1
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
2
|
Zhao JH, Zheng L, Zou JY, Zhang SY, Shen HC, Wu Y, Wang P. Construction of Si-Stereogenic Silanols by Palladium-Catalyzed Enantioselective C-H Alkenylation. Angew Chem Int Ed Engl 2024; 63:e202402612. [PMID: 38410071 DOI: 10.1002/anie.202402612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Long Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Jian-Ye Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Sheng-Ye Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
3
|
Nakazono R, Hu W, Hirose T, Amaya T. Synthesis and Characterization of a Cyclic Trimer of a Chiral Spirosilabifluorene. Chemistry 2024:e202401343. [PMID: 38676431 DOI: 10.1002/chem.202401343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
A chiral shape-persistent macrocyclic compound (Si-[3]), designed by the C/Si substitution in the spiro-atom of spirobifluorene in the cyclic trimer (C-[3]), has been successfully synthesized in this study. The C/Si substitution made the spiro-conjugation and energy levels of HOMO and LUMO decrease. Due to the silicon substitution, the macrocyclic compound Si-[3] was able to be degraded by fluoride ions, but its reaction rate was slower than that of the unsubstituted spirosilabifluorene, showing the chemical stability of Si-[3]. Furthermore, the chiroptical properties of Si-[3] with D3-symmetric macrocyclic structure were investigated, and (P,P,P)-Si-[3] showed a high emission quantum yield (Φf=80 %) and moderate dissymmetry factor of circularly polarized luminescence (CPL) (glum,exp=-1.2×10-3). According to the time-dependent density-functional theory (TD-DFT) calculations using polarizable continuum model (PCM), the bright CPL from Si-[3] was explained by a planarization of one bisilafluorenyl moiety at the excited state, which is responsible for the almost fully-allowed radiative transition with a short emission lifetime of τf=1.89 ns.
Collapse
Affiliation(s)
- Rina Nakazono
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Weizhe Hu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| |
Collapse
|
4
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
5
|
Shen B, Pan D, Xie W, Li XX, Yu S, Huang G, Li X. Rhodium-Catalyzed Enantioselective Formal [4+1] Cyclization of Benzyl Alcohols and Benzaldimines: Facile Access to Silicon-Stereogenic Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202315230. [PMID: 37938113 DOI: 10.1002/anie.202315230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
The carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively. Mechanistic studies reveal a dual role of the rhodium-hydride catalyst. The coupling system proceeds via rhodium-catalyzed enantio-determining dehydrogenative OH silylation of the benzyl alcohol or hydrosilylation of the imine to give an enantioenriched silyl ether or silazane intermediate, respectively. The same rhodium catalyst also enables subsequent intramolecular cyclative C-H silylation directed by the pendent Si-H group. Experimental and DFT studies have been conducted to explore the mechanism of the OH bond silylation of benzyl alcohol, where the Si-O reductive elimination from a Rh(III) hydride intermediate has been established as the enantiodetermining step.
Collapse
Affiliation(s)
- Bingxue Shen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Wanying Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Songjie Yu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
6
|
Chen H, Hu X, Wang W, Gao L, Song Z. Recent Progress in the Synthesis of Silaspiranes. Chemistry 2023:e202302371. [PMID: 37739927 DOI: 10.1002/chem.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Silaspiranes bearing a spiro-silicon center are promising ring frameworks for the synthesis of novel spirocyclic molecules possessing unique properties. Development of efficient methods towards these ring structures has therefore attracted considerable attentions of synthetic chemists. This minireview highlights the representative advances in the field, and is categorized into four parts according to the ring formation strategies: cyclization, annulation, ring expansion and cycloaddition.
