1
|
Aiello CD, Abendroth JM, Abbas M, Afanasev A, Agarwal S, Banerjee AS, Beratan DN, Belling JN, Berche B, Botana A, Caram JR, Celardo GL, Cuniberti G, Garcia-Etxarri A, Dianat A, Diez-Perez I, Guo Y, Gutierrez R, Herrmann C, Hihath J, Kale S, Kurian P, Lai YC, Liu T, Lopez A, Medina E, Mujica V, Naaman R, Noormandipour M, Palma JL, Paltiel Y, Petuskey W, Ribeiro-Silva JC, Saenz JJ, Santos EJG, Solyanik-Gorgone M, Sorger VJ, Stemer DM, Ugalde JM, Valdes-Curiel A, Varela S, Waldeck DH, Wasielewski MR, Weiss PS, Zacharias H, Wang QH. A Chirality-Based Quantum Leap. ACS NANO 2022; 16:4989-5035. [PMID: 35318848 PMCID: PMC9278663 DOI: 10.1021/acsnano.1c01347] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
Collapse
Affiliation(s)
- Clarice D. Aiello
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John M. Abendroth
- Laboratory
for Solid State Physics, ETH Zürich, Zürich 8093, Switzerland
| | - Muneer Abbas
- Department
of Microbiology, Howard University, Washington, D.C. 20059, United States
| | - Andrei Afanasev
- Department
of Physics, George Washington University, Washington, D.C. 20052, United States
| | - Shivang Agarwal
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Amartya S. Banerjee
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - David N. Beratan
- Departments
of Chemistry, Biochemistry, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Jason N. Belling
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Bertrand Berche
- Laboratoire
de Physique et Chimie Théoriques, UMR Université de Lorraine-CNRS, 7019 54506 Vandœuvre les
Nancy, France
| | - Antia Botana
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Justin R. Caram
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Giuseppe Luca Celardo
- Institute
of Physics, Benemerita Universidad Autonoma
de Puebla, Apartado Postal J-48, 72570, Mexico
- Department
of Physics and Astronomy, University of
Florence, 50019 Sesto Fiorentino, Italy
| | - Gianaurelio Cuniberti
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Aitzol Garcia-Etxarri
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Arezoo Dianat
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural and Mathematical Sciences, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Yuqi Guo
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Rafael Gutierrez
- Institute
for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany
| | - Carmen Herrmann
- Department
of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Joshua Hihath
- Department
of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, United States
| | - Suneet Kale
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Philip Kurian
- Quantum
Biology Laboratory, Graduate School, Howard
University, Washington, D.C. 20059, United States
| | - Ying-Cheng Lai
- School
of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tianhan Liu
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander Lopez
- Escuela
Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Ernesto Medina
- Departamento
de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Av. Diego de Robles
y Vía Interoceánica, Quito 170901, Ecuador
| | - Vladimiro Mujica
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ron Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Mohammadreza Noormandipour
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- TCM Group,
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Julio L. Palma
- Department
of Chemistry, Pennsylvania State University, Lemont Furnace, Pennsylvania 15456, United States
| | - Yossi Paltiel
- Applied
Physics Department and the Center for Nano-Science and Nano-Technology, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Petuskey
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - João Carlos Ribeiro-Silva
- Laboratory
of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, 05508-900 São
Paulo, Brazil
| | - Juan José Saenz
- Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| | - Maria Solyanik-Gorgone
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Volker J. Sorger
- Department
of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Dominik M. Stemer
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jesus M. Ugalde
- Kimika
Fakultatea, Euskal Herriko Unibertsitatea, 20080 Donostia, Euskadi, Spain
| | - Ana Valdes-Curiel
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Solmar Varela
- School
of Chemical Sciences and Engineering, Yachay
Tech University, 100119 Urcuquí, Ecuador
| | - David H. Waldeck
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Center for Molecular Quantum Transduction, and Institute
for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California, 90095, United States
| | - Helmut Zacharias
- Center
for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Qing Hua Wang
- School
for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Evers F, Aharony A, Bar-Gill N, Entin-Wohlman O, Hedegård P, Hod O, Jelinek P, Kamieniarz G, Lemeshko M, Michaeli K, Mujica V, Naaman R, Paltiel Y, Refaely-Abramson S, Tal O, Thijssen J, Thoss M, van Ruitenbeek JM, Venkataraman L, Waldeck DH, Yan B, Kronik L. Theory of Chirality Induced Spin Selectivity: Progress and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106629. [PMID: 35064943 DOI: 10.1002/adma.202106629] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/15/2022] [Indexed: 06/14/2023]
Abstract
A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.
