1
|
Watanabe K, Pati NN, Inokuma Y. Contracted porphyrins and calixpyrroles: synthetic challenges and ring-contraction effects. Chem Sci 2024; 15:6994-7009. [PMID: 38756809 PMCID: PMC11095365 DOI: 10.1039/d4sc02028f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Ring-contracted porphyrin analogues, such as subporphyrins and calix[3]pyrroles, have recently attracted considerable attention not only as challenging synthetic targets but also as functional macrocyclic compounds. Although canonical porphyrins and calix[4]pyrrole are selectively generated via acid-catalyzed condensation reactions of pyrrole monomers, their tripyrrolic analogues are always missing under similar conditions. Recent progress in synthesis has shown that strain-controlled approaches using boron(iii)-templating, core-modification, or ring tightening provide access to various contracted porphyrins. The tripyrrolic macrocycles are a new class of functional macrocycles exhibiting unique ring-contraction effects, including strong boron chelation and strain-induced ring expansion. This Perspective reviews recent advances in synthetic strategies and the novel ring-contraction effects of subporphyrins, triphyrins(2.1.1), calix[3]pyrroles, and their analogous.
Collapse
Affiliation(s)
- Keita Watanabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Narendra Nath Pati
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| |
Collapse
|
2
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
3
|
Das S, Sai Naik MB, Maliyekkal G, Maity SB, Jana A. Recent update on the electroactive oligopyrrolic macrocyclic hosts with a Bucky-ball heart. Chem Commun (Camb) 2023; 59:12972-12985. [PMID: 37828866 DOI: 10.1039/d3cc04028c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Supramolecular chemistry is a multidisciplinary research area mostly associated with the investigation of host-guest interactions within intricate three-dimensional (3D) molecular architectures held together reversibly by various non-covalent interactions. Continuous efforts to develop such kinds of complex host-guest systems with designer oligopyrrolic macrocyclic receptors are a rapidly growing research domain, which is deeply involved in applied supramolecular chemistry research. These host-guest supramolecular complexes can be constructed by combining suitable electron-rich oligopyrrolic donors (as a host) with complementary electron-poor guests (as acceptors), held together by the ionic force of attraction triggered by intermolecular charge/electron transfer (CT/ET) transitions. Some of these resulting CT/ET ensembles are potential candidates for the construction of efficient optoelectronic materials, optical sensors, molecular switches, etc. In this Feature Article we aim to focus on these supramolecular ensembles composed by size and shape complementary electroactive oligopyrrolic molecular containers, which are suitable for spherical guest (e.g., buckminsterfullerene) complexation. We also provide a "state-of-the-art" overview on plausible applications of these particular host-guest systems. Our aim is to cover only specific electron-rich tetrathiafulvalene (TTF)-based oligopyrrolic receptors, e.g., TTF-calix[4]pyrroles, TTF-cryptands, TTF-porphyrins and exTTF-porphyrin-based molecular motifs reported to date, along with a brief outlining of their "functional behaviour" in materials chemistry research.
Collapse
Affiliation(s)
- Shubhasree Das
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh, India.
| | - M Bhargav Sai Naik
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh, India.
| | - Godwin Maliyekkal
- Department of Chemical Sciences, IISER Mohali, Manauli - 140306, Punjab, India
| | - Shubhra Bikash Maity
- Faculty of Physical and Mathematical Sciences, Department of Chemistry, C. V. Raman Global University, Bhubaneswar - 752054, India
| | - Atanu Jana
- Applied Supramolecular Chemistry Research Laboratory, Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), Gandhinagar, Rushikonda, Visakhapatnam - 530045, Andhra Pradesh, India.
| |
Collapse
|
4
|
Comparative DFT-D3 assessment of fluorogenic supramolecular interaction of naphthalene moiety location on new dibenzodiaza-crown ether macrocycles with C60. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Maeda H, Abiko T, Haketa Y, Kobayashi Y, Ishibashi Y, Asahi T, Yasuda N. Electron-donating curved π-electronic systems that complex with buckyballs. Phys Chem Chem Phys 2022; 24:13286-13292. [PMID: 35605227 DOI: 10.1039/d2cp01575g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modifications in curved π-electronic systems, dipyrrolylbenzodiazepines, resulted in various derivatives with modulated electronic properties and assembly behaviour. The electron-rich pyrrole-based curved π-system exhibited C60 complexation in the form of a hydrogen-bonding cyclic hexamer, giving rise to solid-state photo-induced electron transfer as elucidated by transient absorption spectroscopy.
