1
|
Xu K, Zheng L, Bao SS, Ma J, Xie X, Zheng LM. Lanthanide-Sensitized Upconversion Iridium Complex via Triplet Energy Transfer. SMALL METHODS 2025; 9:e2400671. [PMID: 38803310 DOI: 10.1002/smtd.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Cyclometalated iridium (Ir) complexes demonstrate impressive capabilities across a range of fields, including biology and photocatalysis, due to their tunable optical characteristics and structure flexibility. However, generating upconversion luminescence of Ir complexes under near-infrared light excitation is challenging. Herein, by employing lanthanide-doped upconversion nanoparticles (UCNPs) as the sensitizer, a new strategy is demonstrated to gain upconversion luminescence of Ir complexes via triplet energy transfer. This design relies on a rationally designed hybrid of core-shell structured NaYbF4:Tb@NaTbF4 UCNPs and new Ir phosphonate complexes, in which UCNPs can migrate upconverted energy to the surface of nanoparticles through Tb3+-mediated energy migration and then sensitize the upconversion luminescence of Ir complexes upon 980 nm excitation. Both experimental and theoretical investigations highlight the significance of triplet energy transfer from excited Tb3+ ions to the triplet state of Ir complexes in the sensitization of upconversion luminescence of Ir complexes. These findings may open exciting avenues for fabricating hybrid Ir materials with new functions and driving the development of UCNP-based nanomaterials.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Lifeng Zheng
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Vinck R, Dömötör O, Karges J, Jakubaszek M, Seguin J, Tharaud M, Guérineau V, Cariou K, Mignet N, Enyedy ÉA, Gasser G. In Situ Bioconjugation of a Maleimide-Functionalized Ruthenium-Based Photosensitizer to Albumin for Photodynamic Therapy. Inorg Chem 2023; 62:15510-15526. [PMID: 37708255 DOI: 10.1021/acs.inorgchem.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Johanne Seguin
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Mickaël Tharaud
- Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, Institut de Physique du Globe de Paris, 75005 Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| |
Collapse
|
3
|
Wang C, Xing Z, Ge Q, Yu Y, Wang M, Duan WL. Site-Selective Desaturation of C(sp3)-C(sp3) Bond via Photoinduced Ruthenium Catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00332e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ruthenium(II) photocatalysis has emerged as one of the most advanced tools amongst modern synthetic chemistry whereas its catalytic mode is generally limited to single electron transfer and triplet energy transfer...
Collapse
|
4
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Meijer M, Natile MM, Bonnet S. 796 nm Activation of a Photocleavable Ruthenium(II) Complex Conjugated to an Upconverting Nanoparticle through Two Phosphonate Groups. Inorg Chem 2020; 59:14807-14818. [PMID: 32167752 PMCID: PMC7581297 DOI: 10.1021/acs.inorgchem.0c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/28/2022]
Abstract
The biological application of photoactivatable ruthenium anticancer prodrugs is limited by the need to use poorly penetrating high-energy visible light for their activation. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, can solve this issue, provided that they form stable, water (H2O)-dispersible nanoconjugates with the prodrug and that there is efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the ruthenium(II) polypyridyl complex [Ru(bpy)2(3H)](PF6)2 ([1](PF6)2), where bpy = 2,2-bipyridine and 3H is a photocleavable bis(thioether) ligand modified with two phosphonate moieties. This ligand was coordinated to the ruthenium center through its thioether groups and could be dissociated under blue-light irradiation. Complex [1](PF6)2 was bound to the surface of NaYF4:Yb3+,Tm3+@NaYF4:Nd3+@NaYF4 core-shell-shell (CSS-)UCNPs through its bis(phosphonate) group, thereby creating a H2O-dispersible, thermally stable nanoconjugate (CSS-UCNP@[1]). Conjugation to the nanoparticle surface was found to be most efficient in neutral to slightly basic conditions, resulting in up to 2.4 × 103 RuII ions per UCNP. The incorporation of a neodymium-doped shell layer allowed for the generation of blue light using low-energy, deep-penetrating light (796 nm). This wavelength prevents the undesired heating seen with conventional UCNPs activated at 980 nm. Irradiation of CSS-UCNP@[1] with NIR light led to activation of the ruthenium complex [1](PF6)2. Although only one of the two thioether groups was dissociated under irradiation at 50 W·cm-2, we provide the first demonstration of the photoactivation of a ruthenium thioether complex using 796 nm irradiation of a H2O-dispersible nanoconjugate.
