1
|
Zhao ZZ, Guo P, Pang X, Shu XZ. Nickel-Catalyzed Reductive Alkenylation of Enol Derivatives: A Versatile Tool for Alkene Construction. Acc Chem Res 2024; 57:3356-3374. [PMID: 39486055 DOI: 10.1021/acs.accounts.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
ConspectusKetone-to-alkene transformations are essential in organic synthesis, and transition-metal-catalyzed cross-coupling reactions involving enol derivatives have become powerful tools to achieve this goal. While substantial progress has been made in nucleophile-electrophile reactions, recent developments in nickel-catalyzed reductive alkenylation reactions have garnered increasing attention. These methods accommodate a broad range of functional groups such as aldehyde, ketone, amide, alcohol, alkyne, heterocycles, and organotin compounds, providing an efficient strategy to access structurally diverse alkenes. This Account primarily highlights the contributions from our laboratory to this growing field while also acknowledging key contributions from other researchers.Our early efforts in this area focused on coupling radical-active substrates, such as α-chloroboronates. This method follows the conventional radical chain mechanism, resulting in facile access to valuable allylboronates. Encouraged by these promising results, we subsequently expanded the substrate scope to encompass radical-inactive compounds. By developing new strategies for controlling cross-selectivity, we enabled the coupling of Csp3 electrophiles (e.g., alcohols and sulfonates), Csp2 electrophiles (e.g., bromoalkenylboronates and acyl fluorides), and heavier group-14 electrophiles like chlorosilanes and chlorogermanes with alkenyl triflates. These advances have provided efficient synthetic routes to a wide range of valuable products, including aliphatic alkenes, enones, dienylboronates, and silicon- and germanium-containing alkenes. Notably, these methods are particularly effective for synthesizing functionalized cycloalkenes, which are traditionally challenging to obtain through conventional methods involving alkenyl halide or organometallic couplings. We have also extended the scope of enol derivatives from triflates to acetates. These compounds are among the most accessible, stable, cost-effective, and environmentally friendly reagents, while their application in cross-coupling has been hampered by low reactivity and selectivity challenges. We showcased that by the use of a Ni(I) catalyst, alkenyl acetates could undergo reductive alkylation with a broad range of alkyl bromides, yielding diverse cyclic and acyclic aliphatic alkenes.Furthermore, our work has demonstrated that reductive coupling of enol derivatives with alkenes provides a highly appealing alternative for alkene synthesis. Particularly, this approach offers opportunity to address the regioselectivity challenges encountered in conventional alkene transformations. For instance, achieving regioselective hydrocarbonation of aliphatic 1,3-dienes has been a longstanding challenge in synthetic chemistry. By using a phosphine-nitrile ligand, we developed a nickel-catalyzed reductive alkenylation of 1,3-dienes with alkenyl triflates, delivering a diverse array of 1,4-dienes with high 1,2-branch selectivity (>20:1) while preserving the geometry of the C3-C4 double bond. Additionally, our investigations laid the foundation for enantioselective reductive alkenylation methodologies, offering new pathways for constructing enantioenriched diketones as well as complex carbo- and heterocyclic compounds. The introduced alkenyl functionality can be further diversified, enhancing molecular diversity and complexity.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
2
|
Li X, Shan W, Zhou N, Wang Z, Liu R, Zhuang W, Yuan L, Shi C, Qin H, Chen J, Li X, Shi D. Nickel-Catalyzed Stereoconvergent C(sp 2)-F Alkenylation of Monofluoroalkenes. Org Lett 2024; 26:8521-8526. [PMID: 39331506 DOI: 10.1021/acs.orglett.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
The stereoconvergent synthesis of a single stereoisomer from E/Z-olefin mixtures remains one of the foremost challenges in organic synthesis. Herein, we describe a nickel-catalyzed stereoconvergent cross-coupling between E- and Z-mixed monofluoroalkenes and alkenyl electrophiles, which allows the construction of C(sp2)-C(sp2) bonds. This defluorinative transformation offers facile access to various 1,3-dienes with E-selectivity and good functional group tolerance. Preliminary mechanistic studies indicate that the reaction most likely proceeds through a migratory insertion/β-F elimination/isomerization process.
Collapse
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Nan Zhou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Wenli Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiashu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Ji X, Shen C, Ni Y, Si ZY, Wang Y, Zhi X, Zhao Y, Peng H, Liu L. Stereoselective Synthesis of Polysubstituted Conjugated Dienes Enabled by Photo-Driven Sequential Sigmatropic Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202400805. [PMID: 38587996 DOI: 10.1002/anie.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
We here reported a highly stereoselective method for the synthesis of polysubstituted conjugated dienes from α-aryl α-diazo alkynyl ketones and pyrazole-substituted unsymmetric aminals under mild conditions, which was promoted by photo-irridation and involved with 1,6-dipolar intermediate and quadruple sigmatropic rearrangements, was successfully developed. In this transformation, the cleavage of four bonds and the recombination of five bonds were implemented in one operational step. This protocol provided a modular tool for constructing dienes from amines, pyrazoles and α-alkynyl-α-diazoketones in one-pot manner. The results of mechanistic investigation indicated that the plausible reaction path underwent the 1,6-sigmatropic rearrangement instead of the 1,5-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Xin Ji
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuhao Ni
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Zhi-Yao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuzhu Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xinrong Zhi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yuting Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Huiling Peng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 N Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
4
|
Kweon B, Blank L, Soika J, Messara A, Daniliuc CG, Gilmour R. Regio- and Stereo-Selective Isomerization of Borylated 1,3-Dienes Enabled by Selective Energy Transfer Catalysis. Angew Chem Int Ed Engl 2024; 63:e202404233. [PMID: 38545942 DOI: 10.1002/anie.202404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 04/23/2024]
Abstract
Configurationally-defined dienes are pervasive across the bioactive natural product spectrum, where they typically manifest themselves as sorbic acid-based fragments. These C5 motifs reflect the biosynthesis algorithms that facilitate their construction. To complement established biosynthetic paradigms, a chemical platform to facilitate the construction of stereochemically defined, functionalizable dienes by light-enabled isomerization has been devised. Enabled by selective energy transfer catalysis, a variety of substituted β-boryl sorbic acid derivatives can be isomerized in a regio- and stereo-selective manner (up to 97 : 3). Directionality is guided by a stabilizing nO→pB interaction in the product: this constitutes a formal anti-hydroboration of the starting alkyne. This operationally simple reaction employs low catalyst loadings (1 mol %) and is complete in 1 h. X-ray analysis supports the hypothesis that the nO→pB interaction leads to chromophore bifurcation: this provides a structural foundation for selective energy transfer.
