1
|
Open chain pseudopeptides as hydrogelators with reversible and dynamic responsiveness to pH, temperature and sonication as vehicles for controlled drug delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Bellotto O, Kralj S, Melchionna M, Pengo P, Kisovec M, Podobnik M, De Zorzi R, Marchesan S. Self-Assembly of Unprotected Dipeptides into Hydrogels: Water-Channels Make the Difference. Chembiochem 2021; 23:e202100518. [PMID: 34784433 PMCID: PMC9299199 DOI: 10.1002/cbic.202100518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Unprotected dipeptides are attractive building blocks for environmentally friendly hydrogel biomaterials by virtue of their low‐cost and ease of preparation. This work investigates the self‐assembling behaviour of the distinct stereoisomers of Ile‐Phe and Phe‐Ile in phosphate buffered saline (PBS) to form hydrogels, using transmission electron microscopy (TEM), attenuated total reflectance infrared spectroscopy (ATR‐IR), circular dichroism (CD), and oscillatory rheometry. Each peptide purity and identity was also confirmed by 1H‐ and 13C‐NMR spectroscopy and HPLC‐MS. Finally, single‐crystal XRD data allowed the key interactions responsible for the supramolecular packing into amphipathic layers or water‐channels to be revealed. The presence of the latter in the crystal structure is a distinctive feature of the only gelator of this work that self‐organizes into stable hydrogels, with fast kinetics and the highest elastic modulus amongst its structural isomers and stereoisomers.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Technology, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Unit of Trieste, INSTM, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Unit of Trieste, INSTM, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
3
|
Misra S, Mukherjee S, Ghosh A, Singh P, Mondal S, Ray D, Bhattacharya G, Ganguly D, Ghosh A, Aswal VK, Mahapatra AK, Satpati B, Nanda J. Single Amino-Acid Based Self-Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry 2021; 27:16744-16753. [PMID: 34468048 DOI: 10.1002/chem.202103071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/18/2022]
Abstract
The design and development of soft biomaterials based on amino acid and short-peptide have gained much attention due to their potent biomedical applications. A slight alteration in the side-chain of single amino acid in a peptide or protein sequence has a huge impact on the structure and function. Phenylalanine is one of the most studied amino acids, which contains an aromatic phenyl group connected through a flexible -CH2 - unit. In this work, we have examined whether flexibility and aromatic functionality of phenylalanine (Phe) are important in gel formation of model gelator Fmoc-Phe-OH or not. To examine this hypothesis, we synthesized Fmoc-derivatives of three analogues unnatural amino acids including cyclohexylalanine, phenylglycine, and homophenylalanine; which are slightly varied from Phe. Interestingly, all these three new analogues formed hydrogels in phosphate buffer at pH 7.0 having different gelation efficacy and kinetics. This study suggests that the presence of aromatic side-chain and flexibility are not mandatory for the gelation of this model gelator. Newly synthesized unnatural amino acid derivatives have also exhibited promising antimicrobial activity towards gram-positive bacteria by inhibiting cellular oxygen consumption. We further determined the biocompatibility of these amino acid derivatives by using a hemolysis assay on human blood cells. Overall studies described the development of single amino acid-based new injectable biomaterials with improved antimicrobial activity by the slight alteration in the side-chain of amino acid.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | | | - Anamika Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Sanjoy Mondal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | | | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, Kolkata, 700091, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400085, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O.- Botanic Garden, Howrah, 711103, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, PIN-734301, India
| |
Collapse
|
4
|
Das S, Roy S. 6-acylamino nicotinic acid-based hydrogelators applicable in phase selective gelation, reproducible mat formation and toxic dye removal. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort Peptides—A Glimpse into the Structural Modifications and Their Applications as Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5474-5499. [DOI: 10.1021/acsabm.0c00544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bhavinkumar Gayakvad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Suchita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Jyoti Rani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat 380054, India
| |
Collapse
|
6
|
Mondal S, Das S, Nandi AK. A review on recent advances in polymer and peptide hydrogels. SOFT MATTER 2020; 16:1404-1454. [PMID: 31984400 DOI: 10.1039/c9sm02127b] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this review, we focus on the very recent developments on the use of the stimuli responsive properties of polymer hydrogels for targeted drug delivery, tissue engineering, and biosensing utilizing their different optoelectronic properties. Besides, the stimuli-responsive hydrogels, the conducting polymer hydrogels are discussed, with specific attention to the energy generation and storage behavior of the xerogel derived from the hydrogel. The electronic and ionic conducting gels have been discussed that have applications in various electronic devices, e.g., organic field effect transistors, soft robotics, ionic skins, and sensors. The properties of polymer hybrid gels containing carbon nanomaterials