Collapse
Affiliation(s)
- Michael
S. Meijer
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Marta M. Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy, National
Research Council (CNR), Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
6
|
Luther DC, Huang R, Jeon T, Zhang X, Lee YW, Nagaraj H, Rotello VM. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev 2020; 156:188-213. [PMID: 32610061 PMCID: PMC8559718 DOI: 10.1016/j.addr.2020.06.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/03/2023]
Abstract
Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based nanocarriers provide unrivalled control of nanostructural properties for effective transport of therapeutic cargos, overcoming biobarriers on the cellular and organismal level. Taken together, inorganic nanoparticles provide a key addition to the arsenal of delivery vectors for fighting disease and improving human health.
Collapse
Affiliation(s)
- David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Yi-Wei Lee
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Luminescent anticancer Ru(II)-arenebipyridine and phenanthroline complexes: Synthesis, characterization, DFT studies, biological interactions and cellular imaging application. J Inorg Biochem 2020; 208:111099. [PMID: 32460056 DOI: 10.1016/j.jinorgbio.2020.111099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
A series of ruthenium(II)-arene complexes of several bipyridine and phenanthroline derivatives have been synthesized by employing a green and efficient protocol involving water as a solvent under sonication. The structures of all the complexes were elucidated by the spectroscopic analysis. The geometry of the chlorido and PTA (1,3,5-Triaza-7-phosphaadamantane) complexes were further confirmed by DFT and single crystal XRD. The stability study in various solvents, specifically in the intracellular one was conducted. Most of the compounds exhibited significant potency and selectivity against MCF7 and HeLa cell lines with respect to normal HEK-293 cells compared to cisplatin and RAPTA-C (Ruthenium(II)-arene PTA complex). Complex [(η6-hexamethylbenzene)RuCl(κ2-N,N-4,4'-di-n-nonyl-2,2'-bpy)]Cl (3e) presented best anticancer profiles against all the human cancer cells. Interestingly, few complexes turned up to be highly fluorescent depicted by the quantum yield values. Remarkably, [(η6-p-cymene)RuCl(κ2-N,N-bpy)]Cl (3i) was identified as most significant anticancer theranostic agent interms of potency, selectivity and fluorescence quantum yield. This complex also represented itself as significant cellular imaging agent in live U-87 MG cells which was monitored by confocal microscope. Absorption and emission spectral studies of bypyridine and phenanthroline complex series revealed that the complexes interacted with calf thymus DNA through groove binding as well as intercalative mode. In addition to this, strong binding efficacy of these scaffolds wih BSA (Bovin Serum Albumin) also enhanced their transportation property inside the cells.
Collapse
|
8
|
Holzwarth U, Cossío U, Llop J, Kreyling WG. Unpredictable Nanoparticle Retention in Commonly Used Plastic Syringes Introduces Dosage Uncertainties That May Compromise the Accuracy of Nanomedicine and Nanotoxicology Studies. Front Pharmacol 2019; 10:1293. [PMID: 31780932 PMCID: PMC6851237 DOI: 10.3389/fphar.2019.01293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
In recent animal experiments with suspensions of radiolabeled TiO2 nanoparticles large and highly variable radioactivity fractions were retained in disposable plastic syringes. After unloading between 10% and up to 70% of the loaded dose were still present in the syringes. As a consequence the effectively delivered nanoparticle dose to the animals was frequently much smaller than the nominal dose of the nanoparticles loaded into the syringe. The high variability of this nanoparticle retention challenges the application of a precise, predefined dose and creates a major error source when normalizing organ and tissue contents to the dose loaded into the syringe, which is usually set as the applied dose. A control study was performed employing six commonly used syringe types with seven types of radiolabeled oxide and metallic nanoparticles. For this purpose the syringes were loaded with a given volume of nanoparticle suspension, the radioactivity was measured, the syringe was unloaded and the activity measurement was repeated with the empty syringe. The highest retention values were found when using TiO2 nanoparticle suspensions with Tuberkulin type syringes. In the worst case between 6.6% and 79.1% of the nanoparticles were retained in the syringe. When using the same nanoparticle suspension with an insulin-type syringe the retention was reduced to 1.4% to 20.6%. For amorphous silica nanoparticles the maximum observed retention was 8% and for Au nanoparticles it was 5.1%. Further data gathered from in vivo animal imaging studies show that nanoparticle retention in syringes also affects experiments with nanoparticles such as exosomes, polymersomes, and protein-based nanoparticles investigated for possible applications in nanomedicine. Since the retention is highly variable the effectively applied dose cannot be determined by applying a simple syringe retention factor. The present work shall alert to the problem and illustrate its possible magnitude and unpredictable variability. As mitigation strategy adequate checks with different syringe types are proposed in order to find out whether a given combination of syringe type and nanoparticle suspension is affected by nanoparticle retention and, if necessary, to select a different syringe type that minimizes retention.