Collapse
Affiliation(s)
- Byeongseok Kweon
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas Blank
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Julia Soika
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Amélia Messara
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Constantin G Daniliuc
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- University of Münster, Institute for Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Jia Y, Yang L, Wang X, Yang W, Zhao W. Cobalt-Catalyzed Selective Hydroboration of 1,3-Enynes with HBpin toward 1,3-Dienylboronate Esters. Org Lett 2024; 26:3258-3262. [PMID: 38568149 DOI: 10.1021/acs.orglett.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
An efficient cobalt-catalyzed selective hydroboration of 1,3-enynes with HBpin toward 1,3-dienylboronate esters is disclosed. With a commercially available catalytic system of Co(acac)2 and dppf, the hydroboration reactions proceeded well to afford a wide range of 1,3-dienylborates in moderate to high yields. This protocol features a cheap base-metal catalytic system, broad substrate scope, excellent selectivity, easy gram-scale preparation, and good functional group tolerance and provides access to synthetically valuable 1,3-dienylborates.
Collapse
Affiliation(s)
- Yining Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liu Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xueqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
6
|
Zhang H, Ye Z, Wu Y, Zhang X, Ma W, Zhan ZJ, Zhang F. Electrochemical Reductive Cross-Coupling of Vinyl Bromides for the Synthesis of 1,3-Dienes. Org Lett 2024; 26:994-999. [PMID: 38289335 DOI: 10.1021/acs.orglett.3c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An electroreductive cross-electrophile coupling protocol was developed for the construction of valuable 1,3-dienes from vinyl bromides. Furthermore, this scalable method can also be used to forge complex [4 + 2] cycloadducts in a one-pot manner. One of the most important advantages of this green and sustainable protocol is the in situ release of nickel catalyst from the inexpensive electrodes without the addition of extra harmful metal catalysts and reductant.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Yanqi Wu
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Xi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| |
Collapse
|
7
|
Krupa B, Szyling J, Walkowiak J. Pt(PPh 3) 4 and Pt(PPh 3) 4@IL catalyzed hydroboration of ketones. Sci Rep 2023; 13:20237. [PMID: 37981660 PMCID: PMC10658173 DOI: 10.1038/s41598-023-47518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
An efficient method for the reduction of various ketones via [Pt(PPh3)4]-catalyzed hydroboration with HBpin has been successfully developed for the first time. The protocol is suitable for symmetrical and unsymmetrical derivatives possessing electron donating or withdrawing functional groups. O-borylated products were easily converted to 2° alcohols via hydrolysis with high isolated yields. According to the low-temperature NMR spectroscopy, a reaction mechanism was proposed. Additionally, effective immobilization of the catalyst in the ionic liquid [BMIM][NTf2] was applied to increase the productivity of the process by carrying out reactions under the repetitive batch mode, obtaining higher TON values and limiting the amount of expensive Pt used. The catalyst stability and almost neglectable leaching were confirmed by ICP-MS analysis of the extracted mixture. A simple separation method via extraction with n-heptane, efficient catalyst immobilization, and the commercial availability of the Pt complex, make this protocol an attractive method for the hydroboration of ketones.
Collapse
Affiliation(s)
- Barbara Krupa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
8
|
Szyling J, Szymańska A, Walkowiak J. Selective synthesis of boron-substituted enynes via a one-pot diboration/protodeboration sequence. Chem Commun (Camb) 2023; 59:9541-9544. [PMID: 37458472 DOI: 10.1039/d3cc02695g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An efficient and facile one-pot protocol to access enynylboronates via a Pt-catalyzed diboration/protodeboration strategy has been developed. The reaction is suitable for various silylsubstituted symmetrical and unsymmetrical 1,3-diynes, leading to π-conjugated organoboron compounds with excellent regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jakub Szyling
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| | - Aleksandra Szymańska
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Centre for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland.