Collapse
Affiliation(s)
- Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Taichi Abiko
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Yukihide Ishibashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Tsuyoshi Asahi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Nobuhiro Yasuda
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Japan
| |
Collapse
|
6
|
Inaba Y, Kakibayashi Y, Ide Y, Pirillo J, Hijikata Y, Yoneda T, Inokuma Y. Strain‐Induced Ring Expansion Reactions of Calix[3]pyrrole‐Related Macrocycles. Chemistry 2022; 28:e202200056. [DOI: 10.1002/chem.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuya Inaba
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yu Kakibayashi
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yuki Ide
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yasuhide Inokuma
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| |
Collapse
|
7
|
Lavarda G, Labella J, Martínez-Díaz MV, Rodríguez-Morgade MS, Osuka A, Torres T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem Soc Rev 2022; 51:9482-9619. [DOI: 10.1039/d2cs00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subporphyrinoids constitute a class of extremely versatile and attractive compounds. Herein, a comprehensive review of the most recent advances in the fundamentals and applications of these cone-shaped aromatic macrocycles is presented.
Collapse
Affiliation(s)
- Giulia Lavarda
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Salomé Rodríguez-Morgade
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Atsuhiro Osuka
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Periphery-Fused Chiral A 2B-Type Subporphyrin. Molecules 2021; 26:molecules26041140. [PMID: 33672731 PMCID: PMC7924371 DOI: 10.3390/molecules26041140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
Despite significant interest, the chiroptical properties of subporphyrins have rarely been investigated because chiral subporphyrins are elusive. Here, inherently chiral subporphyrins are elaborated by forming a fused pyran ring at the periphery of an A2B-type meso-aryl-substituted subporphyrin. Their circular dichroism (CD) properties are largely affected by the peripheral substituents and the dihedral angles between the meso-aryl substituents and the subporphyrin core: the β-perbromo subporphyrin with an orthogonal arrangement of the meso-phenyl substituents to the subporphyrin core exhibits weak CD signals corresponding to the Q bands, whereas the unsubstituted species with smaller dihedral angles shows relatively intense CD signals. A detailed structure–property relationship of these chiral subporphyrins was elucidated by time-dependent (TD) DFT calculations. This study reveals that the CD properties of chiral subporphyrins can be controlled by peripheral substitution and meso-aryl substituents.
Collapse
|
9
|
Jain K, Duvva N, Roy TK, Giribabu L, Chitta R. Porphyrin bearing phenothiazine pincers as hosts for fullerene binding via concave–convex complementarity: synthesis and complexation study. NEW J CHEM 2021. [DOI: 10.1039/d1nj03727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free base porphyrin hosts, m-(PTZ)4-H2P and p-(PTZ)4-H2P, tethered with four phenothiazine moieties at the meso-position via a flexible ethoxy phenyl linker were synthesized and used for the selective complexation of fullerenes, C60 and C70.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishanhgarh, Dist, Ajmer, Rajasthan 305817, India
| | - Naresh Duvva
- Polymers and Functional Materials Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Tapta Kanchan Roy
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), Dist, Samba, Jammu and Kashmir 181143, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research, Ghazianbad 201002, India
| | - Raghu Chitta
- Department of Chemistry, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandarsindri, Tehsil: Kishanhgarh, Dist, Ajmer, Rajasthan 305817, India
- Department of Chemistry, National Institute of Technology Warangal, Hanamkonda, Dist, Hanamkonda, Telangana 506004, India
| |
Collapse
|
10
|
Haketa Y, Miyasue M, Kobayashi Y, Sato R, Shigeta Y, Yasuda N, Tamai N, Maeda H. Self-Associating Curved π-Electronic Systems with Electron-Donating and Hydrogen-Bonding Properties. J Am Chem Soc 2020; 142:16420-16428. [DOI: 10.1021/jacs.0c07751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University,Kusatsu 525−8577, Japan
| | - Mika Miyasue
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University,Kusatsu 525−8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University,Kusatsu 525−8577, Japan
| | - Ryuma Sato
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita 565−0874, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305−8577, Japan
- Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba,Tsukuba 305−8577, Japan
| | - Nobuhiro Yasuda
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, Sayo 679−5198, Japan
| | - Naoto Tamai
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University,Sanda 669−1337, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University,Kusatsu 525−8577, Japan
| |
Collapse
|
11
|
