1
|
Duan YT, Yang B, Wang ZX. Pincer Nickel-Catalyzed Olefination of Alcohols with Benzylphosphine Oxides. Chem Asian J 2024:e202400255. [PMID: 38600033 DOI: 10.1002/asia.202400255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
N,N,P-Pincer nickel complexes effectively catalyze reaction of alcohols with benzylphosphine oxides to form alkenes in good yields. The protocol suits for a wide scope of substrates and generates only E-configurated alkenes. The method also shows good compatibility of functional groups. Methoxy, methylthio, trifluoromethyl, ketal, fluoro, chloro, bromo, thienyl, and furyl groups are tolerated. The mechanism studies support that the reaction proceeds through catalytic dehydrogenation of alcohols to aldehydes or ketones followed by condensation with benzyldiphenylphosphine oxides in the presence of KOtBu.
Collapse
Affiliation(s)
- Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| | - Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
- Frontiers Science Center for Transformative Molecules (FSCTM), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026
| |
Collapse
|
2
|
Guin AK, Chakraborty S, Khanra S, Chakraborty S, Paul ND. Oxygen-Dependent Ligand-Controlled Iron-Catalyzed Chemoselective Synthesis of Olefins and Vinyl Nitriles. Org Lett 2024; 26:2540-2545. [PMID: 38546405 DOI: 10.1021/acs.orglett.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
An oxygen-dependent ligand-controlled chemoselective synthesis of vinyl nitriles and E-olefins by coupling a variety of alcohols and benzyl cyanides, catalyzed by a well-characterized, air-stable, easy-to-prepare Fe(II) catalyst (1a) bearing a redox-active arylazo pincer (L1a) is reported. The azo-moiety of the ligand backbone acts as an electron and hydrogen reservoir, enabling catalyst 1a to efficiently produce a broad spectrum of vinyl nitriles and E-olefins in moderate to good yields selectively under an oxygen and argon atmosphere, respectively.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
3
|
Huang DY, Liu HS, Wang EH, Peng M, Deng TF, Gao M, Liu S, Li QJ, Yang LS, Yang XS. KF-catalyzed direct thiomethylation of carboxylic acids with DMSO to access methyl thioesters. Org Biomol Chem 2024; 22:1453-1457. [PMID: 38276970 DOI: 10.1039/d3ob01991h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
With dimethyl sulfoxide (DMSO) as the methylthio source, a KF-catalyzed strategy was employed for the direct thiomethylation of carboxylic acids with DMSO for the preparation of methyl thioesters. In this process, a wide range of methyl thioesters were obtained in moderate to excellent yields. This novel strategy features the first use of DMSO as a methylthiolating agent for the construction of methyl thioesters, transition metal-free conditions, inexpensive reagents, easy workup, broad substrate scope and sustainability. Additionally, this procedure can be readily scaled up to a gram scale.
Collapse
Affiliation(s)
- Ding-Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Hong-Shi Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - En-Hua Wang
- Department of Medicine and Food, Guizhou Vocational College of Agriculture, Guiyang 550041, PR China
| | - Mei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Ting-Fei Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Ming Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Sheng Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Qi-Ji Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Li-Shou Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| |
Collapse
|
4
|
Weigelt V, Vogl S, Schmidt J, Thomas A. A Triphenylphosphine-Based Microporous Polymer for a Wittig Reaction Cycle in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202307818. [PMID: 37460443 DOI: 10.1002/anie.202307818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/14/2023] [Indexed: 08/24/2023]
Abstract
The Wittig reaction is a key step in industrial processes to synthesise large quantities of vitamin A and various other important chemicals that are used in daily life. This article presents a pathway to achieve the Wittig reaction in a solid network. A highly porous triphenylphosphine-based polymer was applied as a solid Wittig reagent that undergoes, in a multi-step cycle, in total six post-synthetic modifications. This allowed for regeneration of the solid Wittig reagent and reuse for the same reaction cycle. Of particular industrial relevance is that the newly developed material also enables a simple way of separating the product by filtration. Therefore, additional costly and difficult separation and purification steps are no longer needed.