| |
Collapse
|
9
|
Li X, Li Y, Wang Z, Shan W, Liu R, Shi C, Qin H, Yuan L, Li X, Shi D. Nickel-Catalyzed Stereoselective Cascade C–F Functionalizations of gem-Difluoroalkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Yuxiu Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, Guangdong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
10
|
Stephens SM, Bray JM, Weierbach SM, Adornato GM, Schrider JA, Lambert KM. Facile access to 1,3-bis(boryl) dienes to build molecular complexity through cycloadditions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Pradhan TR, Kyoon Park J. Chemoselective Coupling of π-Systems to Access Metallated 1,4- or 1,5-Skipped Dienes in Multicomponent Reactions. Chemistry 2022; 28:e202202120. [PMID: 36094297 DOI: 10.1002/chem.202202120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 12/14/2022]
Abstract
Integrating distinct unsaturated C-C systems while simultaneously installing metallic groups has been significantly challenging to execute in a multicomponent reaction. Therefore, designing a suitable mechanistic pathway that provides the required reactivity and selectivity for target C-C bonds with metallic reagents to ensure successful coupling is the key to success. Copper-catalyzed borylallylation and silylallylation have emerged as the most efficient strategies for assembling borylated/silylated skipped (1,4 or 1,5) dienes by catalytically combining an organocopper intermediate with allyl electrophiles. However, reactions involving interelemental reagents (e. g., [Si]-[B]) to accomplish intermolecular atom-economic couplings have not been studied thoroughly. Therefore, to aid the development of new transformations in this research area, this article attempts to include all precedents, including recent studies by the authors. The present Concept article may be helpful for researchers working in this area as it provides a basic conceptual framework.
Collapse
Affiliation(s)
- Tapas R Pradhan
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 46241, Busan, Korea
| | - Jin Kyoon Park
- Department of Chemistry, Chemistry Institute for Functional Materials, Pusan National University, 46241, Busan, Korea
| |
Collapse
|
12
|
Skaria M, Culpepper JD, Daly SR. Leveraging Metal and Ligand Reactive Sites for One Pot Reactions: Ligand-Centered Borenium Ions for Tandem Catalysis with Palladium. Chemistry 2022; 28:e202201791. [PMID: 35997655 PMCID: PMC9828003 DOI: 10.1002/chem.202201791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/12/2023]
Abstract
Tandem catalysts that perform two different organic transformations in a single pot are highly desirable because they enable rapid and efficient assembly of simple organic building blocks into more complex molecules. Many examples of tandem catalysis rely on metal-catalyzed reactions involving one or more metal complexes. Remarkably, despite surging interest in the development of chemically reactive (i. e., non-innocent) ligands, there are few examples of metal complexes that leverage ligand-centered reactivity to perform catalytic reactions in tandem with separate catalytic reactions at the metal. Here we report how multifunctional Pd complexes with triaminoborane-derived diphosphorus ligands, called TBDPhos, appear to facilitate borenium-catalyzed cycloaddition reactions at the ligand, and Pd-catalyzed Stille and Suzuki cross-coupling reactions at the metal. Both transformations can be accessed in one pot to afford rare examples of tandem catalysis using separate metal and ligand catalysis sites in a single complex.
Collapse
Affiliation(s)
- Manisha Skaria
- Department of ChemistryThe University of IowaIowa CityIowa52242USA
| | | | - Scott R. Daly
- Department of ChemistryThe University of IowaIowa CityIowa52242USA
| |
Collapse
|
13
|
Jos S, Szwetkowski C, Slebodnick C, Ricker R, Chan KL, Chan WC, Radius U, Lin Z, Marder TB, Santos WL. Transition Metal-Free Regio- and Stereo-Selective trans Hydroboration of 1,3-Diynes: A Phosphine-Catalyzed Access to (E)-1-Boryl-1,3-Enynes. Chemistry 2022; 28:e202202349. [PMID: 35917135 PMCID: PMC9804376 DOI: 10.1002/chem.202202349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/05/2023]
Abstract
We report a transition metal-free, regio- and stereo-selective, phosphine-catalyzed method for the trans hydroboration of 1,3-diynes with pinacolborane that affords (E)-1-boryl-1,3-enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3-diyne framework as unambiguously established by NMR and X-ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle.
Collapse
Affiliation(s)
- Swetha Jos
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | | | - Carla Slebodnick
- Department of ChemistryVirginia TechBlacksburgVirginiaUnited States
| | - Robert Ricker
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Ka Lok Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Wing Chun Chan
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Udo Radius
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | - Zhenyang Lin
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SARChina
| | - Todd B. Marder
- Institute of Inorganic ChemistryInstitute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgGermany
| | | |
Collapse
|
14
|
Liu Y, Ni D, Brown MK. Boronic Ester Enabled [2 + 2]-Cycloadditions by Temporary Coordination: Synthesis of Artochamin J and Piperarborenine B. J Am Chem Soc 2022; 144:18790-18796. [PMID: 36200833 PMCID: PMC9832331 DOI: 10.1021/jacs.2c08777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A strategy for the photosensitized cycloaddition of alkenylboronates and allylic alcohols by a temporary coordination is presented. The process allows for the synthesis of a diverse range of cyclobutylboronates. Key to development of these reactions is the temporary coordination of the allylic alcohol to the Bpin unit. This not only allows for the reaction to proceed in an intramolecular manner but also allows for high levels of stereo and regiocontrol. A key aspect of these studies is the utility of the cycloadducts in the synthesis of complex natural products artochamin J and piperarborenine B.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Ghosh S, Chakrabortty R, Kumar S, Das A, Ganesh V. Copper-Catalyzed Protoboration of 1,3-Diynes as a Platform for Iterative Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajesh Chakrabortty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shailendra Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aniruddha Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
16
|
Szyling J, Szymańska A, Franczyk A, Walkowiak J. [Pt(PPh 3) 4]-Catalyzed Selective Diboration of Symmetrical and Unsymmetrical 1,3-Diynes. J Org Chem 2022; 87:10651-10663. [PMID: 35917577 PMCID: PMC9396666 DOI: 10.1021/acs.joc.2c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A straightforward, efficient, and selective method for the preparation of novel boryl-functionalized enynes or dienes via [Pt(PPh3)4]-catalyzed diboration of a broad spectrum of symmetrical and unsymmetrical 1,3-diynes was developed. The catalytic cycle of diboration was proposed on the basis of low-temperature 31P NMR studies. An alternative isolation method via product condensation on a cold finger was developed, which, in contrast to previous literature reports, eliminates the need for the additional transformation of rapidly decomposing enynyl pinacol boronates to more stable silica-based column chromatography derivatives during the separation step. To prove the efficiency of this simple catalytic protocol, bisboryl-functionalized enynes were synthesized in a gram scale and tested as useful building blocks in advanced organic transformations, such as hydrosilylation and Suzuki and sila-Sonogashira couplings. The presence of silyl, boryl, as well as other functions like halogen or alkoxy in their structures builds a new class of multifunctionalized enynes that might be modified in various chemical reactions.