Collapse
Affiliation(s)
- Ferdinand Evers
- Institute of Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Amnon Aharony
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nir Bar-Gill
- Department of Applied Physics, Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ora Entin-Wohlman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Per Hedegård
- Niels Bohr Institute, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Oded Hod
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Pavel Jelinek
- Nanosurf Lab, Institute of Physics of the Czech Academy of Sciences, Prague 6, CZ 162 00, Czech Republic
| | | | - Mikhail Lemeshko
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Karen Michaeli
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovoth, 7610001, Israel
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Yossi Paltiel
- Department of Applied Physics, Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Jos Thijssen
- Kavli Institute of Nanoscience Delft, Delft University of Technology, Lorentzweg 1, Delft, 2628 CJ, The Netherlands
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104, Freiburg, Germany
| | - Jan M van Ruitenbeek
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, Leiden, 2333 CA, Netherlands
| | - Latha Venkataraman
- Department of Applied Physics and Department of Chemistry, Columbia University, New York, New York, NY, 10027, USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovoth, 7610001, Israel
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel
| |
Collapse
|
3
|
Sakamoto S, Taniguchi T, Sakata Y, Akine S, Nishimura T, Maeda K. Rhodium(I) Complexes Bearing an Aryl‐Substituted 1,3,5‐Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5‐Hexatrienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shiori Sakamoto
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Yoko Sakata
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
- Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
4
|
Sakamoto S, Taniguchi T, Sakata Y, Akine S, Nishimura T, Maeda K. Rhodium(I) Complexes Bearing an Aryl-Substituted 1,3,5-Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5-Hexatrienes. Angew Chem Int Ed Engl 2021; 60:22201-22206. [PMID: 34355472 DOI: 10.1002/anie.202108032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/06/2022]
Abstract
Unique and bench-stable rhodium(I) complexes bearing an aryl-substituted 1,3,5-hexatriene chain have been synthesized by the reactions of bicyclo[2.2.1]hepta-2,5-diene-rhodium(I) chloride dimer ([Rh(nbd)Cl]2) with aryl boronic acids and diphenylacetylenes in the presence of a 50% aqueous solution of KOH. X-ray crystallographic analysis of the isolated complexes indicated a square-planar structure stabilized by a strong interaction with one of the aryl groups on the 1,3,5-hexatriene chain, which has a helical structure. The helical chirality of the isolated rhodium complexes was confirmed to be sufficiently stable to be resolved by chiral HPLC at room temperature into enantiomers, which showed mirror-imaged CD spectra. It was confirmed that the isolated rhodium complex worked as an initiator for living polymerization of phenylacetylene to give cis-stereoregular poly(phenylacetylene) with a well-controlled molecular weight.
Collapse
Affiliation(s)
- Shiori Sakamoto
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka, Graduate School of Natural Science and Technology, JAPAN
| | - Tsuyoshi Taniguchi
- Kanazawa University, Institute of Medical, Pharmaceutical and Health Science, Kakuma-machi, 920-1192, Kanazawa, JAPAN
| | - Yoko Sakata
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka, Graduate School of Natural Science and Technoloty, JAPAN
| | - Shigehisa Akine
- Kanazawa University: Kanazawa Daigaku, Nano Life Science Institute, JAPAN
| | - Tatsuya Nishimura
- Kanazawa University Graduate School of Natural Science and Technology: Kanazawa Daigaku Daigakuin Shizen Kagaku Kenkyuka, Graduate School of Natural Science and Technology, JAPAN
| | - Katsuhiro Maeda
- Kanazawa University: Kanazawa Daigaku, Nano Life Science Institute, JAPAN
| |
Collapse
|
5
|
Zöllner MS, Saghatchi A, Mujica V, Herrmann C. Influence of Electronic Structure Modeling and Junction Structure on First-Principles Chiral Induced Spin Selectivity. J Chem Theory Comput 2020; 16:7357-7371. [PMID: 33167619 DOI: 10.1021/acs.jctc.0c00621] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have carried out a comprehensive study of the influence of electronic structure modeling and junction structure description on the first-principles calculation of the spin polarization in molecular junctions caused by the chiral induced spin selectivity (CISS) effect. We explore the limits and the sensitivity to modeling decisions of a Landauer/Green's function/two-component density functional theory approach to CISS. We find that although the CISS effect is entirely attributed in the literature to molecular spin filtering, spin-orbit coupling being partially inherited from the metal electrodes plays an important role in our calculations on ideal carbon helices, even though this effect cannot explain the experimental conductance results. Its magnitude depends considerably on the shape, size, and material of the metal clusters modeling the electrodes. Also, a pronounced dependence on the specific description of exchange interaction and spin-orbit coupling is manifest in our approach. This is important because the interplay between exchange effects and spin-orbit coupling may play an important role in the description of the junction magnetic response. Our calculations are relevant for the whole field of spin-polarized electron transport and electron transfer, because there is still an open discussion in the literature about the detailed underlying mechanism and the magnitude of physical parameters that need to be included to achieve a consistent description of the CISS effect: seemingly good quantitative agreement between simulation and the experiment can be caused by error compensation, because spin polarization as contained in a Landauer/Green's function/two-component density functional theory approach depends strongly on computational and structural parameters.