Collapse
Affiliation(s)
- Hua Chen
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Xuejiao Hu
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
- Key Laboratory of Organosilicon Chemistry and, Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
7
|
Yang B, Gao J, Tan X, Ge Y, He C. Chiral PSiSi-Ligand Enabled Iridium-Catalyzed Atroposelective Intermolecular C-H Silylation. Angew Chem Int Ed Engl 2023; 62:e202307812. [PMID: 37462125 DOI: 10.1002/anie.202307812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Catalytic enantioselective intermolecular C-H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C-H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C-H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.
Collapse
Affiliation(s)
- Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
8
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Liu MM, Xu Y, He C. Catalytic Asymmetric Dehydrogenative Si-H/N-H Coupling: Synthesis of Silicon-Stereogenic Silazanes. J Am Chem Soc 2023; 145:11727-11734. [PMID: 37204933 DOI: 10.1021/jacs.3c02263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite growing progress in the construction of silazanes, the catalytic asymmetric synthesis of silicon-stereogenic silazanes is significantly less explored and remains a considerable challenge. Herein, we report a highly enantioselective synthesis of silicon-stereogenic silazanes via catalytic dehydrogenative coupling of dihydrosilanes with anilines. The reaction readily produces a wide range of chiral silazanes and bis-silazanes in excellent yields and stereoselectivities (up to 99% ee). Further utility of this process is demonstrated by the construction of polycarbosilazanes featuring configurational main chain silicon-stereogenic chirality. In addition, the straightforward transformation of the enantioenriched silazanes delivers various chiral silane compounds in a stereospecific fashion, illustrating their potential utilities as synthons for the synthesis of novel silicon-containing functional molecules.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Nakano K, Takase K, Noguchi K. Furan-Containing Chiral Spiro-Fused Polycyclic Aromatic Compounds: Synthesis and Photophysical Properties. Molecules 2022; 27:molecules27165103. [PMID: 36014343 PMCID: PMC9415352 DOI: 10.3390/molecules27165103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Spiro-fused polycyclic aromatic compounds (PACs) have received growing interest as rigid chiral scaffolds. However, furan-containing spiro-fused PACs have been quite limited. Here, we design spiro[indeno[1,2-b][1]benzofuran-10,10′-indeno[1,2-b][1]benzothiophene] as a new family of spiro-fused PACs that contains a furan unit. The compound was successfully synthesized in enantiopure form and also transformed to its S,S-dioxide derivative and the pyrrole-containing analog via aromatic metamorphosis. The absorption and emission properties of the obtained furan-containing chiral spiro-fused PACs are apparently different from those of their thiophene analogs that have been reported, owing to the increased electron-richness of furan compared to thiophene. All of the furan-containing chiral spiro-fused PACs were found to be circularly polarized luminescent materials.
Collapse
Affiliation(s)
- Koji Nakano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Correspondence: ; Tel.: +81-42-388-7162
| | - Ko Takase
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Yuan W, Zhu X, Xu Y, He C. Synthesis of Si‐Stereogenic Silanols by Catalytic Asymmetric Hydrolytic Oxidation. Angew Chem Int Ed Engl 2022; 61:e202204912. [DOI: 10.1002/anie.202204912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
12
|
Gao J, Mai PL, Ge Y, Yuan W, Li Y, He C. Copper-Catalyzed Desymmetrization of Prochiral Silanediols to Silicon-Stereogenic Silanols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jihui Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pei-Lin Mai
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Mu D, Pan S, Wang X, Liao X, Huang Y, Chen J. Enantioselective synthesis of acyclic monohydrosilanes by steric hindrance assisted C-H silylation. Chem Commun (Camb) 2022; 58:7388-7391. [PMID: 35674211 DOI: 10.1039/d2cc02307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a rhodium-catalyzed desymmetrization of dihydrosilanes with heterocyclic compounds via intermolecular dehydrogenative C-H silylation is developed. The strategy tolerates a variety of thianaphthene and thiophene derivatives, giving rise to a wide range of silicon-stereogenic acyclic monohydrosilanes. Several rare skeletons featuring bis-silicon-stereogenic centers were also designed to enhance the library's diversity further. Preliminary mechanistic studies reveal that the surrounding spatial environment of the Si-center plays a crucial role in enabling intermolecular C-H silylation preferentially.