Collapse
Affiliation(s)
- Jakub Szyling
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Aleksandra Szymańska
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Adrian Franczyk
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Jędrzej Walkowiak
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
17
|
Xu GL, Wang ZX. Palladium‐Catalyzed Reaction of 2,3‐Allenols with Amines: Synthesis of [3]Dendralenes and 1,3‐Dienes Containing Allylic Amino and Hydroxy Groups. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guang-Li Xu
- University of Science and Technology of China CHINA
| | | |
Collapse
|
18
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]-Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200725. [PMID: 35446458 DOI: 10.1002/anie.202200725] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 12/17/2022]
Abstract
A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]-cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Bernard G Stevenson
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - John R Swierk
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| |
Collapse
|
19
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]‐Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanyao Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Dongshun Ni
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Bernard G. Stevenson
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - Vikrant Tripathy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Sarah E. Braley
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - John R. Swierk
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
20
|
Yu W, Jiao X, Fan Y, Zhu S, Chu L. Metallaphotoredox‐Enabled Intermolecular Carbobromination of Alkynes with Alkenyl Bromides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Xiaorui Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Yanmin Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| |
Collapse
|
21
|
Jia J, Yuan F, Zhang Z, Song X, Hu F, Xia Y. Copper-Catalyzed Ring-Opening Defluoroborylation of gem-Difluorinated Cyclobutenes: A General Route to Bifunctional 1,3-Dienes and Their Applications. Org Lett 2022; 24:1985-1990. [PMID: 35238573 DOI: 10.1021/acs.orglett.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The exploration of the reactivity of gem-difluorinated small-size rings has continuously drawn attention in recent years but is limited to three-membered carbocycles. Herein we report a copper-catalyzed reaction of gem-fluorinated cyclobutenes with bis(pinacolato)diboron (B2pin2). A sequence of defluoroborylation and a ring-opening process produces B,F-bifunctional 1,3-dienes in a stereoselective manner. The transformation together with the efficient downstream coupling of the boronate and the fluoride moieties collectively constitutes a modular route to highly functionalized and stereocontrolled 1,3-dienes.
Collapse
Affiliation(s)
- Jie Jia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fushan Yuan
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zihao Zhang
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Okazaki S, Shimada K, Komine N, Hirano M. Ru(0)-Catalyzed Regioselective Synthesis of Borylated-1,4- and -1,5-Diene Building Blocks. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shione Okazaki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keita Shimada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
23
|
Chauhan ANS, Mali G, Erande RD. Regioselectivity Switch Towards the Development of Innovative Diels‐Alder Cycloaddition and Productive Applications in Organic Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amar Nath Singh Chauhan
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry Chemistry departmentIIT Jodhpur 342037 Jodhpur INDIA
| | - Ghanshyam Mali
- IIT Jodhpur: Indian Institute of Technology Jodhpur chemistry Chemistry departmentIIT Jodhpur 342037 Jodhpur INDIA
| | - Rohan D. Erande
- Indian Institute of Technology Jodhpur Chemistry Office 103, Department of Chemistry, IIT Jodhpur, N.H. 62, Nagaur Road, Karwar 342037 Jodhpur INDIA
| |
Collapse
|
24
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
25
|
Kanti Das K, Kumar P, Ghorai D, Mondal B, Panda S. Organoboron Compounds Towards Asymmetric Pericyclic Reaction; Exploitation to Bioactive Molecule Synthesis. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Parveen Kumar
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Debraj Ghorai
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Buddhadeb Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| | - Santanu Panda
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
26
|
Idogawa R, Kobayashi A, Kim Y, Shimomori K, Hosoya T, Yoshida S. Hydride reduction of o-(fluorosilyl)benzodifluorides for subsequent C–F transformations. Chem Commun (Camb) 2022; 58:3521-3524. [DOI: 10.1039/d1cc06761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for sequential C–F transformations of o-hydrosilyl-substituted benzotrifluorides is disclosed. A key to the success is hydride reduction of o-fluorosilyl-substituted difluoromethylenes prepared by a single C–F transformation of...