Mateos-Gil J, Calbo J, Rodríguez-Pérez L, Ángeles Herranz M, Ortí E, Martín N. Carbon Nanotubes Conjugated with Triazole-Based Tetrathiafulvalene-Type Receptors for C 60 Recognition. Chempluschem 2020; 84:730-739. [PMID: 31944013 DOI: 10.1002/cplu.201900078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Fullerene receptors prepared by a twofold CuI -catalyzed azide-alkyne cycloaddition reaction with π-extended tetrathiafulvalene (exTTF) have been covalently linked to single-walled carbon nanotubes and multi-walled carbon nanotubes. The nanoconjugates obtained were characterized by several analytical, spectroscopic and microscopic techniques (TEM, FTIR, Raman, TGA and XPS), and evaluated as C60 receptors by using UV-Vis spectroscopy. The complexation between the exTTF-triazole receptor in the free state and C60 was also studied by UV-Vis and 1 H NMR titrations, and compared with analogous triazole-based tweezer-type receptors containing the electron-acceptor 11,11,12,12-tetracyano-9,10-anthraquinodimethane and benzene rings instead of exTTF motifs, providing in all cases very similar values for the association constant (log Ka ≈3.0-3.1). Theoretical density functional theory calculations demonstrated that the enhanced interaction between the host and the guest upon increasing the size of the π-conjugated arms of the tweezer is compensated by an increase in the energy penalty needed to distort the geometry of the host to wrap C60 .
Collapse
Affiliation(s)
- Jaime Mateos-Gil
- Departamento de Química Orgánica Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Current address: Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Joaquín Calbo
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980, Paterna, Spain
| | - Laura Rodríguez-Pérez
- Departamento de Química Orgánica Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Ma Ángeles Herranz
- Departamento de Química Orgánica Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980, Paterna, Spain
| | - Nazario Martín
- Departamento de Química Orgánica Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain.,IMDEA-Nanociencia c/Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
12
|
Cotelle Y, Hardouin-Lerouge M, Lemasson E, Morille Y, Canevet D, Legoupy S, Hudhomme P. An original self-assembly using a tetrathiafulvalene-based molecular clip for the recognition of fullerene C60. Chem Commun (Camb) 2020; 56:3077-3080. [DOI: 10.1039/c9cc09633g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A glycoluril-based molecular clip incorporating tetrathiafulvalene sidewalls self-assembles with fullerene C60 in a 2 : 1 stoichiometry in solution.
Collapse
Affiliation(s)
- Yoann Cotelle
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | | | - Elise Lemasson
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Yohann Morille
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - David Canevet
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Stéphanie Legoupy
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Piétrick Hudhomme
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| |
Collapse
|
13
|
Kise K, Osuka A. Singly and Doubly Quinoxaline-Fused B III Subporphyrins. Chemistry 2019; 25:15493-15497. [PMID: 31692130 DOI: 10.1002/chem.201904151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Indexed: 11/09/2022]
Abstract
B-Phenyl BIII subporphyrin-α-diones prepared in a three-step reaction sequence from the parent subporphyrin were condensed with 1,2-diaminobenzenes to give the corresponding quinoxaline-fused subporphyrins in variable yields. Quinoxaline-fused B-phenyl-5,10,15-triphenyl BIII subporphyrin was transformed to the corresponding subporphyrin-α-dione in the same three-step reaction sequence, which was then condensed with 1,2-diaminobenzene to give doubly quinoxaline-fused subporphyrin. These quinoxaline-fused subporphyrins exhibit redshifted absorption and fluorescence spectra compared with the parent one. A singly quinoxaline-fused subporphyrin bearing three meso-bis(4-dimethylaminophenyl)aminophenyl substituents shows blueshifted fluorescence in less polar solvent, which has been ascribed to emission associated with charge recombination of intramolecular charge transfer (CT) state.
Collapse
Affiliation(s)
- Koki Kise
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
García-Calvo V, Cuevas JV, Barbero H, Ferrero S, Álvarez CM, González JA, Díaz de Greñu B, García-Calvo J, Torroba T. Synthesis of a Tetracorannulene-perylenediimide That Acts as a Selective Receptor for C 60 over C 70. Org Lett 2019; 21:5803-5807. [PMID: 31241968 DOI: 10.1021/acs.orglett.9b01729] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the use of a tetraborylated perylenediimide as starting material for the preparation of a tetracorannulene-perylenediimide that is able to bind up to two fullerene-C60 molecules by host-guest molecular recognition with preference over C70. Titration with fullerene-C60 is followed by a dramatic shift of the aromatic signals in 1H NMR and an initial increase in the fluorescence of the system. By this simple mechanism, fluorogenic sensing of fullerene-C60 is easily accomplished by an unprecedented fluorescent turn-on mechanism.