Collapse
Affiliation(s)
- Delong Mu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Shuqiong Pan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Xiaoyu Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Xiaoyun Liao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| |
Collapse
|
14
|
Yuan W, Zhu X, Xu Y, He C. Synthesis of Si‐Stereogenic Silanols by Catalytic Asymmetric Hydrolytic Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yuan
- Southern University of Science and Technology Chemistry CHINA
| | - Xujiang Zhu
- Southern University of Science and Technology Chemistry CHINA
| | - Yankun Xu
- Southern University of Science and Technology Chemistry CHINA
| | - Chuan He
- Southern University of Science and Technology Chemistry No 1088,xueyuan Rd.Xili, Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
15
|
Wu Y, Wang P. Silicon-Stereogenic Monohydrosilane: Synthesis and Applications. Angew Chem Int Ed Engl 2022; 61:e202205382. [PMID: 35594056 DOI: 10.1002/anie.202205382] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Optically active organosilanes have been demonstrated to be versatile chiral reagents in synthetic chemistry since the early seminal contributions by Sommer and Corriu. Among these silicon-containing chiral architectures, monohydrosilanes, which bear a Si-H bond, hold a unique position because of their facile transformations through stereospecific Si-carbon or Si-heteroatom bond-formation reactions. In addition, those compounds have also been leveraged as chiral reagents for alcohol resolution, chiral auxiliaries, mechanistic probes, as well as potential optoelectronic materials. This Minireview comprehensively summarizes the synthesis and synthetic applications of silicon-stereogenic monohydrosilanes, particularly the advances in the transition-metal-catalyzed asymmetric synthesis of this class of functional molecules.
Collapse
Affiliation(s)
- Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAShcshr1, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
16
|
Wu Y, Wang P. Silicon‐Stereogenic Monohydrosilane: Synthesis and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yichen Wu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| | - Peng Wang
- Shanghai Institute of Organic Chemistry State key laboratory of organometallic chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
17
|
Chen S, Zhu J, Ke J, Li Y, He C. Enantioselective Intermolecular C-H Silylation of Heteroarenes for the Synthesis of Acyclic Si-Stereogenic Silanes. Angew Chem Int Ed Engl 2022; 61:e202117820. [PMID: 35263001 DOI: 10.1002/anie.202117820] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/21/2022]
Abstract
Intermolecular C-H silylation for the synthesis of acyclic silanes bearing a silicon-stereogenic center in one enantiomeric form remains unknown to date. Herein, we report the first enantioselective intermolecular C-H silylation of heteroarenes for the synthesis of acyclic silicon-stereogenic heteroarylsilanes. This process undergoes a rhodium-catalyzed direct intermolecular dehydrogenative Si-H/C-H cross-coupling, giving access to a variety of acyclic heteroarylated silicon-stereogenic monohydrosilanes, including bis-Si-stereogenic silanes, in decent yields with excellent chemo-, regio-, and stereo-control, which significantly enlarge the chemical space of the optically active silicon-stereogenic monohydrosilanes.
Collapse
Affiliation(s)
- Shuyou Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiefeng Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Kong Y, Mu D. Recent Progress in Transition Metal-Catalyzed Hydrosilanes-Mediated C-H Silylation. Chem Asian J 2022; 17:e202200104. [PMID: 35315977 DOI: 10.1002/asia.202200104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Organosilicon compounds are widely used in materials science, medicinal chemistry and synthetic chemistry. Recently, significant progress has been achieved in transition metal-catalyzed dehydrogenative C-H silylation. Particularly, recently developed monohydrosilane and dihydrosilane mediated C-H silylation have emerged as powerful tools in constructing C-Si bonds. Besides, dihydrosilane-mediated enantioselective asymmetric C-H silylation has successfully achieved the construction of central and helical silicon chirality. In addition, chiral organosilicon compounds have exhibited excellent photoelectric material properties and broad application prospects. Furthermore, organosilicon compounds could under a series of functional group transformations to enrich the diversity of silicon chemistry. This review will present a comprehensive picture of the development of transition metal-catalyzed hydrosilanes-mediated intramolecular C(sp 2 )-H and C(sp 3 )-H silylation organized by their reaction types and mechanisms. In addition, dihydrosilane-mediated enantioselective asymmetric C-H silylation to construct central and helical silicon chirality will also be highlighted in the review.