Collapse
|
27
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Zhang WD, Zou JY, Zhong Q, Li SS, Zhao J. Synergistic Pd/Cu-catalysed regio- and stereoselective borylation of allenylic carbonates. Chem Commun (Camb) 2021; 58:1037-1040. [PMID: 34951424 DOI: 10.1039/d1cc05854a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple Pd/Cu-catalyzed borylation of allenylic carbonates with B2Pin2 was developed using a cheap P(OEt)3 ligand. Under mild neutral conditions, 2-boryl 1,3-butadienes were obtained selectively in moderate to high yields. Furthermore, the use of different diboron reagents was also feasible in the reaction.
Collapse
Affiliation(s)
- Wei-Dong Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jia-Yu Zou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qin Zhong
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shi-Sen Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jian Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
29
|
Song Z, Wang W, Liu Z, Lu Y, Wang D. Phosphine-Catalyzed Intermolecular Dienylation of Alkynoate with para-Quinone Methides. J Org Chem 2021; 86:8590-8599. [PMID: 34164976 DOI: 10.1021/acs.joc.1c00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An interesting remote δ-C 1,6-addition and an isomerization cascade reaction for phosphine-catalyzed activated alkynes have been disclosed. The products featuring a functional diene and a 1,1-diaryl methyl motif have been obtained in moderate to good yields (30-86%) by applying para-quinone methides (p-QMs) and δ-substituted alkynoate with tributylphosphine (PnBu3) catalysis, along with high regioselectivity and stereoselectivity (dr > 20:1). The wide scope of compatible substrates (35 examples), such as indolyl, oxindolyl, ester, and cinnamyl, expand the utility of this methodology. A plausible mechanism and some applications of it have also been presented.
Collapse
Affiliation(s)
- Zefeng Song
- Molecular Synthesis Center, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 23 Hongkong East Road, Qingdao 266071, Shandong Province, China
| | - Weijia Wang
- Molecular Synthesis Center, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 23 Hongkong East Road, Qingdao 266071, Shandong Province, China
| | - Zhixin Liu
- Molecular Synthesis Center, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 23 Hongkong East Road, Qingdao 266071, Shandong Province, China
| | - Yue Lu
- Molecular Synthesis Center, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 23 Hongkong East Road, Qingdao 266071, Shandong Province, China
| | - De Wang
- Molecular Synthesis Center, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 23 Hongkong East Road, Qingdao 266071, Shandong Province, China.,Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China
| |
Collapse
|
30
|
Sha Y, Liu J, Wang L, Liang D, Wu D, Gong H. Nickel-catalyzed reductive 1,3-diene formation from the cross-coupling of vinyl bromides. Org Biomol Chem 2021; 19:4887-4890. [PMID: 34021299 DOI: 10.1039/d1ob00791b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Facile construction of 1,3-dienes building upon cross-electrophile coupling of two open-chain vinyl halides is disclosed in this work, showing moderate chemoselectivities between the terminal bromoalkenes and internal vinyl bromides. The present method is mild and tolerates a range of functional groups and can be applied to the total synthesis of a tobacco fragrance solanone.
Collapse
Affiliation(s)
- Yunfei Sha
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Jiandong Liu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Liang Wang
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Demin Liang
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Da Wu
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| |
Collapse
|
31
|
Eghbarieh N, Hanania N, Zamir A, Nassir M, Stein T, Masarwa A. Stereoselective Diels-Alder Reactions of gem-Diborylalkenes: Toward the Synthesis of gem-Diboron-Based Polymers. J Am Chem Soc 2021; 143:6211-6220. [PMID: 33852300 PMCID: PMC8488944 DOI: 10.1021/jacs.1c01471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 01/23/2023]
Abstract
Although gem-diborylalkenes are known to be among the most valuable reagents in modern organic synthesis, providing a rapid access to a wide array of transformations, including the construction of C-C and C-heteroatom bonds, their use as dienophile-reactive groups has been rare. Herein we report the Diels-Alder (DA) reaction of (unsymmetrical) gem-diborylalkenes. These reactions provide a general and efficient method for the stereoselective conversion of gem-diborylalkenes to rapidly access 1,1-bisborylcyclohexenes. Using the same DA reaction manifold with borylated-dienes and gem-diborylalkenes, we also developed a concise, highly regioselective synthesis of 1,1,2-tris- and 1,1,3,4-tetrakis(boronates)cyclohexenes, a family of compounds that currently lack efficient synthetic access. Furthermore, DFT calculations provided insight into the underlying factors that control the chemo-, regio-, and stereoselectivity of these DA reactions. This method also provides stereodivergent syntheses of gem-diborylnorbornenes. The utility of the gem-diborylnorbornene building blocks was demonstrated by ring-opening metathesis polymerization (ROMP), providing a highly modular approach to the first synthesis of the gem-diboron-based polymers. Additionally, these polymers have been successfully submitted to postpolymerization modification reactions. Given its simplicity and versatility, we believe that this novel DA and ROMP approach holds great promise for organoboron synthesis as well as organoboron-based polymers and that it will result in more novel transformations in both academic and industrial research.