Collapse
Affiliation(s)
- Uwe Holzwarth
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Unai Cossío
- Radiochemistry and Nuclear Imaging, CIC biomaGUNE, San Sebastian, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging, CIC biomaGUNE, San Sebastian, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Respiratorias-CIBERES Parque Tecnológico de San Sebastián, San Sebastián, Spain
| | - Wolfgang G Kreyling
- Institute of Epidemiology, and Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
9
|
Smits NWG, den Boer D, Wu L, Hofmann JP, Hetterscheid DGH. Elucidation of the Structure of a Thiol Functionalized Cu-tmpa Complex Anchored to Gold via a Self-Assembled Monolayer. Inorg Chem 2019; 58:13007-13019. [PMID: 31549820 PMCID: PMC6784813 DOI: 10.1021/acs.inorgchem.9b01921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The structure of the copper complex
of the 6-((1-butanethiol)oxy)-tris(2-pyridylmethyl)amine ligand (Cu-tmpa-O(CH2)4SH) anchored to a gold surface has been investigated.
To enable covalent attachment of the complex to the gold surface,
a heteromolecular self-assembled monolayer (SAM) of butanethiol and
a thiol-substituted tmpa ligand was used. Subsequent formation of
the immobilized copper complex by cyclic voltammetry in the presence
of Cu(OTf)2 resulted in the formation of the anchored Cu-tmpa-O(CH2)4SH system which, according to scanning electron
microscopy and X-ray diffraction, did not contain any accumulated
copper nanoparticles or crystalline copper material. Electrochemical
investigation of the heterogenized system barely showed any redox
activity and lacked the typical CuII/I redox couple in
contrast to the homogeneous complex in solution. The difference between
the heterogenized system and the homogeneous complex was confirmed
by X-ray photoelectron spectroscopy; the XPS spectrum did not show
any satellite features of a CuII species but instead showed
the presence of a CuI ion in a ∼2:3 ratio to nitrogen
and a ∼2:7 ratio to sulfur. The +I oxidation state of the copper
species was confirmed by the edge position in the X-ray absorption
near-edge structure (XANES) region of the X-ray absorption spectrum.
These results show that upon immobilization of Cu-tmpa-O(CH2)4SH, the resulting structure is not identical to the
homogeneous CuII-tmpa complex. Upon anchoring, a novel
CuI species is formed instead. This illustrates the importance
of a thorough characterization of heterogenized molecular systems
before drawing any conclusions regarding the structure–function
relationships. Both the oxidation state and the structure of the CuII complex of tris(2-pyridylmethyl)amine (Cu-tmpa) change upon
anchoring it to a gold surface via a self-assembled monolayer. It
was shown by XPS and XANES that a CuI species is formed
upon anchoring instead in which each tmpa ligand contains roughly
two to three copper ions.
Collapse
Affiliation(s)
- Nicole W G Smits
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Daan den Boer
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Longfei Wu
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Jan P Hofmann
- Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Dennis G H Hetterscheid
- Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
10
|
Meijer M, Talens VS, Hilbers M, Kieltyka RE, Brouwer AM, Natile MM, Bonnet S. NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12079-12090. [PMID: 31389710 PMCID: PMC6753655 DOI: 10.1021/acs.langmuir.9b01318] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2(5)](PF6)2 ([1](PF6)2) and [Ru(bpy)2(6)](PF6)2 ([2](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [1](PF6)2 is photolabile as a result of the steric strain induced by ligand 5, but the irradiation of [1](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [2](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[2] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [2](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [2]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[2] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2',7'-dichlorodihydrofluorescein (DCFH2-). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA)).