Collapse
Affiliation(s)
- Yuanfang Kong
- Henan University of Chinese Medicine, School of Pharmacy, CHINA
| | - Delong Mu
- Shenzhen Bay Laboratory, Chemistry, Shenzhen 518000, 518000, Shenzhen, CHINA
| |
Collapse
|
19
|
Chen S, Zhu J, Ke J, Li Y, He C. Enantioselective Intermolecular C−H Silylation of Heteroarenes for the Synthesis of Acyclic Si‐Stereogenic Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuyou Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jiefeng Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
20
|
Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H. Nat Commun 2022; 13:847. [PMID: 35165278 PMCID: PMC8844420 DOI: 10.1038/s41467-022-28439-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The tremendous success of stereogenic carbon compounds has never ceased to inspire researchers to explore the potentials of stereogenic silicon compounds. Intermolecular C–H silylation thus represents the most versatile and straightforward strategy to construct C–Si bonds, however, its enantioselective variant has been scarcely reported to date. Herein we report a protocol that allows for the enantioselective intermolecular C–H bond silylation, leading to the construction of a wide array of acyclic stereogenic Si–H compounds under simple and mild reaction conditions. Key to the success is (1) a substrate design that prevents the self-reaction of prochiral silane and (2) the employment of a more reactive rhodium hydride ([Rh]-H) catalyst as opposed to the commonly used rhodium chloride ([Rh]-Cl) catalyst. This work unveils opportunities in converting simple arenes into value-added stereogenic silicon compounds. Construction of chiral organosilicon compounds could have implications in photophysical, biological, and chemical fields, as silicon is isoelectronic with carbon, and can mimic carbon atoms while providing slightly different properties. Here the authors present an intermolecular, enantioselective C–H silylation of heterocycles via rhodium catalysis.
Collapse
|
21
|
Wang S, Zhang Q, Niu J, Guo X, Xiong T, Zhang Q. Copper‐Catalyzed Asymmetric Hydroallylation of Vinylsilanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simin Wang
- Northeast Normal University Department of Chemistry CHINA
| | - Qiao Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Junbo Niu
- Northeast Normal University Department of Chemistry CHINA
| | - Xiaobing Guo
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry Renmin ST. 5268 130024 ChangChun CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry CHINA
| |
Collapse
|
22
|
He C, Yuan W. Enantioselective C–H Functionalization toward Silicon-Stereogenic Silanes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1729-9664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractIn recent years, transition-metal-catalyzed enantioselective C–H bond functionalization has emerged as a powerful and attractive synthetic approach to access silicon-stereogenic centers, which provides impetus for the innovation of chiral organosilicon chemistry. This short review summarizes recent advances in the construction of silicon-stereogenic silanes via transition-metal-catalyzed enantioselective C–H functionalization. We endeavor to highlight the great potential of this methodology and hope that this review will shed light on new perspectives and inspire further research in this emerging area.1 Introduction2 Enantioselective C–H Functionalization Induced by Oxidative Addition of an Aryl-OTf Bond3 Enantioselective C–H Functionalization Induced by Oxidative Addition of a Silacyclobutane4 Directing-Group-Assisted Enantioselective C–H Functionalization5 Enantioselective Dehydrogenative C–H/Si–H Coupling5.1 Enantioselective C(sp2)–H Silylation5.2 Enantioselective C(sp3)–H Silylation6 Summary and Outlook
Collapse
|
23
|
Huang Y, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P. Enantioselective Synthesis of Silicon‐Stereogenic Monohydrosilanes by Rhodium‐Catalyzed Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Hao Huang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zihang Ye
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
24
|
Huang J, Liu F, Wu X, Chen JQ, Wu J. Recent advance in the reactions of silacyclobutanes and their applications. Org Chem Front 2022. [DOI: 10.1039/d2qo00410k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silacyclobutanes (SCBs), as a key member of organosilicon family, have received considerable attention in synthetic chemistry since the silicon-carbon bond can be activated. Followed by ring-opening and ring expansion process,...