have been exemplified here giving attention to applications in supercapacitors, dye sensitized solar cells, photocurrent switching, etc. Recent trends in the properties and applications of some natural polymer gels to produce thermal and acoustic insulating materials, drug delivery vehicles, self-healing material, tissue engineering, etc., are discussed. Besides the polymer gels, peptide gels of different dipeptides, tripeptides, oligopeptides, polypeptides, cyclic peptides, etc., are discussed, giving attention mainly to biosensing, bioimaging, and drug delivery applications. The properties of peptide-based hybrid hydrogels with polymers, nanoparticles, nucleotides, fullerene, etc., are discussed, giving specific attention to drug delivery, cell culture, bio-sensing, and bioimaging properties. Thus, the present review delineates, in short, the preparation, properties, and applications of different polymer and peptide hydrogels prepared in the past few years.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | | | | |
Collapse
|
7
|
Giuri D, Barbalinardo M, Zanna N, Paci P, Montalti M, Cavallini M, Valle F, Calvaresi M, Tomasini C. Tuning Mechanical Properties of Pseudopeptide Supramolecular Hydrogels by Graphene Doping. Molecules 2019; 24:E4345. [PMID: 31795090 PMCID: PMC6930602 DOI: 10.3390/molecules24234345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Supramolecular hydrogels, obtained from small organic molecules, may be advantageous over polymeric ones for several applications, because these materials have some peculiar properties that differentiate them from the traditional polymeric hydrogels, such as elasticity, thixotropy, self-healing propensity, and biocompatibility. We report here the preparation of strong supramolecular pseudopeptide-based hydrogels that owe their strength to the introduction of graphene in the gelling mixture. These materials proved to be strong, stable, thermoreversible and elastic. The concentration of the gelator, the degree of graphene doping, and the nature of the trigger are crucial to get hydrogels with the desired properties, where a high storage modulus coexists with a good thixotropic behavior. Finally, NIH-3T3 cells were used to evaluate the cell response to the presence of the most promising hydrogels. The hydrogels biocompatibility remains good, if a small degree of graphene doping is introduced.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marianna Barbalinardo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Nicola Zanna
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Paolo Paci
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Marco Montalti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Massimiliano Cavallini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Francesco Valle
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, (ISMN-CNR), Via P. Gobetti 101, 40129 Bologna, Italy; (M.B.); (M.C.); (F.V.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| | - Claudia Tomasini
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi, 240126 Bologna, Italy; (D.G.); (N.Z.); (P.P.); (M.M.)
| |
Collapse
|
8
|
An M, Demir B, Wan X, Meng H, Yang N, Walsh TR. Predictions of Thermo‐Mechanical Properties of Cross‐Linked Polyacrylamide Hydrogels Using Molecular Simulations. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800153] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Meng An
- State Key Laboratory of Coal Combustion Huazhong University of Science and Technology Wuhan 430074 P. R. China
- College of Mechanical and Electrical Engineering Shaanxi University of Science and Technology 6 Xuefuzhong Road Weiyangdaxueyuan, Xi'an 710021 P. R. China
| | - Baris Demir
- Institute for Frontier Materials Deakin University Geelong VIC 3216 Australia
| | - Xiao Wan
- State Key Laboratory of Coal Combustion Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Nano Interface Center for Energy School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Han Meng
- State Key Laboratory of Coal Combustion Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Nano Interface Center for Energy School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Nuo Yang
- State Key Laboratory of Coal Combustion Huazhong University of Science and Technology Wuhan 430074 P. R. China
- Nano Interface Center for Energy School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Tiffany R. Walsh
- Institute for Frontier Materials Deakin University Geelong VIC 3216 Australia
| |
Collapse
|
9
|
Guidetti G, Giuri D, Zanna N, Calvaresi M, Montalti M, Tomasini C. Biocompatible and Light-Penetrating Hydrogels for Water Decontamination. ACS OMEGA 2018; 3:8122-8128. [PMID: 31458948 PMCID: PMC6644841 DOI: 10.1021/acsomega.8b01037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/04/2018] [Indexed: 06/10/2023]
Abstract
Solar light-activated photocatalyst nanoparticles (NPs) are promising environment-friendly low cost tools for water decontamination, but their dispersion in the environment must be minimized. Here, we propose the incorporation of TiO2-NPs (also in combination with graphene platelets) into highly biocompatible hydrogels as a promising approach for the production of photoactive materials for water treatment. We also propose a convenient fluorescence-based method to investigate the hydrogel photocatalytic activity in real time with a conventional fluorimeter. Kinetics analysis of the degradation profile of a target fluorescent model pollutant demonstrates that fast degradation occurs in the matrix bulk. Fluorescence anisotropy proved that small pollutant molecules diffuse freely in the hydrogel. Rheological and scanning electron microscopy characterization showed that the TiO2-NP incorporation does not significantly alter the hydrogel mechanical and morphological properties.