Collapse
Affiliation(s)
- Nadim Eghbarieh
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nicole Hanania
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Alon Zamir
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Fritz
Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Molhm Nassir
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tamar Stein
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- Fritz
Haber Center for Molecular Dynamics Research, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ahmad Masarwa
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
32
|
Ludwiczak M, Szyling J, Garbicz A, Sokolnicki T, Pyziak J, Walkowiak J. Application of Green Solvents: PEG and scCO 2 in the Mono- or Biphasic Catalytic Systems for the Repetitive Batch Coupling of Vinylsilanes with Vinyl Boronates toward 1-Boryl-1-silylethenes. Inorg Chem 2020; 59:17555-17564. [PMID: 33232139 PMCID: PMC7735702 DOI: 10.1021/acs.inorgchem.0c02796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Indexed: 11/29/2022]
Abstract
A new method for the repetitive batch silylative coupling (trans-silylation) of vinylsilanes with vinyl boronates in the presence of Ru(CO)Cl(H)(PCy3)2 immobilized in poly(ethylene glycols) (PEGs) has been developed. Three PEGs (PEG600, PEG2000, and MPEG2000) with different molecular weights and end groups (MW = 600-2000) were tested as solvents and immobilization media, while an aliphatic solvent (n-hexane or n-heptane) or supercritical CO2 was used for product extraction. By applying 2 mol % of the Ru-H catalyst, it was possible to carry out up to 15 complete runs, with the predominant formation of 1-boryl-1-silylethenes. This immobilization strategy permitted for catalyst reuse and obtaining higher TON values (approximately 660-734) compared to the reaction in conventional solvents (∼50). Detailed kinetic studies of the most effective catalytic system were performed to determine catalyst activity and stability. Moreover, the reactions were carried out in an MPEG2000/scCO2 biphasic system, positively influencing the process sustainability.
Collapse
Affiliation(s)
- Monika Ludwiczak
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznan, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
| | - Jakub Szyling
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznan, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
- Faculty
of Chemistry, Adam Mickiewicz University
in Poznan, Uniwersytetu Poznańskiego 8, Poznan 61-614, Poland
| | - Adriana Garbicz
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznan, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
- Faculty
of Chemistry, Adam Mickiewicz University
in Poznan, Uniwersytetu Poznańskiego 8, Poznan 61-614, Poland
| | - Tomasz Sokolnicki
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznan, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
- Faculty
of Chemistry, Adam Mickiewicz University
in Poznan, Uniwersytetu Poznańskiego 8, Poznan 61-614, Poland
| | - Jadwiga Pyziak
- BIB
Seed Capital S. A., Sw.
Marcin 80/82, Poznan 61-809, Poland
| | - Jȩdrzej Walkowiak
- Center
for Advanced Technology, Adam Mickiewicz
University in Poznan, Uniwersytetu Poznańskiego 10, Poznan 61-614, Poland
| |
Collapse
|
33
|
Rivas A, Areal A, Mora P, Álvarez R, de Lera AR. Synthesis of Symmetrical and Nonsymmetrical Polyenes by Iterative and Bidirectional Palladium-Catalyzed Cross-Coupling Reactions. Chemistry 2020; 26:13543-13567. [PMID: 32267574 DOI: 10.1002/chem.202000624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/08/2020] [Indexed: 11/06/2022]
Abstract
Bifunctional unsaturated reagents designed to undergo palladium-catalyzed cross-coupling reactions with complementary polyenyl connective fragments are highly useful for the undoubtedly challenging synthesis of polyenes. The current toolkit of building blocks for the bidirectional formation of Csp2 -Csp2 single bonds of polyenes includes homo-bisfunctionalized reagents with equal or unequal reactivity (due to steric and/or electronic factors), and hetero-bisfunctionalized counterparts containing either two different nucleophiles, two electrophiles or one of these functionalities and a latent nucleophile that can be unmasked when desired. The combination of these bifunctional linchpin reagents using tactics that modulate the reactivity of each terminus in order to achieve the required connection have streamlined the synthesis of polyenes of great complexity using (iterative) cross-coupling methods for Csp2 -Csp2 bond formation. Reaction conditions for the Pd-catalyzed cross-coupling reactions are mild and functional-group-tolerant, and therefore these protocols allow to construct the polyene structures using shorter unsaturated reactants with the desired geometries, since in general the products preserve the stereochemical information of the connected cross-coupling partners.
Collapse
Affiliation(s)
- Aurea Rivas
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, 36310, Vigo, Spain
| | - Andrea Areal
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, 36310, Vigo, Spain
| | - Paula Mora
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, 36310, Vigo, Spain
| | - Rosana Álvarez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, 36310, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
34
|
Jiang L, Yu LD, Peng PY, Li HL, Jiang DB, Wang YD, Yuan ML, Yuan MW. Stereoselective allylic 1,3-dienylation of Morita–Baylis–Hillman carbonates via an alkylation–denitration sequence. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1832526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Lin Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Liu-Dong Yu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Pei-Ying Peng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Hong-Li Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Deng-Bang Jiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Yi-Dan Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Ming-Long Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Ming-Wei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| |
Collapse
|
35
|
Zahara AJ, Hinds EM, Nguyen AL, Wilkerson-Hill SM. Programmed Sequential Additions to Halogenated Mucononitriles. Org Lett 2020; 22:8065-8069. [DOI: 10.1021/acs.orglett.0c03007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adam J. Zahara
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elsa M. Hinds
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew L. Nguyen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sidney M. Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
36
|
Welker ME. Boron and Silicon-Substituted 1,3-Dienes and Dienophiles and Their Use in Diels-Alder Reactions. Molecules 2020; 25:E3740. [PMID: 32824327 PMCID: PMC7465248 DOI: 10.3390/molecules25163740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Boron and silicon-substituted 1,3-dienes and boron and silicon-substituted alkenes and alkynes have been known for years and the last 10 years have seen a number of new reports of their preparation and use in Diels-Alder reactions. This review first covers boron-substituted dienes and dienophiles and then moves on to discuss silicon-substituted dienes and dienophiles.