Collapse
Affiliation(s)
- Michael
S. Meijer
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Victorio Saez Talens
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Michiel
F. Hilbers
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Roxanne E. Kieltyka
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Albert M. Brouwer
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Marta M. Natile
- Institute
of Condensed Matter Chemistry and Technologies for Energy (ICMATE),
National Research Council (CNR), c/o Department of Chemical Sciences, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
- E-mail: (M.M.N.)
| | - Sylvestre Bonnet
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: (S.B.)
| |
Collapse
|
11
|
Benítez-Mateos AI, Mehravar E, Velasco-Lozano S, Salassa L, López-Gallego F. Selective Immobilization of Fluorescent Proteins for the Fabrication of Photoactive Materials. Molecules 2019; 24:E2775. [PMID: 31366154 PMCID: PMC6696454 DOI: 10.3390/molecules24152775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The immobilization of fluorescent proteins is a key technology enabling to fabricate a new generation of photoactive materials with potential technological applications. Herein we have exploited superfolder green (sGFP) and red (RFP) fluorescent proteins expressed with different polypeptide tags. We fused these fluorescent proteins to His-tags to immobilize them on graphene 3D hydrogels, and Cys-tags to immobilize them on porous microparticles activated with either epoxy or disulfide groups and with Lys-tags to immobilize them on upconverting nanoparticles functionalized with carboxylic groups. Genetically programming sGFP and RFP with Cys-tag and His-tag, respectively, allowed tuning the protein spatial organization either across the porous structure of two microbeads with different functional groups (agarose-based materials activated with metal chelates and epoxy-methacrylate materials) or across the surface of a single microbead functionalized with both metal-chelates and disulfide groups. By using different polypeptide tags, we can control the attachment chemistry but also the localization of the fluorescent proteins across the material surfaces. The resulting photoactive material formed by His-RFP immobilized on graphene hydrogels has been tested as pH indicator to measure pH changes in the alkaline region, although the immobilized fluorescent protein exhibited a narrower dynamic range to measure pH than the soluble fluorescent protein. Likewise, the immobilization of Lys-sGFP on alginate-coated upconverting nanoparticles enabled the infrared excitation of the fluorescent protein to be used as a green light emitter. These novel photoactive biomaterials open new avenues for innovative technological developments towards the fabrication of biosensors and photonic devices.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Heterogeneous biocatalysis group, CICbiomaGUNE, Edificio Empresarial "C", Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain
| | - Ehsan Mehravar
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Susana Velasco-Lozano
- Heterogeneous biocatalysis laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Luca Salassa
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous biocatalysis laboratory, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
- ARAID, Aragon foundation for Science, 50018 Zaragoza, Spain.
| |
Collapse
|
12
|
Hager LA, Mokesch S, Kieler C, Alonso-de Castro S, Baier D, Roller A, Kandioller W, Keppler BK, Berger W, Salassa L, Terenzi A. Ruthenium-arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition. Dalton Trans 2019; 48:12040-12049. [PMID: 31292575 DOI: 10.1039/c9dt02078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quadruplex nucleic acids - DNA/RNA secondary structures formed in guanine rich sequences - proved to have key roles in the biology of cancers and, as such, in recent years they emerged as promising targets for small molecules. Many reports demonstrated that metal complexes can effectively stabilize quadruplex structures, promoting telomerase inhibition, downregulation of the expression of cancer-related genes and ultimately cancer cell death. Although extensively explored as anticancer agents, studies on the ability of ruthenium arene complexes to interact with quadruplex nucleic acids are surprisingly almost unknown. Herein, we report on the synthesis and characterization of four novel Ru(ii) arene complexes with 1,3-dioxoindan-2-carboxamides ligands bearing pendant naphthyl-groups designed to bind quadruplexes by both stacking and coordinating interactions. We show how improvements on the hydrolytic stability of such complexes, by substituting the chlorido leaving ligand with pyridine, have a dramatic impact on their interaction with quadruplexes and on their cytotoxicity against ovarian cancer cells.
