1
|
Alemayehu AB, Settineri NS, Lanza AE, Ghosh A. Rhenium-Sulfido and -Dithiolato Corroles: Reflections on Chalcophilicity. Inorg Chem 2024. [PMID: 39680845 DOI: 10.1021/acs.inorgchem.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The high-temperature (∼180 °C) reaction between free-base meso-triarylcorroles and Re2(CO)10, followed by exposure to PCl3 and thiols (or elemental sulfur), affords rhenium-sulfido (ReS) corroles in 67-76% yields. The use of shorter reaction times, lower temperatures (∼130 °C), and a dithiol (e.g., ethane-1,2-dithiol) also allows the isolation of rhenium-dithiolato corroles, presumptive intermediates on the path to ReS corroles. The ReS corroles exhibit high thermal stability and two reversible oxidations and reductions in their cyclic voltammograms, with redox potentials nearly identical to those observed for analogous ReO corroles. The electrochemical HOMO-LUMO gaps of the complexes, at 2.2 eV, are consistent with ligand-centered oxidation and reduction. The UV-vis spectra of ReS corroles, on the other hand, differ significantly from those of their ReO counterparts. Scalar-relativistic DFT calculations suggest that this difference reflects low-energy LUMO+2 and LUMO+3 levels, consisting of Re-S π-antibonding interactions; the ReO corroles, in contrast, exhibit a larger LUMO+1/LUMO+2 gap, as expected for a relatively classical Gouterman-type metalloporphyrin analogue. The high stability of ReS corroles is consistent with geochemists' view of rhenium as a moderately chalcophilic element (i.e., one that partitions into sulfide melts) as well as with a recent quantitative analysis of thiophilicity, which indicates that rhenium's oxophilicity and thiophilicity are essentially evenly balanced.
Collapse
Affiliation(s)
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Arianna E Lanza
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Abhik Ghosh
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
2
|
Johannessen K, Johansen MAL, Einrem RF, M cCormick M cPherson LJ, Alemayehu AB, Borisov SM, Ghosh A. Influence of Fluorinated Substituents on the Near-Infrared Phosphorescence of 5d Metallocorroles. ACS ORGANIC & INORGANIC AU 2023; 3:241-245. [PMID: 37810408 PMCID: PMC10557119 DOI: 10.1021/acsorginorgau.3c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 10/10/2023]
Abstract
The influence of fluorinated substituents on the luminescent properties of rhenium-oxo, osmium-nitrido, and gold triarylcorroles was studied via a comparison of four ligands: triphenylcorrole (TPC), tris(p-trifluoromethylphenyl)corrole (TpCF3PC), tris{3,5-bis(trifluoromethyl)phenyl}corrole (T3,5-CF3PC), and tris(pentafluorophenyl)corrole (TPFPC). For each metal series examined, fluorinated substituents were found to enhance the luminescent properties, with the phosphorescence quantum yields and triplet decay times increasing in the order TPC < TpCF3PC < T3,5-CF3PC < TPFPC. Among the 11 complexes examined, the highest phosphorescence quantum yield, 2.2%, was recorded for Re[TPFPC](O).
Collapse
Affiliation(s)
| | | | - Rune F. Einrem
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Laura J. McCormick McPherson
- EPSRC
National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department
of Chemistry, UiT−The Arctic University
of Norway, 9037 Tromsø, Norway
| |
Collapse
|
3
|
Xue S, Lv X, Liu N, Morimoto H, Xiao B, Aratani N, Kuzuhara D, Yamada H, Qiu F. Porphyrin(2.1.2.1) rhenium(I) complexes: Synthesis, structures, properties, and dipyrrin act as bipyridyl-like ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2146498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Bentian Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Alemayehu AB, Ghosh A. Phenol- and resorcinol-appended metallocorroles and their derivatization with fluorous tags. Sci Rep 2022; 12:19256. [PMID: 36357501 PMCID: PMC9649713 DOI: 10.1038/s41598-022-23889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Boron tribromide-mediated demethylation of rhenium-oxo and gold meso-tris(4-methoxyphenyl)corrole and meso-tris(3,5-dimethoxyphenylcorrole), M[TpOMePC] and M[T(3,5-OMe)PC] (M = ReO, Au), have yielded the corresponding phenol- and resorcinol-appended metallocorroles, M[TpOHPC] and M[T(3,5-OH)PC], in good yields. The latter compounds proved insoluble in dichloromethane and chloroform but soluble in THF. The M[T(3,5-OH)PC] derivatives also proved moderately soluble in 0.05 M aqueous KOH. Unlike oxidation-prone aminophenyl-substituted corroles, the phenol- and resorcinol-appended metallocorroles could be readily handled in air without special precautions. The phenolic metallocorroles could be readily alkylated with 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl iodide ("FtI") to afford the fluorous-tagged metallocorroles M[TpOFtPC] and M[T(3,5-OFt)PC] in > 90% yields. The simplicity of the synthetic protocols promise a wide range of phenolic and fluorous-tagged porphyrin analogues with potential applications to diverse fields such as sensors, catalysis, and photodynamic therapy, among others.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- grid.10919.300000000122595234Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
5
|
Sahu K, Angeloni S, Conradie J, Villa M, Nayak M, Ghosh A, Ceroni P, Kar S. NIR-emissive, singlet-oxygen-sensitizing gold tetra(thiocyano)corroles. Dalton Trans 2022; 51:13236-13245. [PMID: 35968801 DOI: 10.1039/d2dt01959k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Presented herein are two fully characterized gold tetrathiocyanocorroles representing a potentially significant new class of NIR-emissive 5d-metallocorroles. The four SCN groups on the bipyrrole unit of the corrole exert a powerful electron-withdrawing effect, upshifting both the oxidation and reduction potentials by roughly half a volt relative to their unsubstituted counterparts. That said, the upshift of the LUMO is somewhat higher than that of the HOMO so these complexes also exhibit a smaller HOMO-LUMO gap, as evinced in both electrochemical measurements and Q band energies (∼595 nm relative to ∼571 nm for their SCN-free counterparts). The new compounds exhibit NIR phosphorescence under ambient conditions with emission maxima around 900 nm (compared with 790 nm for simple Au triarylcorroles), phosphorescence quantum yields around 0.3%, phosphorescence lifetimes around 10 μs, and singlet oxygen sensitization with a quantum yield of around 50 ± 5% in solution, together signifying wide-ranging potential applications as triplet photosensitizers in oxygen sensing and photodynamic therapy.
Collapse
Affiliation(s)
- Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Sara Angeloni
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Jeanet Conradie
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway. .,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Marco Villa
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Paola Ceroni
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
6
|
Tyulyaeva EY, Bichan NG, Lomova TN. Generation and Spectral Properties of Oxidized Forms of Iridium and Rhenium Porphyrin Complexes. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Olding A, Tang M, Ho CC, Fuller RO, Bissember AC. Rhenium-catalysed reactions in chemical synthesis: selected case studies. Dalton Trans 2022; 51:3004-3018. [DOI: 10.1039/d1dt04205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Perspective presents and discusses a selection of examples that reinforce the enabling and distinctive reactivity provided by homogeneous rhenium catalysis in chemical synthesis. Specifically, the ability for lower oxidation...