Collapse
Affiliation(s)
- Mark E Welker
- Department of Chemistry, Center for Functional Materials, Wake Forest University, 455 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
37
|
Grygorenko OO, Moskvina VS, Hryshchuk OV, Tymtsunik AV. Cycloadditions of Alkenylboronic Derivatives. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The literature on cycloaddition reactions of boron-containing alkenes is surveyed with 132 references. The data are categorized according to the reaction type ([2+1], [2+2], [3+2], [4+2], and [4+3] cycloadditions). The cyclopropanation and the Diels–Alder reactions of alkenylboronic derivatives have been studied more or less comprehensively, and for some substrates, they can be considered as convenient methods for the rapid regio- and stereoselective construction of even complex cyclic systems. Other types of the cycloadditions, as well as mechanistic aspects of the processes, have been addressed less thoroughly in the previous works.1 Introduction2 [2+1] Cycloaddition2.1 Cyclopropanation2.1.1 With Methylene Synthetic Equivalents2.1.2 With Substituted Carbenoids2.2 Epoxidation2.3 Aziridination3 [2+2] Cycloaddition4 [3+2] Cycloaddition4.1 With Nitrile Oxides4.2 With Diazoalkanes4.3 With Nitrones4.4 With Azomethine Ylides5 [4+2] Cycloaddition6 [4+3] Cycloaddition7 Conclusions and Outlook
Collapse
Affiliation(s)
| | - Viktoriia S. Moskvina
- Taras Shevchenko National University of Kyiv
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
| | | | - Andriy V. Tymtsunik
- Enamine Ltd
- Faculty of Chemical Technology, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’
| |
Collapse
|
38
|
François B, Eberlin L, Berrée F, Whiting A, Carboni B. Generating Skeletal Diversity and Complexity from Boron-Substituted 1,3-Dienes and Enophiles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin François
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Ludovic Eberlin
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Fabienne Berrée
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| | - Andrew Whiting
- Department of Chemistry; Durham University; Science Laboratories; South Road DH1 3LE Durham U.K
| | - Bertrand Carboni
- Univ Rennes; CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226; 35000 Rennes France
| |
Collapse
|
39
|
François B, Eberlin L, Berrée F, Whiting A, Carboni B. Access to Fused Pyrroles from Cyclic 1,3-Dienyl Boronic Esters and Arylnitroso Compounds. J Org Chem 2020; 85:5173-5182. [PMID: 32192328 DOI: 10.1021/acs.joc.9b03214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Complimentary to classical hydroboration and boron-Wittig reactions, a new, efficient access to cyclic 1,3-dienyl boronic esters has been developed via diene or triene metathesis. Subsequently, fused pyrroles were synthesized with a broad substrate scope from the reaction of cyclic 1,3-dienyl boronic esters with arylnitroso compounds using a one-pot hetero-Diels-Alder/ring contraction sequence.
Collapse
Affiliation(s)
- Benjamin François
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Ludovic Eberlin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, South Road, Durham DH1 3LE, U.K
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
40
|
Choi H, Shirley HJ, Aitken HRM, Schulte T, Söhnel T, Hume PA, Brimble MA, Furkert DP. Intermolecular Diels-Alder Cycloaddition/Cross-Coupling Sequences of 2-Bromo-1,3-butadienes. Org Lett 2020; 22:1022-1027. [PMID: 31990192 DOI: 10.1021/acs.orglett.9b04567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Bromo-1,3-butadienes are demonstrated to be effective substrates for tandem Diels-Alder/transition metal cross-coupling reaction sequences. Intermolecular cycloaddition of a 2-bromo-1,3-diene with activated dienophiles proceeded under Lewis acid catalysis in generally high yields with good to excellent endo diastereoselectivity. The resulting vinyl bromide cycloadducts underwent subsequent Stille and Suzuki cross-couplings under standard conditions in good yields. Both the Diels-Alder and cross-coupling steps were highly tolerant of a range of functionalities and protecting groups. The use of the bromine substituent as both a cycloaddition directing group and cross-coupling nucleofuge avoids extra steps required to install and remove the more commonly used silyl enol ethers and enol sulfonates for each transformation and gives full control of the alkene regiochemistry throughout the reaction sequence. The 2-bromo-1,3-dienes were conveniently prepared in three steps from readily available aldehydes and established as hydrolytically stable and practical synthetic intermediates.
Collapse
Affiliation(s)
- Hans Choi
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| | - Harry J Shirley
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| | - Harry R M Aitken
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| | - Tim Schulte
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| | - Paul A Hume
- School of Chemical and Physical Sciences , Victoria University of Wellington , Kelburn Parade , Wellington 6012 , New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
41
|
Sokolnicki T, Szyling J, Franczyk A, Walkowiak J. Regio‐ and Stereoselective Synthesis of Enynyl Boronates via Ruthenium‐Catalyzed Hydroboration of 1,4‐Diaryl‐Substituted 1,3‐Diynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tomasz Sokolnicki
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
- Adam Mickiewicz University in Poznan Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-712 Poznań Poland
| | - Jakub Szyling
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
- Adam Mickiewicz University in Poznan Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-712 Poznań Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
| | - Jędrzej Walkowiak
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
| |
Collapse
|
42
|
Huang Q, Hu MY, Zhu SF. Cobalt-Catalyzed Cyclization/Hydroboration of 1,6-Diynes with Pinacolborane. Org Lett 2019; 21:7883-7887. [DOI: 10.1021/acs.orglett.9b02873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Meng-Yang Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Medrán NS, Dezotti F, Pellegrinet SC. Remarkable Reactivity of Boron-Substituted Furans in the Diels-Alder Reactions with Maleic Anhydride. Org Lett 2019; 21:5068-5072. [PMID: 31247787 DOI: 10.1021/acs.orglett.9b01662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of boron-substituted furans as dienes in the Diels-Alder reaction with maleic anhydride has been investigated. Gratifyingly, the furans with boryl substituents at C-3 gave the exo cycloadduct exclusively with excellent yields. In particular, the potassium trifluoroborate exhibited outstanding reactivity at room temperature. Theoretical calculations suggested that the trifluoroborate group is highly activating and also that the thermodynamics is the main factor that determines whether the products can be obtained efficiently or not.