Collapse
Affiliation(s)
| | - Aida Saghatchi
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Vladimiro Mujica
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States.,Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), Donostia, Euskadi P.K. 1072, 20080, Spain
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Herrmann C. Electronic Communication as a Transferable Property of Molecular Bridges? J Phys Chem A 2019; 123:10205-10223. [PMID: 31380640 DOI: 10.1021/acs.jpca.9b05618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Electronic communication through molecular bridges is important for different types of experiments, such as single-molecule conductance, electron transfer, superexchange spin coupling, and intramolecular singlet fission. In many instances, the chemical structure of the bridge determines how the two parts it is connecting communicate, and does so in ways that are transferable between these different manifestations (for example, high conductance often correlates with strong antiferromagnetic spin coupling, and low conductance due to destructive quantum interference correlates with ferromagnetic coupling). Defining electronic communication as a transferable property of the bridge can help transfer knowledge between these different areas of research. Examples and limits of such transferability are discussed here, along with some possible directions for future research, such as employing spin-coupled and mixed-valence systems as structurally well-controlled proxies for understanding molecular conductance and for validating first-principles theoretical methodologies, building conceptual understanding for the growing experimental work on intramolecular singlet fission, and developing measures for the transferability of electronic communication as a bridge property.
Collapse
Affiliation(s)
- Carmen Herrmann
- Department of Chemistry , University of Hamburg , Martin-Luther-King-Platz 6 , Hamburg 20146 , Germany
| |
Collapse
|
7
|
Bogdanov G, Tillotson JP, Bustos J, Fonari M, Timofeeva TV. Crystal structure of tetra-methyl-ammonium 1,1,7,7-tetra-cyano-hepta-2,4,6-trienide. Acta Crystallogr E Crystallogr Commun 2019; 75:1344-1347. [PMID: 31523463 PMCID: PMC6727047 DOI: 10.1107/s2056989019011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/14/2019] [Indexed: 11/11/2022]
Abstract
The title compound, C4H12N+·C11H5N4 -, contains one tetra-methyl-ammonium cation and one 1,1,7,7-tetra-cyano-hepta-2,4,6-trienide anion in the asymmetric unit. The anion is in an all-trans conjugated C=C bonds conformation. Two terminal C(CN)2 di-nitrile moieties are slightly twisted from the polymethine main chain to which they are attached [C(CN)2/C5 dihedral angles = 6.1 (2) and 7.1 (1)°]. The C-C bond distances along the hepta-dienyl chain vary in the narrow range 1.382 (2)-1.394 (2) Å, thus indicating the significant degree of conjugation. In the crystal, the anions are linked into zigzag chains along the [10] direction by C-H⋯N(nitrile) short contacts. The anti-parallel chains stack along the [110] direction with alternating separations between the neighboring anions in stacks of 3.291 and 3.504 Å. The C-H⋯N short contacts and stacking inter-actions combine to link the anions into layers parallel to the (01) plane and separated by columns of tetra-methyl-ammonium cations.
