1
|
Durán-Lara EF, Rafael D, Andrade F, G OL, Vijayakumar S. Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems. Curr Med Chem 2024; 31:5884-5897. [PMID: 37828676 DOI: 10.2174/0109298673268775231003111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/05/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.
Collapse
Affiliation(s)
- Esteban F Durán-Lara
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Lobos G
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | | |
Collapse
|
2
|
Westlie AH, Quinn EC, Parker CR, Chen EYX. Synthetic biodegradable polyhydroxyalkanoates (PHAs): Recent advances and future challenges. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Azemar F, Gimello O, Pinaud J, Robin JJ, Monge S. Insight into the Alcohol-Free Ring-Opening Polymerization of TMC Catalyzed by TBD. Polymers (Basel) 2021; 13:1589. [PMID: 34069275 PMCID: PMC8156564 DOI: 10.3390/polym13101589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
We report herein a study on the alcohol-free, ring-opening polymerization of trimethylene carbonate (TMC) in THF, catalyzed by 1,5,7-triazabicyclo [4.4.0] ec-5-ene (TBD) with ratios nTBD/nTMC ranging between 1/20 and 1/400. In all cases, the reaction proceeds very rapidly, even faster than in the presence of alcohol initiators, and provides PTMC with molecular weights up to Mn = 34,000 g mol-1. Characterization of the obtained PTMC samples by MALDI-TOF mass spectrometry, triple detection size exclusion chromatography and 1H NMR spectroscopy reveals the presence of both linear and cyclic polymer chains.
Collapse
Affiliation(s)
| | | | | | - Jean-Jacques Robin
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (F.A.); (O.G.); (J.P.); (S.M.)
| | | |
Collapse
|
4
|
Synthesis of Poly(Dimethylmalic Acid) Homo- and Copolymers to Produce Biodegradable Nanoparticles for Drug Delivery: Cell Uptake and Biocompatibility Evaluation in Human Heparg Hepatoma Cells. Polymers (Basel) 2020; 12:polym12081705. [PMID: 32751402 PMCID: PMC7464256 DOI: 10.3390/polym12081705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.
Collapse
|
5
|
Beck-Broichsitter M. Comparative in vitro degradation of surface-eroding poly(alkylene carbonate)s. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Shakaroun RM, Jéhan P, Alaaeddine A, Carpentier JF, Guillaume SM. Organocatalyzed ring-opening polymerization (ROP) of functional β-lactones: new insights into the ROP mechanism and poly(hydroxyalkanoate)s (PHAs) macromolecular structure. Polym Chem 2020. [DOI: 10.1039/d0py00125b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The organocatalyzed ROP of some 4-alkoxymethylene-β-propiolactones (BPLORs) towards the formation of the corresponding poly(hydroxyalkanoate)s (PHAs; PBPLORs) is investigated simply using basic organocatalysts of the guanidine (TBD), amidine (DBU) or phosphazene (BEMP) type.
Collapse
Affiliation(s)
- Rama M. Shakaroun
- Univ. Rennes
- CNRS
- Institut des Sciences Chimiques de Rennes
- F-35042 Rennes
- France
| | - Philippe Jéhan
- Centre Régional de Mesures Physiques de l'Ouest-CRMPO
- ScanMAT UMS 2001
- Université de Rennes 1
- France
| | - Ali Alaaeddine
- Univ. Libanaise
- Campus Universitaire Rafic Hariri Hadath
- Faculté des Sciences
- Laboratoire de Chimie Médicinale et des Produits Naturels
- Beirut
| | | | - Sophie M. Guillaume
- Univ. Rennes
- CNRS
- Institut des Sciences Chimiques de Rennes
- F-35042 Rennes
- France
| |
Collapse
|
7
|
Cao W, Wang Y, Shen F, Luo J, Yin J, Qiao C, Wan Y. Efficient β-poly(l-malic acid) production from Jerusalem artichoke by Aureobasidium pullulans ipe-1 immobilized in luffa sponge matrices. BIORESOURCE TECHNOLOGY 2019; 288:121497. [PMID: 31176942 DOI: 10.1016/j.biortech.2019.121497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
β-poly(l-malic acid) (PMLA) production by Aureobasidium pullulans ipe-1 using Jerusalem artichoke tuber (JA) hydrolysate as a low cost carbon source was developed. The PMLA production was favored by JA pretreated with 0.06 M nitric acid without adding exogenous nitrogen sources into fermentation medium. With an initial 130 g/L total sugar of the JA hydrolysate, the highest PMLA productivity 0.52 g/L·h was achieved, which was increased by 2.0 folds compared to that with sole glucose case. To further enhance PMLA productivity, the cells were immobilized in luffa sponge matrices, and repeated batch culture was carried out for 4 cycles. The resulting PMLA productivity was further enhanced by 50% compared with the batch culture. The cost of PMLA production in the JA case was only 5.4% of that in the glucose case. The outcomes of this work provided a strategy of PMLA production on a commercial scale.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing 100036, PR China