Collapse
|
9
|
Ghosh A, Conradie J. The Dog That Didn't Bark: A New Interpretation of Hypsoporphyrin Spectra and the Question of Hypsocorroles. J Phys Chem A 2021; 125:9962-9968. [PMID: 34762440 PMCID: PMC8630793 DOI: 10.1021/acs.jpca.1c08425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Nearly a half-century after Gouterman classified the UV-vis-NIR spectra of porphyrin derivatives as normal, hyper, or hypso, we propose a heretofore unsuspected "mechanism" underlying hypso spectra. Hypsoporphyrins, which exhibit blueshifted optical spectra relative to normal porphyrins (such as Zn porphyrins), typically involve dn transition metal ions, where n > 6. The spectral blueshifts have been traditionally ascribed to elevated porphyrin eg LUMO (lowest unoccupied molecular orbital) energy levels as a result of antibonding interactions with metal dπ orbitals. Herein, we have found instead that the blueshifts reflect a lowering of the a2u HOMO (highest occupied molecular orbital) energy levels. Electronegative metals such as Pd and Pt transfer smaller quantities of electron density to the porphyrin nitrogens, compared to a more electropositive metal such as Zn. With large amplitudes at the porphyrin nitrogens, the a2u HOMOs of Pd(II) and Pt(II) porphyrins accordingly exhibit lower orbital energies than those of Zn(II) porphyrins, thus explaining the hypso effect. Hypso spectra are also observed for corroles: compared with six-coordinate Al(III) corroles, which may be thought of exhibiting normal spectra, Au(III) corroles, for instance, exhibit blueshifted or hypso spectra.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
| | - Jeanet Conradie
- Department
of Chemistry, UiT—The Arctic University
of Norway, Tromsø N-9037, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic
of South Africa
| |
Collapse
|
10
|
Einrem RF, Jonsson ET, Teat SJ, Settineri NS, Alemayehu AB, Ghosh A. Regioselective formylation of rhenium-oxo and gold corroles: substituent effects on optical spectra and redox potentials. RSC Adv 2021; 11:34086-34094. [PMID: 35497316 PMCID: PMC9042328 DOI: 10.1039/d1ra05525a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Vilsmeier-Haack formylation of ReO and Au meso-triarylcorroles over 16-18 hours affords moderate to good yields (47-65%) of the ReO-3-formyl and Au-3,17-diformyl derivatives in a highly regioselective manner. Formylation was found to effect substantial upshifts for redox potentials (especially the reduction potentials) as well as significant to dramatic redshifts for both the Soret and Q bands.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Einar Torfi Jonsson
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
| | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720-8229 USA
- Department of Chemistry, University of California, Berkeley Berkeley California 94720 USA
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway N-9037 Tromsø Norway
| |
Collapse
|
11
|
Alemayehu AB, Thomas KE, Einrem RF, Ghosh A. The Story of 5d Metallocorroles: From Metal-Ligand Misfits to New Building Blocks for Cancer Phototherapeutics. Acc Chem Res 2021; 54:3095-3107. [PMID: 34297542 PMCID: PMC8382219 DOI: 10.1021/acs.accounts.1c00290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Porphyrin chemistry is Shakespearean: over a
century of study has
not withered the field’s apparently infinite variety. Heme
proteins continually astonish us with novel molecular mechanisms,
while new porphyrin analogues bowl us over with unprecedented optical,
electronic, and metal-binding properties. Within the latter domain,
corroles occupy a special place, exhibiting a unique and rich coordination
chemistry. The 5d metallocorroles are arguably the icing on that cake. New Zealand chemist Penny Brothers has used the word “misfit”
to describe the interactions of boron, a small atom with a predilection
for tetrahedral coordination, and porphyrins, classic square-planar
ligands. Steve Jobs lionized misfits as those who see things differently
and push humanity forward. Both perspectives have inspired us. The
5d metallocorroles are misfits in that they encapsulate a large 5d
transition metal ion within the tight cavity of a contracted porphyrin
ligand. Given the steric mismatch inherent in their structures,
the syntheses
of some 5d metallocorroles are understandably capricious,
proceeding under highly specific conditions and affording poor yields.
Three broad approaches may be distinguished. (a) In the metal–alkyl approach, a free-base
corrole is exposed to an alkyllithium and the resulting lithio-corrole
is treated with an early transition metal chloride; a variant of the
method eschews alkyllithium and deploys a transition metal–alkyl
instead, resulting in elimination of the alkyl group as an alkane
and insertion of the metal into the corrole. This approach is useful
for inserting transition metals from groups 4, 5, and, to some extent,
6, as well as lanthanides and actinides. (b) In our laboratory,
we have often deployed a low-valent
organometallic approach for the middle transition elements
(groups 6, 7, 8, and 9). The reagents are low-valent metal–carbonyl
or −olefin complexes, which lose one or more carbon ligands
at high temperature, affording coordinatively unsaturated, sticky
metal fragments that are trapped by the corrole nitrogens. (c)
Finally, a metal acetate approach provides
the method of choice for gold and platinum insertion (groups 10 and
11). This Account provides a first-hand perspective
of the three approaches, focusing on the last two, which were largely
developed in our laboratory. In general, the products were characterized
with X-ray crystallography, electrochemistry, and a variety of spectroscopic
methods. The physicochemical data, supplemented by relativistic DFT
calculations, have provided fascinating insights into periodic trends
and relativistic effects. An unexpected feature of many 5d metallocorroles,
given their misfit
character, is their remarkable stability under thermal, chemical,
and photochemical stimulation. Many of them also exhibit long triplet
lifetimes on the order of 100 μs and effectively sensitize singlet
oxygen formation. Many exhibit phosphorescence in the near-infrared
under ambient conditions. Furthermore, water-soluble ReO and Au corroles
exhibit impressive photocytotoxicity against multiple cancer cell
lines, promising potential applications as cancer phototherapeutics.
We thus envision a bright future for the compounds as rugged building
blocks for new generations of therapeutic and diagnostic (theranostic)
agents.
Collapse
Affiliation(s)
- Abraham B. Alemayehu
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Kolle E. Thomas
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Rune F. Einrem
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromso, Norway
| |
Collapse
|
12
|
Braband H, Benz M, Spingler B, Conradie J, Alberto R, Ghosh A. Relativity as a Synthesis Design Principle: A Comparative Study of [3 + 2] Cycloaddition of Technetium(VII) and Rhenium(VII) Trioxo Complexes with Olefins. Inorg Chem 2021; 60:11090-11097. [PMID: 34255507 PMCID: PMC8388117 DOI: 10.1021/acs.inorgchem.1c00995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The difference in [3 + 2] cycloaddition reactivity between fac-[MO3(tacn)]+ (M = Re, 99Tc; tacn = 1,4,7-triazacyclononane) complexes has been reexamined
with a selection of unsaturated substrates including sodium 4-vinylbenzenesulfonate,
norbornene, 2-butyne, and 2-methyl-3-butyn-2-ol (2MByOH). None of
the substrates was found to react with the Re cation in water at room
temperature, whereas the 99Tc reagent cleanly yielded the [3 + 2] cycloadducts. Interestingly,
a bis-adduct was obtained as the sole product for 2MByOH, reflecting
the high reactivity of a 99TcO-enediolato monoadduct. On
the basis of scalar relativistic and nonrelativistic density functional
theory calculations of the reaction pathways, the dramatic difference
in reactivity between the two metals has now been substantially attributed to differences in relativistic effects, which are much
larger for the 5d metal. Furthermore, scalar-relativistic ΔG values were found to decrease along the series propene
> norbornene > 2-butyne > dimethylketene, indicating major variations
in the thermodynamic driving force as a function of the unsaturated
substrate. The suggestion is made that scalar-relativistic effects,
consisting of greater destabilization of the valence electrons of
the 5d elements compared with those of the 4d elements, be viewed
as a new design principle for novel 99mTc/Re radiopharmaceuticals,
as well as more generally in heavy-element coordination chemistry. Room temperature cycloaddition reactivity of fac-[99TcO3(tacn)]+ (tacn = 1,4,7-triazacyclononane)
with a variety of unsaturated substrates and the lack of such reactivity
for fac-[ReO3(tacn)]+ appears
largely attributable to much stronger relativistic effects for Re
relative to Tc, based on relativistic density functional theory calculations.
Collapse
Affiliation(s)
- Henrik Braband
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Michael Benz
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Jeanet Conradie
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø N-9037, Norway.,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Zürich 8057, Switzerland
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, Tromsø N-9037, Norway
| |
Collapse
|
13
|
Thomassen IK, Rasmussen D, Einrem RF, Ghosh A. Simple, Axial Ligand-Mediated Route to Water-Soluble Iridium Corroles. ACS OMEGA 2021; 6:16683-16687. [PMID: 34235340 PMCID: PMC8246702 DOI: 10.1021/acsomega.1c02399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 05/04/2023]
Abstract
The synthesis and purification of water-soluble porphyrin-type compounds for photodynamic therapy and other medical applications is often a tedious exercise. Here, we have investigated the simple stratagem of adding a water-soluble axial ligand to the standard protocol for iridium insertion into simple meso-triarylcorroles. Early results showed that six-coordinate Ir[TpXPC](dna)2 derivatives, in which TpXPC = tris(para-X-phenyl)corrole (X = CF3, CN, H, and OMe) and dna = dinicotinic acid, are highly water-soluble. In the end, however, all axially nitrogen-ligated complexes proved unstable with respect to chromatographic purification and storage. Five-coordinate water-soluble phosphine adducts, fortunately, proved a great improvement. From the point of view of ease of purification and storage, the best products proved to be Ir[TpXPC](L), where X = CF3 and OMe and L = tris(2-carboxyethyl)phosphine (tcep) and trisodium tris(3-sulfonatophenyl)phosphine (tppts); carefully optimized synthetic protocols are presented for these four compounds.