Collapse
Affiliation(s)
- Laura A Hager
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Stephan Mokesch
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Claudia Kieler
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | - Dina Baier
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Alexander Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria.
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria. and Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
| |
Collapse
|
13
|
Functionalizing NaGdF4:Yb,Er Upconverting Nanoparticles with Bone-Targeting Phosphonate Ligands: Imaging and In Vivo Biodistribution. INORGANICS 2019. [DOI: 10.3390/inorganics7050060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) transform near infrared light (NIR) into higher-energy UV and visible light by multiphotonic processes. Owing to such unique feature, UCNPs have found application in optical imaging and have been investigated for the NIR light activation of prodrugs, including transition metal complexes of interest in photochemotherapy. Besides, UCNPs also function as magnetic resonance imaging (MRI) contrast agents and positron emission tomography (PET) probes when labelled with radionuclides such as 18F. In this contribution, we report on a new series of phosphonate-functionalized NaGdF4:Yb,Er UCNPs that show affinity for hydroxyapatite (inorganic constituent of bones), and we discuss their potential as bone targeting multimodal (MRI/PET) imaging agents. In vivo biodistribution studies of 18F-labelled NaGdF4:Yb,Er UCNPs in rats indicate that surface functionalization with phosphonates favours the accumulation of nanoparticles in bones over time. PET results reveal leakage of 18F− for phosphonate-functionalized NaGdF4:Yb,Er and control nanomaterials. However, Gd was detected in the femur for phosphonate-capped UCNPs by ex vivo analysis using ICP-MS, corresponding to 6–7% of the injected dose.
Collapse
|
14
|
Biological activity of Pt IV prodrugs triggered by riboflavin-mediated bioorthogonal photocatalysis. Sci Rep 2018; 8:17198. [PMID: 30464209 PMCID: PMC6249213 DOI: 10.1038/s41598-018-35655-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that riboflavin (Rf) functions as unconventional bioorthogonal photocatalyst for the activation of PtIV prodrugs. In this study, we show how the combination of light and Rf with two PtIV prodrugs is a feasible strategy for light-mediated pancreatic cancer cell death induction. In Capan-1 cells, which have high tolerance against photodynamic therapy, Rf-mediated activation of the cisplatin and carboplatin prodrugs cis,cis,trans-[Pt(NH3)2(Cl)2(O2CCH2CH2CO2H)2] (1) and cis,cis,trans-[Pt(NH3)2(CBDCA)(O2CCH2CH2CO2H)2] (2, where CBDCA = cyclobutane dicarboxylate) resulted in pronounced reduction of the cell viability, including under hypoxia conditions. Such photoactivation mode occurs to a considerable extent intracellularly, as demonstrated for 1 by uptake and cell viability experiments. 195Pt NMR, DNA binding studies using circular dichroism, mass spectrometry and immunofluorescence microscopy were performed using the Rf-1 catalyst-substrate pair and indicated that cell death is associated with the efficient light-induced formation of cisplatin. Accordingly, Western blot analysis revealed signs of DNA damage and activation of cell death pathways through Rf-mediated photochemical activation. Phosphorylation of H2AX as indicator for DNA damage, was detected for Rf-1 in a strictly light-dependent fashion while in case of free cisplatin also in the dark. Photochemical induction of nuclear pH2AX foci by Rf-1 was confirmed in fluorescence microscopy again proving efficient light-induced cisplatin release from the prodrug system.