Collapse
|
25
|
Murai M. Silylative Cyclization with Dehydrogenation Leading to Benzosilole‐Fused Azulenes Showing Unique Stimuli‐Responsive Fluorescence. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masahito Murai
- Department of Chemistry Graduate School of Science Nagoya University Furo, Chikusa 464-8602 Nagoya Japan
| |
Collapse
|
26
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Huang YH, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2021; 61:e202113052. [PMID: 34731522 DOI: 10.1002/anie.202113052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Enantiopure monohydrosilanes are versatile chiral reagents for alcohol resolution and mechanistic investigation. Herein, we have demonstrated the asymmetric synthesis of monohydrosilanes via an intramolecular hydrosilylation strategy. This protocol is suitable for the synthesis of five- and six-membered cyclic monohydrosilanes, including a class of chiral oxasilacycles, with excellent diastereo-, regio-, and enantioselectivities. Notably, the catalyst loading could be reduced to 0.1 mol % which makes this one of the most efficient methods to access chiral monohydrosilanes. Mechanistic studies and DFT calculations indicate this Rh-catalyzed intramolecular asymmetric hydrosilylation reaction might proceed via a Chalk-Harrod mechanism, and the enantio-determining step was predicted to be oxidative addition of Si-H bond.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zihang Ye
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
28
|
Zheng L, Nie X, Wu Y, Wang P. Construction of Si‐Stereogenic Silanes through C−H Activation Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Long Zheng
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiao‐Xue Nie
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
29
|
Wang Z, Fang H, Liu G, Huang Z. Ruthenium-Catalyzed Dual Dehydrogenative Silylation of C(sp 3)-H Bonds: Access to Diverse Silicon-Centered Spirocycles. Org Lett 2021; 23:7603-7607. [PMID: 34549967 DOI: 10.1021/acs.orglett.1c02821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report herein a pincer Ru-catalyzed dual intramolecular dehydrogenative silylation of primary C(sp3)-H bonds. The reaction features high efficiency, scalability, and good functional group tolerance, allowing a facile and atom-economical access to structurally diverse silicon-centered spirocycles, including unprecedented oxa-spirosilabiindanes and aza-spirosilabiindanes.