Collapse
|
14
|
Zhan X, Lee W, Sudhakar K, Kim D, Mahammed A, Churchill DG, Gross Z. Solvent Effects on the Phosphorescence of Gold(III) Complexes Chelated by β-Multisubstituted Corroles. Inorg Chem 2021; 60:8442-8446. [PMID: 34110813 DOI: 10.1021/acs.inorgchem.1c00906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A set of gold corrole complexes containing four different β-substituent groups (Br/I/CF3), namely, 4Br-Au, 4I-Au, and 4CF3-Au, were investigated; all showed room temperature phosphorescence. The phosphorescence quantum yields of the corroles were determined using tetraphenylporphyrin as a reference: Φph (4I-Au, 0.75%) > Φph (4Br-Au, 0.64%) > Φph (4CF3-Au, 0.38%). 4CF3-Au exhibited near-IR emission (858 nm, aerobic); absorbance intensity for the Q-band was higher than that for the Soret band. Complex 4I-Au showed a longer phosphorescence lifetime (82 μs) compared to those of 4Br-Au (53 μs) and 4CF3-Au (28 μs; N2, tol). Thermally activated delayed fluorescence (TADF) emission of 4I/Br-Au complexes was observed: stronger emission intensity correlated with increasing temperature. Good negative correlations for 4I/Br-Au were observed between the Soret band absorption energy and the solvent polarizability: excited states of 4I/Br-Au are more polar than their ground states. TD-DFT calculations revealed very fast intersystem crossing (ISC) rate constants, 2.20 × 1012 s-1 (4CF3-Au) > 1.96 × 1011 s-1 (4Br-Au) > 1.15 × 1011 s-1 (4I-Au), and importantly, the reverse intersystem crossing (rISC) rate constants are determined as 1.68 × 107 s-1 (4I-Au) > 2.40 × 103 s-1 (4Br-Au) ≫ 8.09 × 10-8 s-1 (4CF3-Au). The exceptionally low rISC rate constant of 4CF3-Au is attributed to its more steric and deformed structure bearing a larger energy gap between the S1 and T1 states.
Collapse
Affiliation(s)
- Xuan Zhan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 320000, Israel
| | - Woohyun Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kolanu Sudhakar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 320000, Israel
| | - Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 320000, Israel
| | - David G Churchill
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 320000, Israel.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Therapeutic Bioengineering Section, KAIST Institute for Health Science and Technology (KIHST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 320000, Israel
| |
Collapse
|
15
|
|
16
|
Alemayehu AB, McCormick-McPherson LJ, Conradie J, Ghosh A. Rhenium Corrole Dimers: Electrochemical Insights into the Nature of the Metal-Metal Quadruple Bond. Inorg Chem 2021; 60:8315-8321. [PMID: 33998801 PMCID: PMC8278387 DOI: 10.1021/acs.inorgchem.1c00986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
interaction of free-base triarylcorroles with Re2(CO)10 in 1,2-dichlorobenzene in the presence of 2,6-lutidine
at 180 °C under strict anerobic conditions afforded approximately
10% yields of rhenium corrole dimers. The compounds exhibited diamagnetic 1H NMR spectra consistent with a metal–metal quadruple
bond with a σ2π4δ2 orbital occupancy. One of the compounds proved amenable to single-crystal
X-ray structure determination, yielding a metal–metal distance
of ∼2.24 Å, essentially identical to that in triple-bonded
osmium corrole dimers. On the other hand, the electrochemical properties
of Re and Os corrole dimers proved to be radically different. Thus,
the reduction potentials of the Re corrole dimers are some 800 mV
upshifted relative to those of their Os counterparts. Stated differently,
the Re corrole dimers are dramatically easier to reduce, reflecting
electron addition to δ* versus π* molecular orbitals for
Re and Os corrole dimers, respectively. The data also imply electrochemical
HOMO-LUMO gaps of only 1.0–1.1 V for rhenium corrole dimers,
compared with values of 1.85–1.90 V for their Os counterparts.
These HOMO–LUMO gaps rank among the first such values reported
for quadruple-bonded transition-metal dimers for any type of supporting
ligand, porphyrin-type or not. The first metal−metal
quadruple-bonded metallocorrole
dimers have been synthesized in the form of three rhenium meso-triarylcorrole dimers. The compounds exhibit electrochemical
HOMO−LUMO gaps of 1.0−1.1 V, which is some 750 mV smaller
than those of their triple-bonded Os counterparts.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Laura J McCormick-McPherson
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jeanet Conradie
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway.,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Clark JA, Orłowski R, Derr JB, Espinoza EM, Gryko DT, Vullev VI. How does tautomerization affect the excited-state dynamics of an amino acid-derivatized corrole? PHOTOSYNTHESIS RESEARCH 2021; 148:67-76. [PMID: 33710530 PMCID: PMC8154756 DOI: 10.1007/s11120-021-00824-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/22/2021] [Indexed: 05/10/2023]
Abstract
In the first two decades of the XXI century, corroles have emerged as an important class of porphyrinoids for photonics and biomedical photonics. In comparison with porphyrins, corroles have lower molecular symmetry and higher electron density, which leads to uniquely complementary properties. In macrocycles of free-base corroles, for example, three protons are distributed among four pyrrole nitrogens. It results in distinct tautomers that have different thermodynamic energies. Herein, we focus on the excited-state dynamics of a corrole modified with L-phenylalanine. The tautomerization in the singlet-excited state occurs in the timescales of about 10-100 picoseconds and exhibits substantial kinetic isotope effects. It, however, does not discernably affect nanosecond deactivation of the photoexcited corrole and its basic photophysics. Nevertheless, this excited-state tautomerization dynamics can strongly affect photoinduced processes with comparable or shorter timescales, considering the 100-meV energy differences between the tautomers in the excited state. The effects on the kinetics of charge transfer and energy transfer, initiated prior to reaching the equilibrium thermalization of the excited-state tautomer population, can be indeed substantial. Such considerations are crucially important in the design of systems for artificial photosynthesis and other forms of energy conversion and charge transduction.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Rafał Orłowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- College of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA.
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Alemayehu AB, Einrem RF, McCormick-McPherson LJ, Settineri NS, Ghosh A. Synthesis and molecular structure of perhalogenated rhenium-oxo corroles. Sci Rep 2020; 10:19727. [PMID: 33184456 PMCID: PMC7665048 DOI: 10.1038/s41598-020-76308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022] Open
Abstract
As part of our efforts to develop rhenium-oxo corroles as photosensitizers for oxygen sensing and photodynamic therapy, we investigated the potential β-perhalogenation of five ReO meso-tris(para-X-phenyl)corroles, Re[TpXPC](O) (X = CF3, H, F, CH3, and OCH3), with elemental chlorine and bromine. With Cl2, β-octachlorinated products Re[Cl8TpXPC](O) were rapidly obtained for X = CF3, H, and CH3, but X = OCH3 resulted in overchlorination on the meso-aryl groups. Full β-octabromination proved slower relative to Cu and Ir corroles, but the desired Re[Br8TpXPC](O) products were finally obtained for X = H and F after a week at room temperature. For X = CH3 and OCH3, these conditions led to undecabrominated products Re[Br11TpXPC](O). Compared to the β-unsubstituted starting materials, the β-octahalogenated products were found to exhibit sharp 1H NMR signals at room temperature, indicating that the aryl groups are locked in place by the β-halogens, and substantially redshifted Soret and Q bands. Single-crystal X-ray structures of Re[Cl8TpCF3PC](O), Re[Cl8TpCH3PC](O), and Re[Br8TpFPC](O) revealed mild saddling for one Cl8 structure and the Br8 structure. These structural variations, however, appear too insignificant to explain the slowness of the β-octabromination protocols, which seems best attributed to the deactivating influence of the high-valent Re center.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - Nicholas S Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-8229, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
19
|
|
20
|
Lopes SMM, Pineiro M, Pinho e Melo TMVD. Corroles and Hexaphyrins: Synthesis and Application in Cancer Photodynamic Therapy. Molecules 2020; 25:E3450. [PMID: 32751215 PMCID: PMC7435872 DOI: 10.3390/molecules25153450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Corroles and hexaphyrins are porphyrinoids with great potential for diverse applications. Like porphyrins, many of their applications are based on their unique capability to interact with light, i.e., based on their photophysical properties. Corroles have intense absorptions in the low-energy region of the uv-vis, while hexaphyrins have the capability to absorb light in the near-infrared (NIR) region, presenting photophysical features which are complementary to those of porphyrins. Despite the increasing interest in corroles and hexaphyrins in recent years, the full potential of both classes of compounds, regarding biological applications, has been hampered by their challenging synthesis. Herein, recent developments in the synthesis of corroles and hexaphyrins are reviewed, highlighting their potential application in photodynamic therapy.