Collapse
Affiliation(s)
- Georgii Bogdanov
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA
| | - John P Tillotson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Jenna Bustos
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA
| | - Marina Fonari
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA
| | - Tatiana V. Timofeeva
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico, 87701, USA
| |
Collapse
|
8
|
Tsuji Y, Estrada E. Influence of long-range interactions on quantum interference in molecular conduction. A tight-binding (Hückel) approach. J Chem Phys 2019; 150:204123. [PMID: 31153184 DOI: 10.1063/1.5097330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
When certain pairs of atoms in a π-conjugated molecule are connected with nanometer-scale source and drain electrodes, the remarkable quantum interference (QI) effect may arise. In this case, the electron transmission probability is significantly suppressed due to the QI effect. Tight-binding approaches, such as the Hückel molecular orbital (HMO) model, have revealed important features of this quantum phenomenon. However, important deviations from experiments and from more sophisticated calculations are known for a variety of cases. Here, we propose an extension of the HMO method to include non-nearest-neighbor interactions. Such long-range interactions (LRIs) are implemented in the HMO model in the form of a damping function that decays as the topological distance-the number of bonds separating two atoms-gets larger. The proposed model is further developed so that a geometric modification, i.e., the rotation around a single bond, can be taken into account. Our results show that LRI affects both the location of the antiresonance peak due to QI and the intensity of QI, even suppressing it in some cases. These results agree well with what was observed in a Density Functional based Tight-Binding (DFTB) study reported in the literature. These properties can be interpreted on the basis of a graph-theoretic path-counting model as well as the molecular orbital theory. In addition, the geometric LRI model is shown to reproduce the change of transmission as a function of rotation around the single bond separating two benzene rings in biphenyl, in agreement with what was observed in both experiment and DFTB calculation.
Collapse
Affiliation(s)
- Yuta Tsuji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ernesto Estrada
- Institute of Mathematics and Applications (IUMA), Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain
| |
Collapse
|
9
|
Stuyver T, Perrin M, Geerlings P, De Proft F, Alonso M. Conductance Switching in Expanded Porphyrins through Aromaticity and Topology Changes. J Am Chem Soc 2018; 140:1313-1326. [DOI: 10.1021/jacs.7b09464] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thijs Stuyver
- Department
of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Mickael Perrin
- Kavli
Institute of Nanoscience, Delft University of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
- Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Paul Geerlings
- Department
of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Frank De Proft
- Department
of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Mercedes Alonso
- Department
of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Stuyver T, Blotwijk N, Fias S, Geerlings P, De Proft F. Exploring Electrical Currents through Nanographenes: Visualization and Tuning of the through-Bond Transmission Paths. Chemphyschem 2017; 18:3012-3022. [DOI: 10.1002/cphc.201700874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/15/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Thijs Stuyver
- Algemene Chemie; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium) (Member of the QCMM Ghent-Brussels Alliance Group
- Research Foundation-Flanders (FWO-Vlaanderen); Egmontstraat 5 1000 Brussels Belgium
| | - Nathalie Blotwijk
- Algemene Chemie; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium) (Member of the QCMM Ghent-Brussels Alliance Group
| | - Stijn Fias
- Algemene Chemie; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium) (Member of the QCMM Ghent-Brussels Alliance Group
| | - Paul Geerlings
- Algemene Chemie; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium) (Member of the QCMM Ghent-Brussels Alliance Group
| | - Frank De Proft
- Algemene Chemie; Vrije Universiteit Brussel; Pleinlaan 2 1050 Brussels Belgium) (Member of the QCMM Ghent-Brussels Alliance Group
| |
Collapse
|
11
|
Takamuku S, Nakano M, Kertesz M. Intramolecular Pancake Bonding in Helical Structures. Chemistry 2017; 23:7474-7482. [PMID: 28376241 DOI: 10.1002/chem.201700999] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 11/11/2022]
Abstract
We show that diradicaloid helical conjugated molecules can display strong through-space bonding interactions. These interactions are analogous to π-stacking pancake bonding widely observed for dimers and other aggregates of stable π-conjugated radicals. We show that these multicenter interactions can have a significant stabilizing effect, but they depend in subtle ways on the specific overlap and relative orientations of the radical carrying subunits. The specific through-space interactions between the radicaloid units occur at specific size ranges of the helical molecules.