Collapse
Affiliation(s)
- Vincent Weigelt
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Sarah Vogl
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Johannes Schmidt
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Arne Thomas
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
5
|
Cook A, Bezaire M, Newman SG. Nickel-catalyzed desulfonylative olefination of β-hydroxysulfones. Org Chem Front 2023. [DOI: 10.1039/d2qo01999j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A Ni-catalyzed C–O bond activation is used to access alkenes directly from β-hydroxysulfones.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Maxwell Bezaire
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
7
|
Liu X, Sotiropoulos J, Taillefer M. A New Route to
E
‐Stilbenes through the Transition‐Metal‐Free KO
t
Bu/DMF‐Promoted Direct Coupling of Alcohols with Phenyl Acetonitriles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoping Liu
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| | | | - Marc Taillefer
- ICGM Université de Montpellier, <orgDiv/CNRS, ENSCM 34296 Montpellier France
| |
Collapse
|
8
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
9
|
Poly SS, Hashiguchi Y, Nakamura I, Fujitani T, Siddiki SMAH. Direct synthesis of triazines from alcohols and amidines using supported Pt nanoparticle catalysts via the acceptorless dehydrogenative methodology. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a cost-effective, green, and acceptorless dehydrogenative one-pot synthesis of triazines from primary alcohols and amidines using an alumina-supported Pt nanoparticle catalyst (Pt/Al2O3).
Collapse
Affiliation(s)
- Sharmin Sultana Poly
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuta Hashiguchi
- Research Association of High-Throughput Design and Development for Advanced Functional Materials, Tsukuba, Ibaraki, 305-8565, Japan
| | - Isao Nakamura
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Tadahiro Fujitani
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - S. M. A. Hakim Siddiki
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
10
|
Midya SP, Subaramanian M, Babu R, Yadav V, Balaraman E. Tandem Acceptorless Dehydrogenative Coupling-Decyanation under Nickel Catalysis. J Org Chem 2021; 86:7552-7562. [PMID: 34032425 DOI: 10.1021/acs.joc.1c00592] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The development of new catalytic processes based on abundantly available starting materials by cheap metals is always a fascinating task and marks an important transition in the chemical industry. Herein, a nickel-catalyzed acceptorless dehydrogenative coupling of alcohols with nitriles followed by decyanation of nitriles to access diversely substituted olefins is reported. This unprecedented C═C bond-forming methodology takes place in a tandem manner with the formation of formamide as a sole byproduct. The significant advantages of this strategy are the low-cost nickel catalyst, good functional group compatibility (ether, thioether, halo, cyano, ester, amino, N/O/S heterocycles; 43 examples), synthetic convenience, and high reaction selectivity and efficiency.
Collapse
Affiliation(s)
- Siba P Midya
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| | - Vinita Yadav
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati 517507, India
| |
Collapse
|
11
|
Ram S, Sharma AK, Chauhan AS, Das P. Palladium-catalyzed ortho-halogen-induced deoxygenative approach of alkyl aryl ketones to 2-vinylbenzoic acids. Chem Commun (Camb) 2020; 56:10674-10677. [PMID: 32785319 DOI: 10.1039/d0cc02941f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 2-vinylbenzoic acids have wide applications in the field of polymer chemistry and are key precursors for the synthesis of important bioactive molecules. Herein, an ortho-halogen-induced deoxygenative approach for the generation of 2-vinylbenzoic acids from alkyl aryl ketones by palladium catalysis is discovered and explored. This approach requires no base or stoichiometric additives and can be carried out through a simple one-step process. Furthermore, the present reaction is scalable up to one-gram scale. The commercially available palladium on carbon (5 wt%) was used as a heterogeneous catalyst and showed excellent recyclability (<5 times) without significant loss in catalytic activity. Pleasingly, under our optimized conditions, the alpha alkyl substituted 2-iodoacetophenones exhibit good diastereoselectivity and predominantly (E)-2-vinylbenzoic acids were obtained with good to excellent yields.
Collapse
Affiliation(s)
- Shankar Ram
- Natural Product Chemistry & Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | | | | | | |
Collapse
|
12
|
Landge VG, Babu R, Yadav V, Subaramanian M, Gupta V, Balaraman E. Iron-Catalyzed Direct Julia-Type Olefination of Alcohols. J Org Chem 2020; 85:9876-9886. [PMID: 32600041 DOI: 10.1021/acs.joc.0c01173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we report an iron-catalyzed, convenient, and expedient strategy for the synthesis of styrene and naphthalene derivatives with the liberation of dihydrogen. The use of a catalyst derived from an earth-abundant metal provides a sustainable strategy to olefins. This method exhibits wide substrate scope (primary and secondary alcohols) functional group tolerance (amino, nitro, halo, alkoxy, thiomethoxy, and S- and N-heterocyclic compounds) that can be scaled up. The unprecedented synthesis of 1-methyl naphthalenes proceeds via tandem methenylation/double dehydrogenation. Mechanistic study shows that the cleavage of the C-H bond of alcohol is the rate-determining step.