Collapse
Affiliation(s)
| | | | - Teresa M. V. D. Pinho e Melo
- Coimbra Chemistry Centre and Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (S.M.M.L.); (M.P.)
| |
Collapse
|
21
|
Majumder S, Borah BP, Bhuyan J. Rhenium in the core of porphyrin and rhenium bound to the periphery of porphyrin: synthesis and applications. Dalton Trans 2020; 49:8419-8432. [PMID: 32515453 DOI: 10.1039/d0dt00813c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of most of the well known rhenium porphyrins (rhenium in the core of porphyrins) is presented here reviewing their synthesis, coordination chemistry, and applications. The important features of oxorhenium(v) porphyrins are discussed elaborately taking into account their application in epoxidation reaction. Moreover, the chemistry of some recently known porphyrin-Re conjugates (rhenium bound to the periphery of porphyrin) is reported considering their applications in the photochemical carbon dioxide reduction process and photodynamic therapy. The number of well characterized rhenium porphyrinoids are limited but they show interesting diverse properties, some of which are also discussed in this review.
Collapse
Affiliation(s)
- Smita Majumder
- Department of Chemistry, North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh, India.
| | | | | |
Collapse
|
22
|
Einrem RF, Alemayehu AB, Borisov SM, Ghosh A, Gederaas OA. Amphiphilic Rhenium-Oxo Corroles as a New Class of Sensitizers for Photodynamic Therapy. ACS OMEGA 2020; 5:10596-10601. [PMID: 32426618 PMCID: PMC7227046 DOI: 10.1021/acsomega.0c01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/15/2020] [Indexed: 05/21/2023]
Abstract
A set of rhenium(V)-oxo meso-triarylcorroles bearing ester and carboxylic acid functionalities were synthesized with a view to determining their potential for photodynamic therapy. Toward this end, we measured their near-IR phosphorescence and their ability to sensitize singlet oxygen formation. The two esters studied, ReVO 5,10,15-tris(meta-carbomethoxyphenyl)corrole and ReVO 5,10,15-tris(para-carbomethoxyphenyl)corrole, were found to exhibit phosphorescence quantum yields of around 1% and fairly long phosphorescence lifetimes of about 60 μs in toluene. The corresponding carboxylic acids, which were examined in ethanolic/aqueous media, in contrast, showed much lower phosphorescence quantum yields on the order of 0.01% and somewhat shorter phosphorescent lifetimes. The quantum yields for singlet oxygen formation, on the other hand, turned out to be equally high (0.72 ± 0.02) for the esters and corresponding carboxylic acids. For the two carboxylic acids, we also carried out photocytotoxicity measurements on rat bladder cancer cells (AY27) and human colon carcinoma cells (WiDr). Cell viability measurements (MTT assays) indicated 50% cell death (LD50) for AY27 cells upon 5 min of blue light exposure with the meta carboxylic acid and upon 7 min of exposure with the para carboxylic acid; complete cell death resulted after 20 min for both compounds. The WiDr cells proved less sensitive, and LD50 values were reached after 8 and 12 min illumination with the meta and para carboxylic acids, respectively.
Collapse
Affiliation(s)
- Rune F. Einrem
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Odrun A. Gederaas
- Department
of Clinical and Molecular Medicine and Department of Physics, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
23
|
Iridium Corroles Exhibit Weak Near-Infrared Phosphorescence but Efficiently Sensitize Singlet Oxygen Formation. Sci Rep 2020; 10:7551. [PMID: 32371925 PMCID: PMC7200656 DOI: 10.1038/s41598-020-64389-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022] Open
Abstract
Six-coordinate iridium(III) triarylcorrole derivatives, Ir[TpXPC)]L2, where TpXPC = tris(para-X-phenyl)corrole (X = CF3, H, Me, and OCH3) and L = pyridine (py), trimethylamine (tma), isoquinoline (isoq), 4-dimethylaminopyridine (dmap), and 4-picolinic acid (4pa), have been examined, with a view to identifying axial ligands most conducive to near-infrared phosphorescence. Disappointingly, the phosphorescence quantum yield invariably turned out to be very low, about 0.02 – 0.04% at ambient temperature, with about a two-fold increase at 77 K. Phosphorescence decay times were found to be around ~5 µs at 295 K and ~10 µs at 77 K. Fortunately, two of the Ir[TpCF3PC)]L2 derivatives, which were tested for their ability to sensitize singlet oxygen formation, were found to do so efficiently with quantum yields Φ(1O2) = 0.71 and 0.38 for L = py and 4pa, respectively. Iridium corroles thus may hold promise as photosensitizers in photodynamic therapy (PDT). The possibility of varying the axial ligand and of attaching biotargeting groups at the axial positions makes iridium corroles particularly exciting as PDT drug candidates.
Collapse
|
24
|
Thomassen IK, Ghosh A. Protonation-Induced Hyperporphyrin Spectra of meso-Aminophenylcorroles. ACS OMEGA 2020; 5:9023-9030. [PMID: 32337467 PMCID: PMC7178790 DOI: 10.1021/acsomega.0c01068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 05/05/2023]
Abstract
UV-vis spectrophotometric titrations have been carried out on meso-tris(o/m/p-aminophenyl)corrole (H3[o/m/p-TAPC]) and meso-triphenylcorrole (H3[TPC]) in dimethyl sulfoxide with methanesulfonic acid (MSA). Monoprotonation was found to result in hyperporphyrin spectra characterized by new, red-shifted, and intense Q bands. The effect was particularly dramatic for H3[p-TAPC] for which the Q band red-shifted from ∼637 nm for the neutral species to 764 nm in the near-IR for H4[p-TAPC]+. Upon further protonation, the Q band was found to blue-shift back to 687 nm. A simple explanation of the phenomena has been offered in terms of quinonoid resonance forms.
