sahli BJ, MacLachlan MJ. Self-Assembly of Extended Head-to-Tail Triangular Pt3 Macrocycles into Nanotubes. Inorg Chem 2017; 56:5383-5391. [DOI: 10.1021/acs.inorgchem.7b00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyu Chen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian J. Sahli
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J. MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
24
|
Chen TH, Popov I, Miljanić OŠ. A Zirconium Macrocyclic Metal-Organic Framework with Predesigned Shape-Persistent Apertures. Chemistry 2016; 23:286-290. [DOI: 10.1002/chem.201605079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Teng-Hao Chen
- Department of Chemistry; Tamkang University; No.151, Yingzhuan Rd., Tamsui Dist. New Taipei City 25137 Taiwan
| | - Ilya Popov
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Ognjen Š. Miljanić
- Department of Chemistry; University of Houston; 112 Fleming Building Houston TX 77204-5003 USA
| |
Collapse
|
25
|
Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nat Chem 2016; 9:17-25. [DOI: 10.1038/nchem.2663] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/29/2016] [Indexed: 02/08/2023]
|