Collapse
Affiliation(s)
- Víctor García-Calvo
- Departamento de Química, Facultad de Ciencias , Universidad de Burgos , 09001 Burgos , Spain
| | - José V Cuevas
- Departamento de Química, Facultad de Ciencias , Universidad de Burgos , 09001 Burgos , Spain
| | - Héctor Barbero
- MIOMeT, CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Sergio Ferrero
- MIOMeT, CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Celedonio M Álvarez
- MIOMeT, CINQUIMA/Química Inorgánica, Facultad de Ciencias , Universidad de Valladolid , E-47011 Valladolid , Spain
| | - Jesús A González
- Departamento CITIMAC , Universidad de Cantabria , 39005 Santander , Spain
| | - Borja Díaz de Greñu
- Departamento de Química, Facultad de Ciencias , Universidad de Burgos , 09001 Burgos , Spain
| | - José García-Calvo
- Departamento de Química, Facultad de Ciencias , Universidad de Burgos , 09001 Burgos , Spain
| | - Tomás Torroba
- Departamento de Química, Facultad de Ciencias , Universidad de Burgos , 09001 Burgos , Spain
| |
Collapse
|
15
|
Hasegawa M, Takahashi K, Inoue R, Haga S, Mazaki Y. Selenacalix[4]dithienothiophene: Synthesis, Structure, and Complexation of a Cyclic Tetramer of Selenide‐Bridging Dithienothiophene. Chem Asian J 2018; 14:1647-1650. [DOI: 10.1002/asia.201801105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Masashi Hasegawa
- Department of ChemistryGraduate School of ScienceKitasato University 1–15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Kazuhiro Takahashi
- Department of ChemistryGraduate School of ScienceKitasato University 1–15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Ryota Inoue
- Department of ChemistryGraduate School of ScienceKitasato University 1–15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Shiori Haga
- Department of ChemistryGraduate School of ScienceKitasato University 1–15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Yasuhiro Mazaki
- Department of ChemistryGraduate School of ScienceKitasato University 1–15-1 Kitasato, Minami-ku Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
16
|
Takeda M, Hiroto S, Yokoi H, Lee S, Kim D, Shinokubo H. Azabuckybowl-Based Molecular Tweezers as C60 and C70 Receptors. J Am Chem Soc 2018; 140:6336-6342. [DOI: 10.1021/jacs.8b02327] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Motoki Takeda
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Satoru Hiroto
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hiroki Yokoi
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Sangsu Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Korea
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
17
|
Fukui N, Fujimoto K, Yorimitsu H, Osuka A. Embedding heteroatoms: an effective approach to create porphyrin-based functional materials. Dalton Trans 2018; 46:13322-13341. [PMID: 28875206 DOI: 10.1039/c7dt02815f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Incorporation of planarized heteroatom(s) onto the porphyrin periphery is an effective approach to create porphyrin-based functional materials. In the last three decades, such an "embedding heteroatom" strategy has been actively explored in order to realize attractive electronic, optical, and electrochemical properties. This review aims to cover a variety of synthetic methodologies that have been developed for the construction of heteroatom-embedded porphyrins. Moreover, we also summarize their structure-property relationships as well as possible applications in various research fields including artificial photosynthesis, molecular engineering, organic electronics, and bioimaging.