Collapse
|
25
|
Abstract
Metallocorroles involving 5d transition metals are currently of interest as near-IR phosphors and as photosensitizers for oxygen sensing and photodynamic therapy. Their syntheses, however, are often bedeviled by capricious and low-yielding protocols. Against this backdrop, we describe rhenium-imido corroles, a new class of 5d metallocorroles, synthesized simply and in respectable (∼30%) yields via the interaction of a free-base corrole, Re2(CO)10, K2CO3, and aniline in 1,2,4-trichlorobenzene at ∼190 °C in a sealed vial under strict anaerobic conditions. The generality of the method was shown by the synthesis of six derivatives, including those derived from meso-tris(pentafluorophenyl)corrole, H3[TPFPC], and five different meso-tris(p-X-phenyl)corroles, H3[TpXPC], where X = CF3, F, H, CH3, OCH3. Single-crystal X-ray structures obtained for two of the complexes, Re[TpFPC](NPh) and Re[TpCF3PC](NPh), revealed relatively unstrained equatorial Re-N distances of ∼2.00 Å, a ∼ 0.7-Å displacement of the Re from the mean plane of the corrole nitrogens, and an Re-Nimido distance of ∼1.72 Å. Details of the corrole skeletal bond distances, diamagnetic 1H NMR spectra, relatively substituent-independent Soret maxima, and electrochemical HOMO-LUMO gaps of ∼2.2 V all indicated an innocent corrole macrocycle. Surprisingly, unlike several other classes of 5d metallocorroles, the Re-imido complexes proved nonemissive in solution at room temperature and also failed to sensitize singlet oxygen formation, indicating rapid radiationless deactivation of the triplet state, presumably via the rapidly rotating axial phenyl group. By analogy with other metal-oxo and -imido corroles, we remain hopeful that the Re-imido group will prove amenable to further elaboration and thereby contribute to the development of a somewhat challenging area of coordination chemistry.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
26
|
Reinholdt A, Alemayehu AB, Gagnon KJ, Bendix J, Ghosh A. Electrophilic Activation of Osmium-Nitrido Corroles: The OsN Triple Bond as a π-Acceptor Metallaligand in a Heterobimetallic Os VIN-Pt II Complex. Inorg Chem 2020; 59:5276-5280. [PMID: 32227864 PMCID: PMC7311052 DOI: 10.1021/acs.inorgchem.0c00654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Presented herein is a first investigation of the chemical reactivity of osmium-nitrido corroles, which are known for their unusual thermal, chemical, and photochemical stability. Elemental chlorine perchlorinates the β-positions of the triarylcorrole but leaves the OsN unit untouched. The OsN unit is also unaffected by a variety of other electrophilic and nucleophilic reagents. Upon photolysis, however, the anion of Zeise's salt associates with the nitrido ligand to generate an OsVI≡N-PtII complex. The very short OsN-Pt linkage [1.895(9)-1.917(8) Å] and the downfield 195Pt NMR resonance (-2702 ppm) suggest that the OsN corrole acts as a π-accepting ligand toward the Pt(II) center. This finding represents a rare example of the successful photochemical activation of a metal-ligand multiple bond that is too kinetically inert to exhibit any appreciable reactivity under thermal conditions.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
27
|
Alemayehu AB, Vazquez‐Lima H, Teat SJ, Ghosh A. Unexpected Molecular Structure of a Putative Rhenium-Dioxo-Benzocarbaporphyrin Complex. Implications for the Highest Transition Metal Valence in a Porphyrin-Type Ligand Environment. ChemistryOpen 2019; 8:1298-1302. [PMID: 31649839 PMCID: PMC6804418 DOI: 10.1002/open.201900271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
A combination of quantum chemical calculations and synthetic studies was used to address the possibility of very high (>6) valence states of transition metals in porphyrin-type complexes. With corrole as a supporting ligand, DFT calculations ruled out Re(VII) and Ir(VII) dioxo complexes as stable species. Attempted rhenium insertion into benzocarbaporphyrin (BCP) ligands on the other hand led to two products with different stoichiometries - Re[BCP]O and Re[BCP]O2. To our surprise, single-crystal structure determination of one of the complexes of the latter type indicated an ReVO center with a second oxygen bridging the Re-C bond. In other words, although the monooxo complexes Re[BCP]O are oxophilic, the BCP ligand cannot sustain a trans-ReVII(O)2 center. The search for metal valence states >6 in porphyrin-type ligand environments must therefore continue.
Collapse
Affiliation(s)
| | - Hugo Vazquez‐Lima
- Centro de Química, Instituto de CienciasUniversidad Autónoma de Puebla Edif. IC9, CU, San Manuel72570Puebla, PueblaMexico
| | - Simon J. Teat
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA 94720–8229USA
| | - Abhik Ghosh
- Department of ChemistryUiT – The Arctic University of Norway9037TromsøNorway
| |
Collapse
|
28
|
Okoye NC, Baumeister JE, Najafi Khosroshahi F, Hennkens HM, Jurisson SS. Chelators and metal complex stability for radiopharmaceutical applications. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-3090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Diagnostic and therapeutic nuclear medicine relies heavily on radiometal nuclides. The most widely used and well-known radionuclide is technetium-99m (99mTc), which has dominated diagnostic nuclear medicine since the advent of the 99Mo/99mTc generator in the 1960s. Since that time, many more radiometals have been developed and incorporated into potential radiopharmaceuticals. One critical aspect of radiometal-containing radiopharmaceuticals is their stability under in vivo conditions. The chelator that is coordinated to the radiometal is a key factor in determining radiometal complex stability. The chelators that have shown the most promise and are under investigation in the development of diagnostic and therapeutic radiopharmaceuticals over the last 5 years are discussed in this review.
Collapse
Affiliation(s)
| | | | | | - Heather M. Hennkens
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
- University of Missouri Research Reactor Center , Columbia, MO 65211 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| |
Collapse
|
29
|
Abstract
Noninnocent ligands do not allow an unambiguous definition of the oxidation state of a coordinated atom. When coordinated, the ligands also cannot be adequately represented by a classic Lewis structure. A noninnocent system thus harbors oxidizing (holes) or reducing equivalents (electrons) that are delocalized over both the ligand and the coordinated atom. To a certain degree, that is true of all complexes, but the phenomenon is arguably most conspicuous in complexes involving ligands with extended π-systems. The electronic structures of such systems have often been mischaracterized, thereby muddying the chemical literature to the detriment of students and newcomers to the field. In recent years, we have investigated the electronic structures of several metallocorrole families, several of which have turned out to be noninnocent. Our goal here, however, is not to present a systematic account of the different classes of metallocorroles, but rather to focus on seven major tools (in a nod to A. G. Cairns-Smith's Seven Clues to the Origin of Life) that led us to recognize noninnocent behavior and subsequently to characterize the phenomenon in depth. (1) The optical probe: For a series of noninnocent meso-triarylcorrole derivatives with different para substituents X, the Soret maxima are typically exquisitely sensitive to the nature of X, red-shifting with increasing electron-donating character of the group. No such substituent sensitivity is observed for the Soret maxima of innocent triarylcorrole derivatives. (2) Quantum chemistry: Spin-unrestricted density functional theory calculations permit a simple and quick visualization of ligand noninnocence in terms of the spin density profile. Even for an S = 0 complex, the broken-symmetry method often affords a spin density profile that, its fictitious character notwithstanding, helps visualize the intramolecular spin couplings. (3) NMR and EPR spectroscopy: In principle, these two techniques afford experimental probes of the electronic spin density. (4) Structure/X-ray crystallography. Ligand noninnocence in metallocorroles is often reflected in small but distinct skeletal bond length alternations in and around the bipyrrole part of the macrocycle. In addition, for Cu and some Ag corroles, ligand noninnocence manifests itself via a strong saddling of the macrocycle. (5) Vibrational spectroscopy. Unsurprisingly, the aforementioned bond length alternations translate to structure-sensitive vibrational marker bands. (6) Electrochemistry. Noninnocent metallocorroles exhibit characteristically high reduction potentials, but caution should be exercised in turning the logic around. A high reduction potential does not necessarily signify a noninnocent metallocorrole; certain high-valent metal centers also undergo metal-centered reduction at quite high potentials. (7) X-ray absorption spectroscopy (XAS). By focusing on a given element, typically the central atom in a coordination complex, X-ray absorption near-edge spectroscopy (XANES) can provide uniquely detailed local information on oxidation and spin states, ligand field strength, and degree of centrosymmetry. For metallocorroles, some of the most clear-cut distinctions between innocent and noninnocent systems have come from the K-edge XANES of Mn and Fe corroles. For researchers faced with a new, potentially noninnocent system, the take-home message is to employ a good majority (i.e., at least four) of the above methods to arrive at a reliable conclusion vis-à-vis noninnocence.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Arctic Center for Sustainable Energy, UiT−The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry and Arctic Center for Sustainable Energy, UiT−The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
30
|
Lim H, Thomas KE, Hedman B, Hodgson KO, Ghosh A, Solomon EI. X-ray Absorption Spectroscopy as a Probe of Ligand Noninnocence in Metallocorroles: The Case of Copper Corroles. Inorg Chem 2019; 58:6722-6730. [PMID: 31046257 PMCID: PMC6644708 DOI: 10.1021/acs.inorgchem.9b00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The question of ligand noninnocence in Cu corroles has long been a topic of discussion. Presented herein is a Cu K-edge X-ray absorption spectroscopy (XAS) study, which provides a direct probe of the metal oxidation state, of three Cu corroles, Cu[TPC], Cu[Br8TPC], and Cu[(CF3)8TPC] (TPC = meso-triphenylcorrole), and the analogous Cu(II) porphyrins, Cu[TPP], Cu[Br8TPP], and Cu[(CF3)8TPP] (TPP = meso-tetraphenylporphyrin). The Cu K rising-edges of the Cu corroles were found to be about 0-1 eV upshifted relative to the analogous porphyrins, which is substantially lower than the 1-2 eV shifts typically exhibited by authentic Cu(II)/Cu(III) model complex pairs. In an unusual twist, the Cu K pre-edge regions of both the Cu corroles and the Cu porphyrins exhibit two peaks split by 0.8-1.3 eV. Based on time-dependent density functional theory calculations, the lower- and higher-energy peaks were assigned to a Cu 1s → 3d x2- y2 transition and a Cu 1s → corrole/porphyrin π* transition, respectively. From the Cu(II) porphyrins to the corresponding Cu corroles, the energy of the Cu 1s → 3d x2- y2 transition peak was found to upshift by 0.6-0.8 eV. This shift is approximately half that observed between Cu(II) to Cu(III) states for well-defined complexes. The Cu K-edge XAS spectra thus show that although the metal sites in the Cu corroles are more oxidized relative to those in their Cu(II) porphyrin analogues, they are not oxidized to the Cu(III) level, consistent with the notion of a noninnocent corrole. The relative importance of σ-donation versus corrole π-radical character is discussed.