Collapse
Affiliation(s)
- Zichen Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Huaquan Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
30
|
Zhang M, Gao S, Tang J, Chen L, Liu A, Sheng S, Zhang AQ. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C-H activation and silylation. Chem Commun (Camb) 2021; 57:8250-8263. [PMID: 34323898 DOI: 10.1039/d1cc02839a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article details the progress of transition metal-catalyzed stereoselective sp2 and sp3 C-H activation and silylation in the synthesis of chiral organosilicon compounds, and the asymmetric C-H silylation includes intramolecular cyclizing silylation and intermolecular silylation. The silylating reagents include monohydrosilanes, dihydrosilanes, silacylcobutanes and disilanes. In general, catalytic systems include a transition metal salt as the catalyst and a chiral ligand. No external chiral ligand is required in some cases where the chiral substrates act as the source of chirality. Many kinds of silylated compounds with central, axial, planar, or helical chirality have been constructed via C-H activation by asymmetric rhodium, iridium or palladium catalysis. Some pharmacophores and material building blocks were successfully introduced into the target molecules. Some silylated products proved to be useful in medicinal chemistry, synthetic organic chemistry, and materials science. Besides reaction development, mechanisms for stereoselective C-H activation and silylation are also discussed.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu Campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Guo Y, Liu M, Zhu X, Zhu L, He C. Catalytic Asymmetric Synthesis of Silicon‐Stereogenic Dihydrodibenzosilines: Silicon Central‐to‐Axial Chirality Relay. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Meng‐Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liru Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
32
|
Guo Y, Liu MM, Zhu X, Zhu L, He C. Catalytic Asymmetric Synthesis of Silicon-Stereogenic Dihydrodibenzosilines: Silicon Central-to-Axial Chirality Relay. Angew Chem Int Ed Engl 2021; 60:13887-13891. [PMID: 33830619 DOI: 10.1002/anie.202103748] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/06/2021] [Indexed: 12/17/2022]
Abstract
A Rh-catalyzed asymmetric synthesis of silicon-stereogenic dihydrodibenzosilines featuring axially chiral 6-membered bridged biaryls is demonstrated. In the presence of a RhI catalyst with a chiral diphosphine ligand, a wide range of dihydrodibenzosilines containing both silicon-central and axial chiralities are conveniently constructed in excellent enantioselectivities via dehydrogenative C(sp3 )-H silylation. Absolute configuration analysis by single-crystal X-ray structures revealed a novel silicon central-to-axial chirality relay phenomenon, which we believe will inspire further research in the field of asymmetric catalysis and chiroptical materials.
Collapse
Affiliation(s)
- Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liru Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
33
|
Zheng W, Ikai T, Yashima E. Synthesis of Single-Handed Helical Spiro-Conjugated Ladder Polymers through Quantitative and Chemoselective Cyclizations*. Angew Chem Int Ed Engl 2021; 60:11294-11299. [PMID: 33709523 DOI: 10.1002/anie.202102885] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/15/2022]
Abstract
We report the unprecedented synthesis of one-handed helical spiro-conjugated ladder polymers with well-defined primary and secondary structures, in which the spiro-linked dibenzo[a,h]anthracene fluorophores are arranged in a one-handed twisting direction, through quantitative and chemoselective acid-promoted intramolecular cyclizations of random-coil precursor polymers composed of chiral 1,1'-spirobiindane and achiral bis[2-(4-alkoxyphenyl)ethynyl]phenylene units. Intense circular dichroism (CD) and circularly polarized luminescence (CPL) were observed, whereas the precursor polymers exhibited negligible CD and CPL activities. The introduction of 2,6-dimethyl substituents on the 4-alkoxyphenylethynyl pendants is of key importance for this simple, quantitative, and chemoselective cyclization. This strategy is applicable to the defect-free precise synthesis of other varieties of fully π-conjugated molecules and coplanar ladder polymers that have not been achieved before.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
34
|
Zheng W, Ikai T, Yashima E. Synthesis of Single‐Handed Helical Spiro‐Conjugated Ladder Polymers through Quantitative and Chemoselective Cyclizations**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wei Zheng
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
35
|
Bi X, Feng J, Xue X, Gu Z. Construction of Axial Chirality and Silicon-Stereogenic Center via Rh-Catalyzed Asymmetric Ring-Opening of Silafluorenes. Org Lett 2021; 23:3201-3206. [PMID: 33787278 DOI: 10.1021/acs.orglett.1c00935] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A rhodium-catalyzed enantioselective ring-opening/acylation of silafluorenes is reported. The newly developed bulky phosphoramidite ligand, in combination with methanol as the additive, enabled the reaction to create one axial chirality and one silicon-stereogenic center in a highly selective manner by only cleavage of one Si-C bond.