Collapse
Affiliation(s)
- Vinod G Landge
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Reshma Babu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Vinita Yadav
- Organic Chemistry Division, Dr. Homi Bhabha Road, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India
| | - Murugan Subaramanian
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Virendrakumar Gupta
- Polymer Synthesis & Catalysis, Reliance Research & Development Centre, Reliance Industries Limited, Ghansoli, Navi Mumbai 400701, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
13
|
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, WB India
| | - Biplab Maji
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur 741246, WB India
| |
Collapse
|
14
|
Yang B, Wang ZX. Nickel-Catalyzed Alkylation or Reduction of Allylic Alcohols with Alkyl Grignard Reagents. J Org Chem 2020; 85:4772-4784. [DOI: 10.1021/acs.joc.0c00008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bo Yang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Abstract
A mild and facile Peterson olefination has been developed employing low catalyst loading of the Brønsted acid HNTf2. The reactions are typically performed at room temperature, with the reaction tolerant to a range of useful functionalities. Furthermore, we have extended this methodology to the synthesis of enynes.
Collapse
Affiliation(s)
- Thomas K Britten
- Department of Natural Sciences , Manchester Metropolitan University , Chester Street , Manchester , M15GD , United Kingdom
| | - Mark G McLaughlin
- Department of Natural Sciences , Manchester Metropolitan University , Chester Street , Manchester , M15GD , United Kingdom
| |
Collapse
|
16
|
Chen W, Xie Z, Liang H, Zhou X, Hu W, Shu X. Partially charged platinum on aminated and carboxylated SBA-15 as a catalyst for alkene hydrosilylation. RSC Adv 2020; 10:3175-3183. [PMID: 35497755 PMCID: PMC9048817 DOI: 10.1039/c9ra09082g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
In this paper, we report the successful preparation of a novel bifunctional heterogeneous catalyst Pt δ+/SBA-APTE-SA with a partial positively charged Pt δ+ electronic structure via post-synthesis modification of (3-aminopropyl)triethoxysilane (APTE), succinic anhydride (SA) and platinum precursors. The resulting catalyst showed superior catalytic performance for the hydrosilylation of 1,1,1,3,5,5,5-heptamethyltrisiloxane (MDHM) with allyloxy polyethylene glycol (APEG) compared to a heterogeneous platinum catalyst. In addition, our catalyst was suitable for the hydrosilylation of other alkenes. Furthermore, the catalyst displayed sufficient stability after being reused five times without noticeable inactivation. In terms of cycle number and atomic utilization efficiency, it has potential applications as a green hydrosilylation method for industry.
Collapse
Affiliation(s)
- Weiwen Chen
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China +86 20 89003208
| | - Zhikai Xie
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China +86 20 89003208
| | - Hui Liang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China +86 20 89003208
| | - Xinhua Zhou
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China +86 20 89003208
| | - Wenbin Hu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China +86 20 89003208
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 China +86 20 89003208
| |
Collapse
|
17
|
Waiba S, Das A, Barman MK, Maji B. Base Metal-Catalyzed Direct Olefinations of Alcohols with Sulfones. ACS OMEGA 2019; 4:7082-7087. [PMID: 31459819 PMCID: PMC6648817 DOI: 10.1021/acsomega.9b00567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 05/20/2023]
Abstract
Herein, a base-metal nickel-catalyzed direct olefination of alcohols with sulfones is reported. The reaction operates under low catalyst loading and does not require an external redox reagent. A wide range of trans-stilbenes and styrenes were synthesized in good yields and selectivities. Biologically active stilbene DMU-212 could also be synthesized in a single step under these conditions. Mechanistic studies involving kinetic isotope effect, deuterium labeling experiments, and catalytic and stoichiometric reactions with possible catalytic intermediates were performed to elucidate a plausible mechanism.
Collapse
|
18
|
|
19
|
Landge VG, Yadav V, Subaramanian M, Dangarh P, Balaraman E. Nickel(ii)-catalyzed direct olefination of benzyl alcohols with sulfones with the liberation of H2. Chem Commun (Camb) 2019; 55:6130-6133. [DOI: 10.1039/c9cc02603g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel(ii)-catalyzed direct olefination of benzyl alcohols with sulfones to access various terminal and internal olefins with the liberation of hydrogen gas is reported. The present protocol has been used for E-selective synthesis of DMU-212, and Resveratrol.