Collapse
Affiliation(s)
- Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kolle E. Thomas
- Department of Chemistry, UiT — The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT — The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
31
|
Alemayehu AB, McCormick LJ, Vazquez-Lima H, Ghosh A. Relativistic Effects on a Metal-Metal Bond: Osmium Corrole Dimers. Inorg Chem 2019; 58:2798-2806. [PMID: 30730723 DOI: 10.1021/acs.inorgchem.8b03391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of metal-metal bonded osmium corrole dimers, {Os[T pXPC]}2, were synthesized in reasonably good yields (35-46%) via the interaction of the corresponding free-base meso-tris( p-X-phenyl)corroles (H3[T pXPC], X = CF3, H, CH3, and OCH3), Os3(CO)12, and potassium carbonate in 1,2,4-trichlorobenzene under an inert atmosphere at 180 °C over several hours. The complexes are only the second class of Os corroles reported to date (the first being OsVIN corroles) and also the second class of metal-metal bonded metallocorrole dimers (the other being Ru corrole dimers). Comparison of the X-ray structures, redox potentials, and optical spectra of analogous Ru and Os corrole dimers, along with scalar-relativistic DFT calculations, has provided an experimentally calibrated account of relativistic effects in these complexes. Three of the Os corrole dimers (X = CF3, H, and OCH3) were analyzed with single-crystal X-ray diffraction analysis, revealing inversion-related corrole rings with eclipsed Os-N bonds and Os-Os distances of ∼2.24 Å that are ∼0.06 Å longer than the Ru-Ru distances in the analogous Ru corrole dimers. Interestingly, a comparison of scalar-relativistic and nonrelativistic DFT calculations indicates that this difference in metal-metal bond distance does not, in fact, reflect a differential relativistic effect. For a given corrole ligand, the Ru and Os corrole dimers exhibit nearly identical oxidation potentials but dramatically different reduction potentials, with the Os values ∼0.5 V lower relative to Ru, suggesting that whereas oxidation occurs in a ligand-centered manner, reduction is substantially metal-centered, which indeed was confirmed by scalar-relativistic calculations. The calculations further indicate that approximately a third of the ∼0.5 V difference in reduction potentials can be ascribed to relativity. The somewhat muted value of this relativistic effect appears to be related to the finding that reduction of an Os corrole dimer is not exclusively metal-based but that a significant amount of spin density is delocalized over to the corrole ligand; in contrast, reduction of an Ru corrole dimer occurs exclusively on the Ru-Ru linkage. For isoelectronic complexes, the Ru and Os corrole dimers exhibit substantially different UV-vis spectra. A key difference is a strong near-UV feature of the Os series, which in energy terms is blue-shifted by ∼0.55 V relative to the analogous feature of the Ru series. TDDFT calculations suggest that this difference may be related to higher-energy Os(5d)-based LUMOs in the Os case relative to analogous MOs for Ru.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry , UiT - The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Laura J McCormick
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720-8229 , United States
| | - Hugo Vazquez-Lima
- Department of Chemistry , UiT - The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Abhik Ghosh
- Department of Chemistry , UiT - The Arctic University of Norway , N-9037 Tromsø , Norway
| |
Collapse
|
32
|
Borisov SM, Einrem RF, Alemayehu AB, Ghosh A. Ambient-temperature near-IR phosphorescence and potential applications of rhenium-oxo corroles. Photochem Photobiol Sci 2019; 18:1166-1170. [DOI: 10.1039/c8pp00473k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Presented herein is a first photophysical investigation of a series rhenium(v)-oxo tris(p-X-phenyl)corroles, Re[TpXPC](O), where X = CF3, F, H, CH3, and OCH3.
Collapse
Affiliation(s)
- Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Rune F. Einrem
- Department of Chemistry
- UiT
- The Arctic University of Norway
- N-9037 Tromsø
- Norway
| | | | - Abhik Ghosh
- Department of Chemistry
- UiT
- The Arctic University of Norway
- N-9037 Tromsø
- Norway
| |
Collapse
|
33
|
Demissie TB, Conradie J, Vazquez-Lima H, Ruud K, Ghosh A. Rare and Nonexistent Nitrosyls: Periodic Trends and Relativistic Effects in Ruthenium and Osmium Porphyrin-Based {MNO} 7 Complexes. ACS OMEGA 2018; 3:10513-10516. [PMID: 31459176 PMCID: PMC6645279 DOI: 10.1021/acsomega.8b01434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/14/2018] [Indexed: 05/26/2023]
Abstract
Relativistic and nonrelativistic density functional theory calculations were used to investigate rare or nonexistent ruthenium and osmium analogues of nitrosylhemes. Strong ligand field effects and, to a lesser degree, relativistic effects were found to destabilize {RuNO}7 porphyrins relative to their {FeNO}7 analogues. Substantially stronger relativistic effects account for the even greater instability and/or nonexistence of {OsNO}7 porphyrin derivatives.
Collapse
Affiliation(s)
- Taye B. Demissie
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Materials
Science Program, Department of Chemistry, Addis Ababa University, Addis
Ababa, Ethiopia
| | - Jeanet Conradie
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
- Department
of Chemistry, University of the Free State, P.O. Box 339, 9300 Bloemfontein, Republic of South Africa
| | - Hugo Vazquez-Lima
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Kenneth Ruud
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Tromsø—The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
34
|
Alemayehu A, M cCormick LJ, Gagnon KJ, Borisov SM, Ghosh A. Stable Platinum(IV) Corroles: Synthesis, Molecular Structure, and Room-Temperature Near-IR Phosphorescence. ACS OMEGA 2018; 3:9360-9368. [PMID: 31459069 PMCID: PMC6645213 DOI: 10.1021/acsomega.8b01149] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/01/2018] [Indexed: 05/17/2023]
Abstract
A series of stable Pt(IV) corrole complexes with the general formula PtIV[TpXPC](m/p-C6H4CN)(py), where TpXPC3- is the trianion of a tris(p-X-phenyl)corrole and X = CF3, H, and CH3, has been synthesized, affording key physicochemical data on a rare and elusive class of metallocorroles. Single-crystal X-ray structures of two of the complexes revealed very short equatorial Pt-N distances of 1.94-1.97 Å, an axial Pt-C distance of ∼2.03 Å, and an axial Pt-N distance of ∼2.22 Å. The complexes exhibit Soret maxima at ∼430 nm, which are essentially independent of the meso-aryl para substituents, and strong Q bands with the most intense peak at 595-599 nm. The substituent-independent Soret maxima are consistent with an innocent PtIV-corrole3- description for the complexes. The low reduction potentials (-1.45 ± 0.08 V vs saturated calomel reference electrode) also support a highly stable Pt(IV) ground state as opposed to a noninnocent corrole•2- description. The reductions, however, are irreversible, which suggests that they involve concomitant cleavage of the Pt-aryl bond. Unlike Pt(IV) porphyrins, two of the complexes, PtIV[TpXPC](m-C6H4CN)(py) (X = CF3 and CH3), were found to exhibit room-temperature near-IR phosphorescence with emission maxima at 813 and 826 nm, respectively. The quantum yield of ∼0.3% is comparable to those observed for six-coordinate Ir(III) corroles.