Collapse
|
10
|
Das T, Häring M, Haldar D, Díaz Díaz D. Phenylalanine and derivatives as versatile low-molecular-weight gelators: design, structure and tailored function. Biomater Sci 2018; 6:38-59. [DOI: 10.1039/c7bm00882a] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phenylalanine (Phe) is an essential amino acid classified as neutral and nonpolar due to the hydrophobic nature of the benzyl side chain.
Collapse
Affiliation(s)
- Tanmay Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Marleen Häring
- Institute of Organic Chemistry
- University of Regensburg
- Regensburg 93053
- Germany
| | - Debasish Haldar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - David Díaz Díaz
- Institute of Organic Chemistry
- University of Regensburg
- Regensburg 93053
- Germany
- IQAC-CSIC
| |
Collapse
|
11
|
Angelici G, Górecki M, Pescitelli G, Zanna N, Monari M, Tomasini C. Synthesis and structure analysis of ferrocene-containing pseudopeptides. Biopolymers 2017; 110. [PMID: 29058321 DOI: 10.1002/bip.23072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022]
Abstract
Ferrocene with its aromaticity and facile redox properties is an attractive moiety to be incorporated into functional moieties. Medicinal applications of ferrocene are well known and ferrocene itself shows cytotoxic and antianemic properties. In this article, we will describe the synthesis and the structure analysis of two pseudopeptides containing a ferrocene moiety as N-terminal group. After purification, Fc-l-Phe-d-Oxd-OBn [l-Phel-phenylalanine; d-Oxd(4R,5S)-4-Methyl-5-carboxy-oxazolidin-2-one] appears as bright brown solid that spontaneously forms brown needles. The X-ray diffraction of the crystals shows the presence of strong π interactions between the ferrocenyl moiety and the phenyl rings, while no NH•••OC hydrogen bonds are formed. This result is confirmed by FT-IR and 1 H NMR analysis. In contrast, both FT-IR and 1 H NMR analysis suggest that Fc-(l-Phe-d-Oxd)2 -OBn forms a turn conformation stabilized by intramolecular NH•••OC hydrogen bonds in solution. Chiroptical spectroscopies (ECD and VCD) substantially confirmed the absence of a well-defined folded structure. The presence of the Fc moiety is responsible for specific ECD signals, one of which displayed pronounced temperature dependence and is directly related with the helicity assumed by the Fc core. Solid-state ECD spectra were recorded and rationalized on the basis of the X-ray geometry and quantum-mechanical calculations.
Collapse
Affiliation(s)
- Gaetano Angelici
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa - Via Moruzzi 13, Pisa, 56124, Italy
| | - Marcin Górecki
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa - Via Moruzzi 13, Pisa, 56124, Italy
- Institute of Organic Chemistry - Polish Academy of Sciences - ul. Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa - Via Moruzzi 13, Pisa, 56124, Italy
| | - Nicola Zanna
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna - Via Selmi, 2, Bologna, 40126, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna - Via Selmi, 2, Bologna, 40126, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna - Via Selmi, 2, Bologna, 40126, Italy
| |
Collapse
|
12
|
Zanna N, Tomasini C. Peptide-Based Physical Gels Endowed with Thixotropic Behaviour. Gels 2017; 3:E39. [PMID: 30920535 PMCID: PMC6318593 DOI: 10.3390/gels3040039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 01/30/2023] Open
Abstract
Thixotropy is one of the oldest documented rheological phenomenon in colloid science and may be defined as an increase of viscosity in a state of rest and a decrease of viscosity when submitted to a constant shearing stress. This behavior has been exploited in recent years to prepare injectable hydrogels for application in drug delivery systems. Thixotropic hydrogels may be profitably used in the field of regenerative medicine, which promotes tissue healing after injuries and diseases, as the molten hydrogel may be injected by syringe and then self-adapts in the space inside the injection site and recovers the solid form. We will focus our attention on the preparation, properties, and some applications of biocompatible thixotropic hydrogels.