Collapse
Affiliation(s)
- Vinod G. Landge
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| | - Vinita Yadav
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Murugan Subaramanian
- Department of Chemistry
- Indian Institute of Science Education and Research – Tirupati (IISER-Tirupati)
- Tirupati 517507
- India
| | - Pragya Dangarh
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| | - Ekambaram Balaraman
- Department of Chemistry
- Indian Institute of Science Education and Research – Tirupati (IISER-Tirupati)
- Tirupati 517507
- India
| |
Collapse
|
20
|
Waiba S, Barman MK, Maji B. Manganese-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Sulfones: A Tool To Access Highly Substituted Vinyl Sulfones. J Org Chem 2018; 84:973-982. [DOI: 10.1021/acs.joc.8b02911] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Milan K. Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Sultana Poly S, Siddiki SMAH, Touchy AS, Ting KW, Toyao T, Maeno Z, Kanda Y, Shimizu KI. Acceptorless Dehydrogenative Synthesis of Pyrimidines from Alcohols and Amidines Catalyzed by Supported Platinum Nanoparticles. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02814] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sharmin Sultana Poly
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | | | - Abeda S. Touchy
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yasuharu Kanda
- Applied Chemistry Research Unit, College of Environmental Technology, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
22
|
Liu BB, Bai HW, Liu H, Wang SY, Ji SJ. Cascade Trisulfur Radical Anion (S3•–) Addition/Electron Detosylation Process for the Synthesis of 1,2,3-Thiadiazoles and Isothiazoles. J Org Chem 2018; 83:10281-10288. [DOI: 10.1021/acs.joc.8b01450] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bei-Bei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Hui-Wen Bai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Huan Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
23
|
Liu Q, Wang ZY, Peng XS, Wong HNC. Ligand-Free Iron-Catalyzed Carbon(sp 2)-Carbon(sp 2) Cross-Coupling of Alkenyllithium with Vinyl Halides. J Org Chem 2018; 83:6325-6333. [PMID: 29790346 DOI: 10.1021/acs.joc.8b00510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient ligand-free iron-catalyzed cross-coupling reaction involving alkenyllithium and vinyl iodides was developed to form diene species in moderate to good yields. This new iron-catalyzed cross-coupling reaction provides a mild, inexpensive, and environmentally friendly avenue toward synthesis of diversified diene derivatives.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin, New Territories , Hong Kong SAR , China
| | - Zhi-Yong Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin, New Territories , Hong Kong SAR , China
| | - Xiao-Shui Peng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin, New Territories , Hong Kong SAR , China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , No. 10 Second Yuexing Road , Shenzhen 518507 , China
| | - Henry N C Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The Chinese University of Hong Kong , Shatin, New Territories , Hong Kong SAR , China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute , The Chinese University of Hong Kong , No. 10 Second Yuexing Road , Shenzhen 518507 , China
| |
Collapse
|
24
|
Górski B, Basiak D, Talko A, Basak T, Mazurek T, Barbasiewicz M. Olefination with Sulfonyl Halides and Esters: E
-Selective Synthesis of Alkenes from Semistabilized Carbanion Precursors. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bartosz Górski
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-093 Warsaw Poland
| | - Dariusz Basiak
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-093 Warsaw Poland
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | - Alicja Talko
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-093 Warsaw Poland
| | - Tymoteusz Basak
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-093 Warsaw Poland
| | - Tomasz Mazurek
- Faculty of Chemistry; University of Warsaw; Pasteura 1 02-093 Warsaw Poland
- Faculty of Chemistry; Warsaw University of Technology; Noakowskiego 3 00-664 Warsaw Poland
| | | |
Collapse
|
25
|
Siddiki SMAH, Touchy AS, Jamil MAR, Toyao T, Shimizu KI. C-Methylation of Alcohols, Ketones, and Indoles with Methanol Using Heterogeneous Platinum Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04442] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Abeda S. Touchy
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Md. A. R. Jamil
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
26
|
Xue L, Cheng G, Zhu R, Cui X. Acid-promoted oxidative methylenation of 1,3-dicarbonyl compounds with DMSO: application to the three-component synthesis of Hantzsch-type pyridines. RSC Adv 2017. [DOI: 10.1039/c7ra07442e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A series of polysubstituted pyridines and methylene-bridged bis-1,3-dicarbonyl compounds were prepared in high yields from 1,3-dicarbonyl compounds and DMSO, wherein DMSO serves as solvent, carbon source, and oxidant.
Collapse
Affiliation(s)
- LuLu Xue
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| | - Guolin Cheng
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Ruifeng Zhu
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Molecular Medicine of Fujian Province
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
| |
Collapse
|
27
|
Siddiki SMAH, Touchy AS, Chaudhari C, Kon K, Toyao T, Shimizu KI. Synthesis of 2,5-disubstituted pyrroles via dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols by supported platinum catalysts. Org Chem Front 2016. [DOI: 10.1039/c6qo00165c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
2,5-Disubstituted pyrroles are synthesized by acceptorless dehydrogenative reaction of 1,2-aminoalcohols and secondary alcohols by Pt/carbon catalyst.
Collapse
Affiliation(s)
| | - Abeda S. Touchy
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | | | - Kenichi Kon
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|