Collapse
Affiliation(s)
- Abraham
B. Alemayehu
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720-8229, United States
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720-8229, United States
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Abhik Ghosh
- Department
of Chemistry, UiT—The Arctic University
of Norway, N-9037 Tromsø, Norway
- E-mail:
| |
Collapse
|
35
|
Ganguly S, MCormick LJ, Conradie J, Gagnon KJ, Sarangi R, Ghosh A. Electronic Structure of Manganese Corroles Revisited: X-ray Structures, Optical and X-ray Absorption Spectroscopies, and Electrochemistry as Probes of Ligand Noninnocence. Inorg Chem 2018; 57:9656-9669. [DOI: 10.1021/acs.inorgchem.8b00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry, UiT—The Arctic University of Norway, Tromsø N-9037, Norway
| | - Laura J. MCormick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, Republic of South Africa
| | - Kevin J. Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Ritimukta Sarangi
- Structural Molecular Biology (SMB), Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT—The Arctic University of Norway, Tromsø N-9037, Norway
| |
Collapse
|
36
|
Alemayehu AB, Vazquez-Lima H, McCormick LJ, Ghosh A. Relativistic effects in metallocorroles: comparison of molybdenum and tungsten biscorroles. Chem Commun (Camb) 2018; 53:5830-5833. [PMID: 28497147 DOI: 10.1039/c7cc01549f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The homoleptic sandwich compounds - Mo and W biscorroles - have afforded a novel platform for experimental studies of relativistic effects. A 200 mV difference in reduction potential and a remarkable 130 nm shift of a near-IR spectral feature have been identified as manifestations of relativistic effects on the properties of these complexes.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
37
|
Ganguly S, Conradie J, Bendix J, Gagnon KJ, McCormick LJ, Ghosh A. Electronic Structure of Cobalt–Corrole–Pyridine Complexes: Noninnocent Five-Coordinate Co(II) Corrole–Radical States. J Phys Chem A 2017; 121:9589-9598. [DOI: 10.1021/acs.jpca.7b09440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Ganguly
- Department
of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department
of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
38
|
Basumatary B, Rai J, Reddy RVR, Sankar J. Evidence for a [17] π-Electronic Full-Fledged Non-innocent Gallium(III)-Corrole Radical. Chemistry 2017; 23:17458-17462. [PMID: 29044747 DOI: 10.1002/chem.201704457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/10/2022]
Abstract
One-electron oxidation of a GaIII -corrole with N(4-BrC6 H4 )3 SbCl6 resulted in an air-stable non-innocent GaIII -corrole radical. The single-crystal X-ray crystallography of the 2,17-bis-formyl-5,10,15-tris(pentafluorophenyl)corrolato gallium(III)(chloride) radical ([3-Cl]. ) revealed delocalization of the unpaired electron, which was further confirmed by electron spin resonance (ESR) spectroscopy and spin density distribution plot. In addition, the nucleus-independent chemical shift (NICS), anisotropy-induced current density (AICD) and harmonic oscillator model of aromaticity (HOMA) supported a [17] π-electron-conjugated (or antiaromatic) radical.
Collapse
Affiliation(s)
- Biju Basumatary
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| | - Jyoti Rai
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| | - R V Ramana Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| | - Jeyaraman Sankar
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| |
Collapse
|
39
|
Ganguly S, Renz D, Giles LJ, Gagnon KJ, McCormick LJ, Conradie J, Sarangi R, Ghosh A. Cobalt- and Rhodium-Corrole-Triphenylphosphine Complexes Revisited: The Question of a Noninnocent Corrole. Inorg Chem 2017; 56:14788-14800. [DOI: 10.1021/acs.inorgchem.7b01828] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Diemo Renz
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Logan J. Giles
- Structural Molecular Biology, Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
40
|
Ganguly S, Giles LJ, Thomas KE, Sarangi R, Ghosh A. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials. Chemistry 2017; 23:15098-15106. [PMID: 28845891 PMCID: PMC5710759 DOI: 10.1002/chem.201702621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/11/2022]
Abstract
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF3 , H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic-structural comparison with the corresponding FeCl, FeNO, and Fe2 (μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes-Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]}2 O, and Fe[TPC]Ph-were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected FeIV -like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be FeIII -like. These results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Logan J Giles
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Kolle E Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
41
|
Schweyen P, Brandhorst K, Hoffmann M, Wolfram B, Zaretzke MK, Bröring M. Viking Helmet Corroles: Activating Inert Oxidometal Corroles. Chemistry 2017; 23:13897-13900. [PMID: 28833727 DOI: 10.1002/chem.201703721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Chemically inert oxidometal(V) corrols of molybdenum and rhenium undergo clean ligand-exchange reactions upon the action of SiCl4 . The resulting dichlorido complexes show trigonal prismatic coordination of the metal ion with the chlorine atoms residing in a cis configuration, and were studied by optical and resonance spectroscopy as well as DFT calculations. In situ reactivity studies with carbon nucleophiles indicate high reactivity for chlorine replacement. Treatment with sodium cyclopentadienide paves the way to robust molybdenum corrolocene half-sandwich complexes. These organometallic compounds are the first corrole species that stabilize an air-stable and diamagnetic low spin d2 -MoIV center. Structural, spectroelectrochemical, and chemical investigations prove a reversible MoIV /MoV redox couple close to the Fc/Fc+ potential for these systems. The high stability of the compounds in both redox states calls for future applications in catalysis and as redox switch.
Collapse
Affiliation(s)
- Peter Schweyen
- Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Kai Brandhorst
- Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Martin Hoffmann
- Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Benedikt Wolfram
- Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Marc-Kevin Zaretzke
- Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Martin Bröring
- Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
42
|
Alemayehu AB, Vazquez-Lima H, Gagnon KJ, Ghosh A. Stepwise Deoxygenation of Nitrite as a Route to Two Families of Ruthenium Corroles: Group 8 Periodic Trends and Relativistic Effects. Inorg Chem 2017; 56:5285-5294. [PMID: 28422487 DOI: 10.1021/acs.inorgchem.7b00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Given the many applications of ruthenium porphyrins, the rarity of ruthenium corroles and the underdeveloped state of their chemistry are clearly indicative of an area ripe for significant breakthroughs. The tendency of ruthenium corroles to form unreactive metal-metal-bonded dimers has been recognized as a key impediment in this area. Herein, by exposing free-base meso-tris(p-X-phenyl)corroles, H3[TpXPC] (X = CF3, H, Me, and OMe), and [Ru(COD)Cl2]x in refluxing 2-methoxyethanol to nitrite, we have been able to reliably intercept the series Ru[TpXPC](NO) in a matter of seconds to minutes and subsequently RuVI[TpXPC](N), the products of a second deoxygenation, over some 16 h. Two of the RuVIN complexes and one ruthenium corrole dimer could be crystallographically analyzed; the Ru-Nnitrido distance was found to be ∼1.61 Å, consistent with the triple-bonded character of the RuVIN units and essentially identical with the Os-Nnitrido distance in analogous osmium corroles. Spectroscopic and density functional theory (DFT) calculations suggest that the RuNO corroles are best viewed as innocent {RuNO}6 complexes, whereas the analogous FeNO corroles are noninnocent, i.e., best viewed as {FeNO}7-corrole•2-. Both RuVIN and OsVIN corroles exhibit sharp Soret bands, suggestive of an innocent macrocycle. A key difference between the two metals is that the Soret maxima of the OsVIN corroles are red-shifted some 25 nm relative to those of the RuVIN complexes. Careful time-dependent DFT studies indicate that this difference is largely attributable to relativistic effects in OsVIN corroles. The availability of two new classes of mononuclear ruthenium corroles potentially opens the door to new applications, in such areas as catalysis and cancer therapy.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720-8229, United States
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| |
Collapse
|
43
|
Norheim H, Schneider C, Gagnon KJ, Ghosh A. One-Pot Synthesis of a bis-Pocket Corrole through a 14-fold Bromination Reaction. ChemistryOpen 2017; 6:221-225. [PMID: 28413755 PMCID: PMC5390803 DOI: 10.1002/open.201600168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Indexed: 11/08/2022] Open
Abstract
A one-pot protocol, effecting 14-fold bromination with elemental bromine, has afforded copper β-octabromo-meso-tris(2,6-dibromo-3,5-dimethoxyphenyl)corrole, a new bis-pocket metallocorrole. The Cu complex underwent smooth demetalation under reductive conditions, affording the free corrole ligand, which in turn could be readily complexed to MnIII and AuIII. A single-crystal X-ray structure was obtained for the MnIII complex.