Collapse
Affiliation(s)
- Norihito Fukui
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
18
|
Shimizu H, Park KH, Otani H, Aoyagi S, Nishinaga T, Aso Y, Kim D, Iyoda M. A Saturn-Like Complex Composed of Macrocyclic Oligothiophene and C 60 Fullerene: Structure, Stability, and Photophysical Properties in Solution and the Solid State. Chemistry 2018; 24:3793-3801. [PMID: 29315942 DOI: 10.1002/chem.201705565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 11/11/2022]
Abstract
A Saturn-like 1:1 complex composed of macrocyclic oligothiophene E-8T7A and C60 fullerene (C60 ) was synthesized to investigate the interaction between macrocyclic oligothiophenes and C60 in solution and the solid state. Because the Saturn-like 1:1 complex E-8T7A⋅C60 is mainly stabilized by van der Waals interactions between C60 and the sulfur atoms of the E-8T7A macrocycle, C60 is rather weakly incorporated inside the macro-ring in solution. However, in the solid state the Saturn-like 1:1 complex preferentially formed single crystals or nanostructured polymorphs. Interestingly, X-ray analysis and theoretical calculations exhibited hindered rotation of C60 in the Saturn-like complex due to interactions between C60 and the sulfur atoms. Furthermore, the photoinduced charge transfer (CT) interaction between E-8T7A and C60 in solution was investigated by using femtosecond transient absorption (TA) spectroscopy. The ultrafast TA spectral changes in the photoinduced absorption bands were attributed to the CT process in the Saturn-like structure.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Kyu Hyung Park
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Hiroyuki Otani
- Graduate School of Environment and Information Sciences, Yokohama National University, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Tohru Nishinaga
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Yoshio Aso
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 767-0047, Japan
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
19
|
Vargas-Zúñiga GI, Sessler JL. Anion and Cation Complexes of Expanded Porphyrins. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Fukui N, Kim T, Kim D, Osuka A. Porphyrin Arch-Tapes: Synthesis, Contorted Structures, and Full Conjugation. J Am Chem Soc 2017. [PMID: 28622724 DOI: 10.1021/jacs.7b05332] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porphyrin tapes possessing meso-meso β-β β-β triple direct linkages have been targets of extensive studies because of their fully conjugated characteristic π-electronic networks. In this paper, we report porphyrin arch-tapes that bear additional carbonyl group(s) or methylene group(s) inserted between one of the β-β linkage(s) of the porphyrin tapes. The carbonyl-inserted porphyrin arch-tapes were efficiently synthesized by double fusion reactions of β-to-β carbonyl-bridged porphyrin oligomers with DDQ and Sc(OTf)3, and were converted to the methylene-bridged porphyrin arch-tapes via Luche reduction with NaBH4 and CeCl3 followed by ionic hydrogenation with HBF4·OEt2 and BH3·NEt3. While the conventional porphyrin tapes display rigid and planar structures and low solubilities, these porphyrin arch-tapes show remarkably contorted structures, flexible conformations, and improved solubilities because of the presence of the incorporated seven-membered ring(s). Interestingly, the methylene-inserted arch-tapes exhibited conjugative electronic interactions that were comparable to those of porphyrin tapes probably owing to through-space interaction in the contorted conformations. The carbonyl-inserted arch-tapes displayed distinctly larger conjugative interactions owing to an active involvement of the carbonyl group(s) in the electronic conjugation. A similar trend was observed in the nonlinear optical properties, as evidenced by their two-photon absorption cross sections. Furthermore, as a benefit of the contorted structures, these porphyrin arch-tapes can catch C60 fullerene effectively. Naturally, the electron-rich methylene-bridged arch-tapes exhibited larger association constants than the electron-deficient carbonyl-bridged arch-tapes. Among these arch-tapes, a methylene-bridged syn-Ni(II) porphyrin trimer recorded the largest association constant of (1.5 ± 0.4) × 107 M-1 in toluene at 25 °C.
Collapse
Affiliation(s)
- Norihito Fukui
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Taeyeon Kim
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Ke XS, Kim T, Brewster JT, Lynch VM, Kim D, Sessler JL. Expanded Rosarin: A Versatile Fullerene (C60) Receptor. J Am Chem Soc 2017; 139:4627-4630. [DOI: 10.1021/jacs.7b00735] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xian-Sheng Ke
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Taeyeon Kim
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - James T. Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
22
|
Bromby AD, Hogan DT, Sutherland TC. Core expanded, 21,23-dithiadiacenaphtho[1,2-c]porphyrin interactions with [60]fullerene. NEW J CHEM 2017. [DOI: 10.1039/c6nj03353a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Saddle-shaped 21,23-dithiadiacenaphtho[1,2-c]porphyrin exhibits binding interaction with [60]fullerene in addition to photon absorption bands extending to 1000 nm.
Collapse
Affiliation(s)
- Ashley D. Bromby
- Department of Chemistry
- University of Calgary
- 2500 University Dr NW
- Calgary
- Canada
| | - David T. Hogan
- Department of Chemistry
- University of Calgary
- 2500 University Dr NW
- Calgary
- Canada
| | - Todd C. Sutherland
- Department of Chemistry
- University of Calgary
- 2500 University Dr NW
- Calgary
- Canada
| |
Collapse
|