Collapse
Affiliation(s)
- Shota Takamuku
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 37thand O Streets, Washington, DC, 20057-1227, USA.,Depertment of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Masayoshi Nakano
- Depertment of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan.,Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Miklos Kertesz
- Department of Chemistry and Institute of Soft Matter, Georgetown University, 37thand O Streets, Washington, DC, 20057-1227, USA
| |
Collapse
|
12
|
Düfert A, Werz DB. Carbopalladation Cascades Using Carbon-Carbon Triple Bonds: Recent Advances to Access Complex Scaffolds. Chemistry 2016; 22:16718-16732. [PMID: 27667738 DOI: 10.1002/chem.201603044] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 12/13/2022]
Abstract
Alkynes are one of the most versatile functional groups as synthetic handles. They allow for a direct access to partially or fully substituted alkenes through difunctionalization reactions. A prominently utilized transformation for these sequences is the carbopalladation of alkynes, which can be followed by various termination steps such as aromatizations, dearomatizations, cross-coupling reactions, or pericyclic processes, amongst others. This Minireview provides an overview of the recent literature published in the field of carbopalladation chemistry, both with a focus on methodology as well as its application in the syntheses of complex molecular scaffolds, natural products, and functional molecules.
Collapse
Affiliation(s)
| | - Daniel B Werz
- Technische Universität Braunschweig, Institut für Organische Chemie, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
13
|
Li H, Garner MH, Shangguan Z, Zheng Q, Su TA, Neupane M, Li P, Velian A, Steigerwald ML, Xiao S, Nuckolls C, Solomon GC, Venkataraman L. Conformations of cyclopentasilane stereoisomers control molecular junction conductance. Chem Sci 2016; 7:5657-5662. [PMID: 30034703 PMCID: PMC6022008 DOI: 10.1039/c6sc01360k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Here we examine the impact of ring conformation on the charge transport characteristics of cyclic pentasilane structures bound to gold electrodes in single molecule junctions. We investigate the conductance properties of alkylated cyclopentasilane cis and trans stereoisomers substituted in the 1,3-position with methylthiomethyl electrode binding groups using both the scanning tunneling microscope-based break junction technique and density functional theory based ab initio calculations. In contrast with the linear ones, these cyclic silanes yield lower conductance values; calculations reveal that the constrained dihedral geometries occurring within the ring are suboptimal for σ-orbital delocalization, and therefore, conductance. Theoretical calculations reproduce the measured conductance trends for both cis and trans isomers and find several distinct conformations that are likely to form stable molecular junctions at room temperature. Due to the weakened σ-conjugation in the molecule, through-space interactions are found to contribute significantly to the conductance. This manuscript details the vast conformational flexibility in cyclopentasilanes and the tremendous impact it has on controlling conductance.
Collapse
Affiliation(s)
- Haixing Li
- Department of Applied Physics and Applied Mathematics , Columbia University , New York 10027 , USA .
| | - Marc H Garner
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen Ø , Denmark .
| | - Zhichun Shangguan
- The Education Ministry Key Lab of Resource Chemistry , Shanghai Key Laboratory of Rare Earth Functional Materials , Optoelectronic Nano Materials and Devices Institute , Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China .
| | - Qianwen Zheng
- The Education Ministry Key Lab of Resource Chemistry , Shanghai Key Laboratory of Rare Earth Functional Materials , Optoelectronic Nano Materials and Devices Institute , Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China .
| | - Timothy A Su
- Department of Chemistry , Columbia University , New York 10027 , USA .
| | - Madhav Neupane
- Department of Chemistry , Columbia University , New York 10027 , USA .
| | - Panpan Li
- The Education Ministry Key Lab of Resource Chemistry , Shanghai Key Laboratory of Rare Earth Functional Materials , Optoelectronic Nano Materials and Devices Institute , Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China .
| | - Alexandra Velian
- Department of Chemistry , Columbia University , New York 10027 , USA .
| | | | - Shengxiong Xiao
- The Education Ministry Key Lab of Resource Chemistry , Shanghai Key Laboratory of Rare Earth Functional Materials , Optoelectronic Nano Materials and Devices Institute , Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China .
| | - Colin Nuckolls
- The Education Ministry Key Lab of Resource Chemistry , Shanghai Key Laboratory of Rare Earth Functional Materials , Optoelectronic Nano Materials and Devices Institute , Department of Chemistry , Shanghai Normal University , Shanghai 200234 , China .
- Department of Chemistry , Columbia University , New York 10027 , USA .
| | - Gemma C Solomon
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen Ø , Denmark .
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics , Columbia University , New York 10027 , USA .
- Department of Chemistry , Columbia University , New York 10027 , USA .
| |
Collapse
|