Collapse
Affiliation(s)
- Xiufen Bi
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Jia Feng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Xiaoping Xue
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China.,Ocean College, Minjiang University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
36
|
Yuan W, You L, Lin W, Ke J, Li Y, He C. Asymmetric Synthesis of Silicon-Stereogenic Monohydrosilanes by Dehydrogenative C–H Silylation. Org Lett 2021; 23:1367-1372. [DOI: 10.1021/acs.orglett.1c00029] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
37
|
Kubo M, Noguchi K, Nakano K. Chiral Benzo[b]silole-Fused 9,9'-Spirobi[fluorene]: Synthesis, Chiroptical Properties, and Transformation to π-Extended Polycyclic Arene. Chempluschem 2021; 86:171-175. [PMID: 33415848 DOI: 10.1002/cplu.202000693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/25/2020] [Indexed: 11/06/2022]
Abstract
Chiral spiro π-conjugated compounds have emerged as a new class of circularly polarized luminescent organic materials. Here we report the synthesis and (chir)optical properties of a chiral benzo[b]silole-fused 9,9'-spirobi[fluorene] (SBF) and π-extended spiro polycyclic arene. The benzo[b]silole-fused SBF was successfully synthesized by a rhodium-catalyzed intramolecular silylative cyclization. It was further transformed to the chiral π-extended spiro polycyclic arene by an annulative π-extension reaction. Less effective spiroconjugation was observed for these spiro compounds through UV-Vis absorption spectroscopy and theoretical calculations. They exhibit circularly polarized luminescence with the dissymmetry factors of up to 0.76×10-3 . Theoretical calculations demonstrate that emission of the benzo[b]silole-fused SBF occurs from one subunit, the structure of which is slightly different from that in the Frank-Condon state.
Collapse
Affiliation(s)
- Masahiro Kubo
- Department of Applied Chemistry Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Nakano
- Department of Applied Chemistry Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
38
|
Ma W, Liu L, An K, He T, He W. Rhodium‐Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C−H Functionalization of Dihydrosilanes. Angew Chem Int Ed Engl 2020; 60:4245-4251. [DOI: 10.1002/anie.202013041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Wenpeng Ma
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Li‐Chuan Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Kun An
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Tao He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
39
|
Ma W, Liu L, An K, He T, He W. Rhodium‐Catalyzed Synthesis of Chiral Monohydrosilanes by Intramolecular C−H Functionalization of Dihydrosilanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wenpeng Ma
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Li‐Chuan Liu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Kun An
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Tao He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| | - Wei He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology and School of Pharmaceutical Sciences & Tsinghua-Peking Joint Center for Life Sciences Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
40
|
He T, Liu LC, Ma WP, Li B, Zhang QW, He W. Enantioselective Construction of Si-Stereogenic Center via Rhodium-Catalyzed Intermolecular Hydrosilylation of Alkene. Chemistry 2020; 26:17011-17015. [PMID: 32830875 DOI: 10.1002/chem.202003506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Indexed: 12/17/2022]
Abstract
Catalytic, enantioselective synthesis of stereogenic silicon compounds remains a challenge. Herein, we report a rhodium-catalyzed regio- and enantio-selective intermolecular hydrosilylation of alkene with prochiral dihydrosilane. This new method features a simple catalytic system, mild reaction conditions and a wide functional group tolerance.