Collapse
Affiliation(s)
| | | | - Kevin J. Gagnon
- Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyCA94720-8229USA
| | - Abhik Ghosh
- Department of ChemistryUiT—The Arctic University of Norway9037TromsøNorway
| |
Collapse
|
44
|
Yadav P, Rathi P, Sankar M. Facile Generation of A 2B Corrole Radical Using Fe(III) Salts and Its Spectroscopic Properties. ACS OMEGA 2017; 2:959-965. [PMID: 30023622 PMCID: PMC6044766 DOI: 10.1021/acsomega.6b00430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/01/2017] [Indexed: 06/08/2023]
Abstract
A carboxyphenyl-substituted corrole, 5,15-dimesityl-10-(4'-carboxyphenyl)corrole (1), has been synthesized and characterized by UV-vis, fluorescence, 1H NMR spectroscopy, and electrospray ionization (ESI)-mass spectrometry (MS) techniques. An air-stable corrole radical (1•) was obtained with the addition of the Fe(III) salt to 1 in dimethyl sulfoxide (DMSO) and characterized by UV-vis, fluorescence, electron paramagnetic resonance (EPR), ESI-MS techniques, and density functional theory studies. The neutral corrole radical (1•) exhibited a sharp EPR signal at g = 2.006 in DMSO. The reduced bipyrrolic (N-C-C-N) dihedral angle (χ) of 1 from 19.11 to 7.07° leads to the release of angle strain, which is the driving force for the generation of 1•. Notably, trans-dimesityl groups prevent the dimerization or aggregation of the corrole radical. Further, 1• was converted to 1 by excess addition of Fe(II) salts in DMSO at 298 K.
Collapse
|
45
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
46
|
Ziegler JA, Buckley HL, Arnold J. Synthesis and reactivity of tantalum corrole complexes. Dalton Trans 2017; 46:780-785. [PMID: 27996068 DOI: 10.1039/c6dt04265a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the free base corrole (Mes2(p-OMePh)corrole)H3 with tantalum trialkyl precursors TaMe3Cl2 and TaBn3NtBu resulted in the formation of the tantalum dichloride (1) and tantalum imido (4) corrole complexes via alkane elimination. The X-ray crystal structures of these two compounds have been determined and the structural parameters are discussed. The Ta centre of 1 was found to sit out of the plane of the corrole ring by 0.903 Å and is cis-ligated, similarly to what has been reported for group 4 porphyrin complexes. From complex 1 we synthesized the dimethyl derivative (2), the reactivity of which is compared to an analogous tantalum dimethyl porphyrin cation. The imido complex 4 reacted with triphenylmethanol and 4-methylbenzyl alcohol, resulting in different extents of protonation of the imido group.
Collapse
Affiliation(s)
- Jessica A Ziegler
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Heather L Buckley
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Yuanyuan Fang
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongping Ou
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M. Kadish
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
48
|
Barata JFB, Neves MGPMS, Faustino MAF, Tomé AC, Cavaleiro JAS. Strategies for Corrole Functionalization. Chem Rev 2016; 117:3192-3253. [PMID: 28222602 DOI: 10.1021/acs.chemrev.6b00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review covers the functionalization reactions of meso-arylcorroles, both at the inner core, as well as the peripheral positions of the macrocycle. Experimental details for the synthesis of all known metallocorrole types and for the N-alkylation reactions are presented. Key peripheral functionalization reactions such as halogenation, formylation, carboxylation, nitration, sulfonation, and others are discussed in detail, particularly the nucleophilic aromatic substitution and the participation of corroles in cycloaddition reactions as 2π or 4π components (covering Diels-Alder and 1,3-dipolar cycloadditions). Other functionalizations of corroles include a large diversity of reactions, namely Wittig reactions, reactions with methylene active compounds, formation of amines, amides, and imines, and metal catalyzed reactions. At the final section, the reactions involving oxidation and ring expansion of the corrole macrocycle are described comprehensively.
Collapse
Affiliation(s)
- Joana F B Barata
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Graça P M S Neves
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
49
|
Einrem RF, Braband H, Fox T, Vazquez-Lima H, Alberto R, Ghosh A. Synthesis and Molecular Structure of 99 Tc Corroles. Chemistry 2016; 22:18747-18751. [PMID: 27802367 DOI: 10.1002/chem.201605015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 01/15/2023]
Abstract
The first 99 Tc corroles have been synthesized and fully characterized. A single-crystal X-ray structure of a 99 TcO triarylcorrole revealed nearly identical geometry parameters as the corresponding ReO structure. A significant spectral shift between the Soret maxima of TcO (410-413 nm) and ReO (438-441 nm) corroles was observed and, based on two-component spin-orbit ZORA TDDFT calculations, ascribed to relativistic effects in the Re case. The syntheses reported herein potentially pave the way toward 99m Tc-porphyrinoid-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Henrik Braband
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Thomas Fox
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Hugo Vazquez-Lima
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
50
|
Alemayehu AB, Day NU, Mani T, Rudine AB, Thomas KE, Gederaas OA, Vinogradov SA, Wamser CC, Ghosh A. Gold Tris(carboxyphenyl)corroles as Multifunctional Materials: Room Temperature Near-IR Phosphorescence and Applications to Photodynamic Therapy and Dye-Sensitized Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:18935-42. [PMID: 27414087 DOI: 10.1021/acsami.6b04269] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two amphiphilic corroles-5,10,15-tris(3-carboxyphenyl)corrole (H3[mTCPC]) and 5,10,15-tris(4-carboxyphenyl)corrole (H3[pTCPC])-and their gold complexes have been synthesized, and their photophysical properties and photovoltaic behavior have been investigated. Like other nonpolar gold corroles, Au[mTCPC] and Au[pTCPC] were both found to exhibit room temperature phosphorescence in deoxygenated solutions with quantum yields of ∼0.3% and triplet lifetimes of ∼75 μs. Both compounds exhibited significant activity as dyes in photodynamic therapy experiments and in dye-sensitized solar cells. Upon irradiation at 435 nm, both Au corroles exhibited significant phototoxicity against AY27 rat bladder cancer cells while the free-base corroles proved inactive. Dye-sensitized solar cells constructed using the free bases H3[mTCPC] and H3[pTCPC] exhibited low efficiencies (≪1%), well under that obtained with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin, H2[pTCPP] (1.9%, cf. N719 9.5%). Likewise, Au[pTCPC] proved inefficient, with an efficiency of ∼0.2%. By contrast, Au[mTCPC] proved remarkably effective, exhibiting an open-circuit voltage (Voc) of 0.56 V, a short-circuit current of 8.7 mA cm(-2), a fill factor of 0.72, and an efficiency of 3.5%.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Nicholas U Day
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751, United States
| | - Tomoyasu Mani
- Departments of Biochemistry and Biophysics and Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Alexander B Rudine
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751, United States
| | - Kolle E Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Odrun A Gederaas
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology , N-7491 Trondheim, Norway
| | - Sergei A Vinogradov
- Departments of Biochemistry and Biophysics and Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Carl C Wamser
- Department of Chemistry, Portland State University , Portland, Oregon 97207-0751, United States
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway , N-9037 Tromsø, Norway
| |
Collapse
|