| | - Changsheng Qiao
- College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Pappuru S, Chakraborty D, Ramkumar V, Chand DK. Ring-opening copolymerization of maleic anhydride or L-Lactide with tert-butyl glycidyl ether by using efficient Ti and Zr benzoxazole-substituted 8-Hydroxyquinolinate catalysts. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Vene E, Barouti G, Jarnouen K, Gicquel T, Rauch C, Ribault C, Guillaume SM, Cammas-Marion S, Loyer P. Opsonisation of nanoparticles prepared from poly(β-hydroxybutyrate) and poly(trimethylene carbonate)-b-poly(malic acid) amphiphilic diblock copolymers: Impact on the in vitro cell uptake by primary human macrophages and HepaRG hepatoma cells. Int J Pharm 2016; 513:438-452. [PMID: 27640247 DOI: 10.1016/j.ijpharm.2016.09.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(β-malic acid)-b-poly(β-hydroxybutyrate) (PMLA-b-PHB) and poly(β-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA800-b-PHB7300, PMLA4500-b-PHB4400, PMLA2500-b-PTMC2800 and PMLA4300-b-PTMC1400. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers. Moreover, a more efficient uptake by macrophages and HepaRG cells is observed for NPs formulated from PMLA-b-PHB copolymers compared to that of PMLA-b-PTMC-based NPs. Interestingly, the uptake in HepaRG cells of NPs formulated from PMLA800-b-PHB7300 is much higher than that of NPs based on PMLA4500-b-PHB4400. In addition, the cell internalization of PMLA800-b-PHB7300 based-NPs, probably through endocytosis, is strongly increased by serum pre-coating in HepaRG cells but not in macrophages. Together, these data strongly suggest that the binding of a specific subset of plasmatic proteins onto the PMLA800-b-PHB7300-based NPs favors the HepaRG cell uptake while reducing that of macrophages.
Collapse
Affiliation(s)
- Elise Vene
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes; UMR 6226 CNRS; Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Thomas Gicquel
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Claudine Rauch
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Catherine Ribault
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes; UMR 6226 CNRS; Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institute des Sciences Chimiques de Rennes, Université de Rennes 1, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Pascal Loyer
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France.
| |
Collapse
|
10
|
Wang X, Liu J, Xu S, Xu J, Pan X, Liu J, Cui S, Li Z, Guo K. Traceless switch organocatalysis enables multiblock ring-opening copolymerizations of lactones, carbonates, and lactides: by a one plus one approach in one pot. Polym Chem 2016. [DOI: 10.1039/c6py01107a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A switch of organocatalysis from cationic to base/conjugate-acid bifunctional mechanisms made ring-opening copolymerizations of lactones/carbonates to lactides success.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiaqi Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Songquan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jiaxi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xianfu Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jingjing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Saide Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
11
|
Barouti G, Guillaume SM. Polyhydroxybutyrate (PHB)-based triblock copolymers: synthesis of hydrophobic PHB/poly(benzyl β-malolactonate) and amphiphilic PHB/poly(malic acid) analogues by ring-opening polymerization. Polym Chem 2016. [DOI: 10.1039/c6py00910g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Poly(benzyl β-malolactonate)-b-poly(3-hydroxybutyrate)-b-poly(benzyl β-malolactonate), PMLABe-b-PHB-b-PMLABe, and its analogous poly(β-malic acid), PMLA-b-PHB-b-PMLA, triblock copolymers are synthesized and fully characterized.
Collapse
Affiliation(s)
- Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes (ISCR)
- UMR 6226 CNRS - Université de Rennes 1
- Campus de Beaulieu
- F-35042 Rennes Cedex
- France
| | - Sophie M. Guillaume
- Institut des Sciences Chimiques de Rennes (ISCR)
- UMR 6226 CNRS - Université de Rennes 1
- Campus de Beaulieu
- F-35042 Rennes Cedex
- France
| |
Collapse
|