Collapse
Affiliation(s)
- Tao He
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Li-Chuan Liu
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wen-Peng Ma
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Bin Li
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing-Wei Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wei He
- School of Pharmaceutical Sciences, MOE Key Laboratory of, Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
41
|
Mu D, Yuan W, Chen S, Wang N, Yang B, You L, Zu B, Yu P, He C. Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation. J Am Chem Soc 2020; 142:13459-13468. [DOI: 10.1021/jacs.0c04863] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Delong Mu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuyou Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Na Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
42
|
Zhang G, Li Y, Wang Y, Zhang Q, Xiong T, Zhang Q. Asymmetric Synthesis of Silicon‐Stereogenic Silanes by Copper‐Catalyzed Desymmetrizing Protoboration of Vinylsilanes. Angew Chem Int Ed Engl 2020; 59:11927-11931. [DOI: 10.1002/anie.202005341] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Ge Zhang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Yanfei Li
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Ying Wang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
43
|
Zhang G, Li Y, Wang Y, Zhang Q, Xiong T, Zhang Q. Asymmetric Synthesis of Silicon‐Stereogenic Silanes by Copper‐Catalyzed Desymmetrizing Protoboration of Vinylsilanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005341] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ge Zhang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Yanfei Li
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Ying Wang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
44
|
Kajiyama K, Nishi T, Noda S, Horiuchi S, Yuge H. Optically Active 10,10′-Spirobi[10 H-phenoxasilin]-1,1′-diol: Synthesis, Structure, and Application of its Phosphoramidite Derivative to Palladium-catalyzed Asymmetric Allylic Amination. CHEM LETT 2020. [DOI: 10.1246/cl.200070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kazumasa Kajiyama
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Takane Nishi
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Seina Noda
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Saki Horiuchi
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hidetaka Yuge
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
45
|
Maesato T, Shintani R. Synthesis of 7 H-Benzo[ e]naphtho[1,8- bc]silines by Rhodium-catalyzed [2 + 2 + 2] Cycloaddition. CHEM LETT 2020. [DOI: 10.1246/cl.200025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takumi Maesato
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
46
|
Chang X, Ma P, Chen H, Li C, Wang P. Asymmetric Synthesis and Application of Chiral Spirosilabiindanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Chang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- Department of Chemistry Zhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 P. R. China
| | - Pei‐Long Ma
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Hong‐Chao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Chuan‐Ying Li
- Department of Chemistry Zhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
47
|
Chang X, Ma P, Chen H, Li C, Wang P. Asymmetric Synthesis and Application of Chiral Spirosilabiindanes. Angew Chem Int Ed Engl 2020; 59:8937-8940. [PMID: 32141185 DOI: 10.1002/anie.202002289] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Xin Chang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- Department of Chemistry Zhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 P. R. China
| | - Pei‐Long Ma
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Hong‐Chao Chen
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Chuan‐Ying Li
- Department of Chemistry Zhejiang Sci-Tech University Xiasha West Higher Education District Hangzhou 310018 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
48
|
Feng J, Fu L, Geng H, Jiang W, Wang Z. Designing a near-infrared circularly polarized luminescent dye by dissymmetric spiro-fusion. Chem Commun (Camb) 2020; 56:912-915. [PMID: 31850456 DOI: 10.1039/c9cc08619f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel spiro-fused terrylene dimer (SDT) was designed and synthesized by a dissymmetric spiro-fusion strategy. The spiro-conjugation effect caused a distinct red-shift and enhancement of the absorption spectrum. Two chiral enantiomers of SDT have been absolutely resolved and identified in combination with theoretical calculations. Circularly polarized luminescence (CPL) measurement revealed its potential as a near-infrared chiral luminescent material.
Collapse
Affiliation(s)
- Jiajing Feng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Lulu Fu
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Hua Geng
- Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Wei Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
49
|
Murai M, Nishinaka N, Enoki T, Takai K. Regioselective Sequential Silylation and Borylation of Aromatic Aldimines as a Strategy for Programming Synthesis of Multifunctionalized Benzene Derivatives. Org Lett 2020; 22:316-321. [PMID: 31850763 DOI: 10.1021/acs.orglett.9b04338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regioselective difunctionalization of two different C-H bonds in one pot using a three-component coupling reaction is described. The reaction order is important for controlling the reactivity and regioselectivity, and the first silylation promotes the second borylation. The introduced formyl, silyl, and boryl functional groups could be independently converted to other functional groups, and the substitution pattern for the resulting benzenes is difficult to access by conventional methods.
Collapse
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan.,Department of Chemistry, Graduate School of Science , Nagoya University , Furo, Chikusa, Nagoya 464-8602 , Japan
| | - Naoki Nishinaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Takahiro Enoki
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
50
|
|