1
|
Wang SD, Liu Y, Ma TM, Li XN, He SG. Factors Determining the Selectivity of NO Reduction Catalyzed by Copper-Vanadium Oxide Cluster Anions Cu 2VO 3-5. Chemphyschem 2024:e202400888. [PMID: 39377742 DOI: 10.1002/cphc.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/09/2024]
Abstract
Catalytic NO reduction by CO is imperative to satisfy the increasingly rigorous emission regulations. Identifying the structural characteristic of crucial intermediate that governs the selectivity of NO reduction is pivotal to having a fundamental understanding on real-life catalysis. Herein, benefiting from the state-of-the-art mass spectrometry, we demonstrated experimentally that the Cu2VO3-5 - clusters can mediate the catalysis of NO reduction by CO, and two competitive channels to generate N2O and N2 can co-exist. Quantum-chemical calculations were performed to rationalize this selectivity. The formation of the ONNO unit on the Cu2 dimer was demonstrated to be a precursor from which two pathways of NO reduction start to emerge. In the pathway of N2O generation, only the Cu2 dimer was oxidized and the VO3 moiety functions as a "support", while both moieties have to contribute to anchor oxygen atoms from the ONNO unit and then N2 can be generated. This finding displays a clear picture to elucidate how and why the involvement of VO3 "support" can regulate the selectivity of NO reduction.
Collapse
Affiliation(s)
- Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- China School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yi Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xiao-Na Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Li XN, He SG. Gas-phase reactions driven by polarized metal-metal bonding in atomic clusters. Phys Chem Chem Phys 2023; 25:4444-4459. [PMID: 36723009 DOI: 10.1039/d2cp05148f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
4
|
Zhang J, Li Y, Bai Y, Li G, Yang D, Zheng H, Zou J, Kong X, Fan H, Liu Z, Jiang L, Xie H. CO oxidation on the heterodinuclear tantalum–nickel monoxide carbonyl complex anions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Sampathkumar S, Paranthaman S. Neutral noble-metal-free VCoO 2 and CrCoO 2 cluster catalysts for CO oxidation by O 2. NEW J CHEM 2021. [DOI: 10.1039/d0nj05199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral noble-metal-free metal oxide cluster catalysts (VCoO2 and CrCoO2) were developed for multiple CO oxidation reactions by O2.
Collapse
Affiliation(s)
- Suresh Sampathkumar
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| | - Selvarengan Paranthaman
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| |
Collapse
|
6
|
Kerkar R, Salker A. Promising effect of Ag/Rh paired mesoporous composite-oxide for low temperature NO CO reaction. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Wang S, Chen J, Li X, Ma T, He S. Catalytic CO Oxidation by O
2
Mediated with Single Gold Atom Doped Titanium Oxide Cluster Anions AuTi
2
O
4–6
−. Chemphyschem 2020; 21:2550-2556. [DOI: 10.1002/cphc.202000755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Si‐Dun Wang
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiao‐Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Xiao‐Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| | - Tong‐Mei Ma
- School of Chemistry and Chemical Engineering South China University of Technology 381 Wushan Road Tianhe District Guangzhou 510641 China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Beijing 100190 China
| |
Collapse
|
8
|
Li XN, Jiang LX, Liu QY, Ren Y, Wei GP. Hydrogen-assisted C-C coupling on reaction of CuC3H−Cluster anion with CO. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2006094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiao-na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Qing-yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Gong-ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Li XN, Wang LN, Mou LH, He SG. Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters. J Phys Chem A 2019; 123:9257-9267. [DOI: 10.1021/acs.jpca.9b05185] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Ou SH, Chen JJ, Li XN, Wang LN, Ma TM, He SG. CO oxidation by neutral gold-vanadium oxide clusters. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shu-hua Ou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiao-jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Tong-mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sheng-gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Chen JJ, Li XN, Chen Q, Liu QY, Jiang LX, He SG. Neutral Au 1-Doped Cluster Catalysts AuTi 2O 3-6 for CO Oxidation by O 2. J Am Chem Soc 2019; 141:2027-2034. [PMID: 30595020 DOI: 10.1021/jacs.8b11118] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxide supported gold catalysts (e.g., Au/TiO2) are of great significance in heterogeneous catalysis owing to their extraordinary catalytic activity. Study of heteronuclear metal oxide clusters (HMOCs, e.g., Au xTi yO z q) is an important way to uncover the molecular-level mechanisms of gold catalysis in the related heterogeneous catalytic systems. However, the current studies of HMOCs are focused on charged clusters with little attention paid to neutral species. The reactivity study of neutral HMOCs is vital to have a comprehensive understanding of heterogeneous catalysis, but it is experimentally challenging because of the difficulty of cluster ionization and detection without fragmentation. Herein, benefiting from a homemade time-of-flight mass spectrometer coupled with a vacuum ultraviolet laser system, the reactivity of neutral Au1-doped titanium oxide clusters AuTi2O3-6 in catalytic CO oxidation by O2 has been successfully identified. The mechanistic details of the catalysis have been elucidated by quantum chemistry calculations. The crucial roles of the mobile AuCO species that can facilitate not only the process of CO oxidation but also the process of O2 activation have been discovered in the cluster catalysis. The fascinating results are of substantial importance to understand the mechanisms of CO oxidation over Au/TiO2, one type of the best studied gold catalysts.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Qiang Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Beijing National Laboratory for Molecular Sciences , CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| |
Collapse
|
12
|
Jiang LX, Li XN, Li ZY, Li HF, He SG. H2 dissociation by Au1-doped closed-shell titanium oxide cluster anions. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1805107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Li-xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Zi-yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Hai-fang Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Wang LN, Li XN, Jiang LX, Yang B, Liu QY, Xu HG, Zheng WJ, He SG. Catalytic CO Oxidation by O2
Mediated by Noble-Metal-Free Cluster Anions Cu2
VO3-
5
−. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| |
Collapse
|
14
|
Wang LN, Li XN, Jiang LX, Yang B, Liu QY, Xu HG, Zheng WJ, He SG. Catalytic CO Oxidation by O2
Mediated by Noble-Metal-Free Cluster Anions Cu2
VO3-
5
−. Angew Chem Int Ed Engl 2018; 57:3349-3353. [DOI: 10.1002/anie.201712129] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/25/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Hong-Guang Xu
- State Key Laboratory of Molecular Reaction Dynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Wei-Jun Zheng
- State Key Laboratory of Molecular Reaction Dynamics; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
- Beijing National Laboratory for Molecular Sciences; CAS Research/Education Center of Excellence in Molecular Sciences; Beijing 100190 China
| |
Collapse
|
15
|
Zou XP, Li ZY, Li XN, Wang LN, Li HF, Ma TM, He SG. Consecutive Oxidation of Three H2 Molecules by a Gold-Vanadium Oxide Cluster Cation AuVO4 +. Top Catal 2017. [DOI: 10.1007/s11244-017-0860-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Li XN, Zou XP, He SG. Metal-mediated catalysis in the gas phase: A review. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Liu JX, Liu Z, Filot IAW, Su Y, Tranca I, Hensen EJM. CO oxidation on Rh-doped hexadecagold clusters. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02277d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exploring the unique catalytic properties of gold clusters associated with specific nano-architectures is essential for designing improved catalysts with a high mass-specific activity.
Collapse
Affiliation(s)
- Jin-Xun Liu
- Inorganic Materials Chemistry
- Department of Chemistry and Chemical Engineering
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| | - Zhiling Liu
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen
- P. R. China
| | - Ivo A. W. Filot
- Inorganic Materials Chemistry
- Department of Chemistry and Chemical Engineering
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| | - Yaqiong Su
- Inorganic Materials Chemistry
- Department of Chemistry and Chemical Engineering
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| | - Ionut Tranca
- Inorganic Materials Chemistry
- Department of Chemistry and Chemical Engineering
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials Chemistry
- Department of Chemistry and Chemical Engineering
- Eindhoven University of Technology
- Eindhoven
- Netherlands
| |
Collapse
|
18
|
Zhao YX, Liu QY, Zhang MQ, He SG. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase. Dalton Trans 2016; 45:11471-95. [DOI: 10.1039/c6dt01246a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Progress on the activation and transformation of important inorganic and organic molecules by negatively charged bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Mei-Qi Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|