Collapse
|
15
|
Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F. Photocatalysis in the Dark: Near-Infrared Light Driven Photoredox Catalysis by an Upconversion Nanoparticle/Photocatalyst System. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthias Freitag
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Nadja Möller
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Andreas Rühling
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie - CiMIC and CeNTech; Westfälische Wilhelms-Universität Münster; Corrensstraße 28/30 Münster 48149 Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
16
|
Labrador-Páez L, Ximendes EC, Rodríguez-Sevilla P, Ortgies DH, Rocha U, Jacinto C, Martín Rodríguez E, Haro-González P, Jaque D. Core-shell rare-earth-doped nanostructures in biomedicine. NANOSCALE 2018; 10:12935-12956. [PMID: 29953157 DOI: 10.1039/c8nr02307g] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The current status of the use of core-shell rare-earth-doped nanoparticles in biomedical applications is reviewed in detail. The different core-shell rare-earth-doped nanoparticles developed so far are described and the most relevant examples of their application in imaging, sensing, and therapy are summarized. In addition, the advantages and disadvantages they present are discussed. Finally, a critical opinion of their potential application in real life biomedicine is given.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Photoactivated chemotherapy is an approach where a biologically active compound is protected against interaction with the cell environment by a light-cleavable protecting group, and unprotected by light irradiation. As such, PACT represents a major scientific opportunity for developing new bioactive inorganic compounds. However, the societal impact of this approach will only take off if the PACT field is used to address real societal challenges, i.e., therapeutic questions that make sense in a clinical context, rather than purely chemical questions. In particular, I advocate here that the field has become mature enough to switch from a compound-based approach, where a particular cancer model is chosen only to demonstrate the utility of a compound, to a disease-based approach, where the question of which disease to cure comes first: which PACT compound should I make to solve that particular clinical problem? The advantages and disadvantages of PACT vs. other phototherapeutic techniques are discussed, and a roadmap towards real clinical applications of PACT is drawn.
Collapse
Affiliation(s)
- Sylvestre Bonnet
- Leiden Institute of Chemistry, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| |
Collapse
|
18
|
Liu J, Zhang C, Rees TW, Ke L, Ji L, Chao H. Harnessing ruthenium(II) as photodynamic agents: Encouraging advances in cancer therapy. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Ruggiero E, Alonso-de Castro S, Habtemariam A, Salassa L. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry. Dalton Trans 2018; 45:13012-20. [PMID: 27482656 DOI: 10.1039/c6dt01428c] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The article highlights the emergent use of upconverting nanoparticles as tools for the near infrared photoactivation of transition metal complexes, identifying opportunities and challenges of this approach in the context of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Emmanuel Ruggiero
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, 20009, Spain.
| | | | | | - Luca Salassa
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, 20009, Spain. and Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P.K. 1072, Donostia-San Sebastián, 20080, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
20
|
Karimi M, Zangabad PS, Baghaee-Ravari S, Ghazadeh M, Mirshekari H, Hamblin MR. Smart Nanostructures for Cargo Delivery: Uncaging and Activating by Light. J Am Chem Soc 2017; 139:4584-4610. [PMID: 28192672 PMCID: PMC5475407 DOI: 10.1021/jacs.6b08313] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.
Collapse
Affiliation(s)
- Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466 Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Soodeh Baghaee-Ravari
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Mehdi Ghazadeh
- Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Hamid Mirshekari
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 2017; 5:4365-4392. [DOI: 10.1039/c7tb00403f] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shining a light on spectrally converting lanthanide (Ln3+)-doped nanoparticles: progress, trends, and challenges in Ln3+-nanoprobes for near-infrared bioimaging, nanothermometry, and photodynamic therapy.
Collapse
Affiliation(s)
- E. Hemmer
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa (ON)
- Canada
| | - P. Acosta-Mora
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - J. Méndez-Ramos
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - S. Fischer
- Department of Materials Science and Engineering, University of California—Berkeley
- Berkeley
- USA
| |
Collapse
|
22
|
Hu M, Zhao J, Ai X, Budanovic M, Mu J, Webster RD, Cao Q, Mao Z, Xing B. Near infrared light-mediated photoactivation of cytotoxic Re(i) complexes by using lanthanide-doped upconversion nanoparticles. Dalton Trans 2016; 45:14101-14108. [DOI: 10.1039/c6dt01569g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photoactivation of cytotoxic Re(i) complexes by using lanthanide doped upconversion nanoparticles upon near infrared illumination was demonstrated to selectively activate Re(i) complexes in tumor cells for enhanced anti-cancer effect.
Collapse
Affiliation(s)
- Ming Hu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jixian Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Xiangzhao Ai
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Maja Budanovic
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jing Mu
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
- Institute of Materials Research and Engineering (IMRE); Agency for Science
| |
Collapse
|