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento di Chimica "Giacomo Ciamician"-Alma Mater Studiorum Università di Bologna-Via Selmi, 2-40126 Bologna, Italy.
| | - Claudia Tomasini
- Dipartimento di Chimica "Giacomo Ciamician"-Alma Mater Studiorum Università di Bologna-Via Selmi, 2-40126 Bologna, Italy.
| |
Collapse
|
13
|
Takeshita J, Hasegawa Y, Yanai K, Yamamoto A, Ishii A, Hasegawa M, Yamanaka M. Organic Dye Adsorption by Amphiphilic Tris-Urea Supramolecular Hydrogel. Chem Asian J 2017; 12:2029-2032. [DOI: 10.1002/asia.201700708] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/25/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Juri Takeshita
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Yuki Hasegawa
- College of Science and Engineering; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Kazushige Yanai
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Ayumu Yamamoto
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Ayumi Ishii
- College of Science and Engineering; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Miki Hasegawa
- College of Science and Engineering; Aoyama Gakuin University; 5-10-1 Fuchinobe, Chuo-ku Sagamihara Kanagawa 252-5258 Japan
| | - Masamichi Yamanaka
- Department of Chemistry; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
14
|
Zanna N, Focaroli S, Merlettini A, Gentilucci L, Teti G, Falconi M, Tomasini C. Thixotropic Peptide-Based Physical Hydrogels Applied to Three-Dimensional Cell Culture. ACS OMEGA 2017; 2:2374-2381. [PMID: 30023662 PMCID: PMC6044849 DOI: 10.1021/acsomega.7b00322] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 05/24/2023]
Abstract
Pseudopeptides containing the d-Oxd or the d-pGlu [Oxd = (4R,5S)-4-methyl-5-carboxyl-oxazolidin-2-one, pGlu = pyroglutamic acid] moiety and selected amino acids were used as low-molecular-weight gelators to prepare strong and thixotropic hydrogels at physiological pH. The addition of calcium chloride to the gelator solutions induces the formation of insoluble salts that get organized in fibers at a pH close to the physiological one. Physical characterization of hydrogels was carried out by morphologic evaluation and rheological measurements and demonstrated that the analyzed hydrogels are thixotropic, as they have the capability to recover their gel-like behavior. As these hydrogels are easily injectable and may be used for regenerative medicine, they were biologically assessed by cell seeding and viability tests. Human gingival fibroblasts were embedded in 2% hydrogels; all of the hydrogels allow the growth of encapsulated cells with a very good viability. The gelator toxicity may be correlated with their tendency to self-assemble and is totally absent when the hydrogel is formed.
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Stefano Focaroli
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Andrea Merlettini
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Luca Gentilucci
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Gabriella Teti
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Mirella Falconi
- Dipartimento
di Scienze Biomediche e Neuromotorie, Alma
Mater Studiorum Università di Bologna, Via Ugo Foscolo, 7, 40123 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento
di Chimica Ciamician, Alma Mater Studiorum
Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Zanna N, Iaculli D, Tomasini C. The effect ofl-DOPA hydroxyl groups on the formation of supramolecular hydrogels. Org Biomol Chem 2017; 15:5797-5804. [DOI: 10.1039/c7ob01026e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fmoc-l-DOPA-d-Oxd-OH was prepared starting from commercially availablel-DOPA. Its gelation ability was tested by comparison with Fmoc-l-Tyr-d-Oxd-OH and Fmoc-l-Phe-d-Oxd-OH using ten different triggers.
Collapse
Affiliation(s)
- Nicola Zanna
- Dipartimento di Chimica “G. Ciamician” - Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Debora Iaculli
- Dipartimento di Chimica “G. Ciamician” - Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| | - Claudia Tomasini
- Dipartimento di Chimica “G. Ciamician” - Alma Mater Studiorum Università di Bologna
- 40126 Bologna
- Italy
| |
Collapse
|