Collapse
Affiliation(s)
- Noelia S Medrán
- Instituto de Química Rosario (CONICET) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario, Suipacha 531 , Rosario ( 2000 ), Argentina
| | - Federico Dezotti
- Instituto de Química Rosario (CONICET) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario, Suipacha 531 , Rosario ( 2000 ), Argentina
| | - Silvina C Pellegrinet
- Instituto de Química Rosario (CONICET) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario, Suipacha 531 , Rosario ( 2000 ), Argentina
| |
Collapse
|
44
|
Wang D, Song ZF, Wang WJ, Xu T. Highly Regio- and Enantioselective Dienylation of p-Quinone Methides Enabled by an Organocatalyzed Isomerization/Addition Cascade of Allenoates. Org Lett 2019; 21:3963-3967. [PMID: 31099586 DOI: 10.1021/acs.orglett.9b01110] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel catalytic asymmetric dienylation of para-quinone methides with allenoates has been developed. Under mild conditions catalyzed by ( R)-SITCP, various dienylated bisarylmethides were obtained in moderate to good yields (up to 82% yield) and excellent enantioselectivities (90-98% ees). The efficacy and robustness were demonstrated by 27 examples of chiral dienylation products. A plausible mechanism, which involved 1,2 H-shift and umpolung of allenoates, was proposed based on deuterium labeling experiments and previous reports.
Collapse
Affiliation(s)
- De Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology (Qingdao) , 1 Wenhai Road , Aoshanwei, Jimo , Qingdao 266237 , China
| | - Ze-Feng Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Wei-Jia Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China
| | - Tao Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy , Ocean University of China , 5 Yushan Road , Qingdao 266003 , China.,Laboratory for Marine Drugs and Bioproducts & Open Studio for Druggability Research of Marine Natural Products , Pilot National Laboratory for Marine Science and Technology (Qingdao) , 1 Wenhai Road , Aoshanwei, Jimo , Qingdao 266237 , China
| |
Collapse
|
45
|
Hirano M, Kuramochi A, Shimada K, Komine N, Kiyota S, Westcott SA. Catalytic cross-dimerisation giving reactive borylated polyenes toward cross-coupling. Chem Commun (Camb) 2019; 55:10527-10530. [DOI: 10.1039/c9cc05930j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of borylated conjugated trienes and skipped dienes is prepared by Ru-catalysed cross-dimerisation using alkynyl-, dienyl-, and vinyl boronates.
Collapse
Affiliation(s)
- Masafumi Hirano
- Department of Applied Chemistry
- Tokyo University of Agriculture and Technology
- 2-24-16 Nakacho
- Koganei
- Japan
| | - Ayumi Kuramochi
- Department of Applied Chemistry
- Tokyo University of Agriculture and Technology
- 2-24-16 Nakacho
- Koganei
- Japan
| | - Keita Shimada
- Department of Applied Chemistry
- Tokyo University of Agriculture and Technology
- 2-24-16 Nakacho
- Koganei
- Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry
- Tokyo University of Agriculture and Technology
- 2-24-16 Nakacho
- Koganei
- Japan
| | - Sayori Kiyota
- Department of Applied Chemistry
- Tokyo University of Agriculture and Technology
- 2-24-16 Nakacho
- Koganei
- Japan
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry
- Mount Allison University
- Sackville
- Canada
| |
Collapse
|
46
|
Al-Huniti MH, Perez MA, Garr MK, Croatt MP. Palladium-Catalyzed Chemoselective Protodecarboxylation of Polyenoic Acids. Org Lett 2018; 20:7375-7379. [PMID: 30481039 DOI: 10.1021/acs.orglett.8b03016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conditions for the first palladium-catalyzed chemoselective protodecarboxylation of polyenoic acids to give the desired polyenes in good yields are presented. The reactions proceed under mild conditions using either a Pd(0) or Pd(II) catalyst and tolerate a variety of aryl and aliphatic substitutions. Unique aspects of the reaction include the requirement of phosphines, water, and a polyene adjacent to the carboxylic acid.
Collapse
Affiliation(s)
- Mohammed H Al-Huniti
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Mark A Perez
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Matthew K Garr
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
47
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Vázquez‐Galiñanes N, Fañanás‐Mastral M. Stereoselective Synthesis of Borylated 1,3‐Dienes by Synergistic Cu/Pd Catalysis. ChemCatChem 2018. [DOI: 10.1002/cctc.201801240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nuria Vázquez‐Galiñanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Martín Fañanás‐Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
49
|
Nguyen VT, Dang HT, Pham HH, Nguyen VD, Flores-Hansen C, Arman HD, Larionov OV. Highly Regio- and Stereoselective Catalytic Synthesis of Conjugated Dienes and Polyenes. J Am Chem Soc 2018; 140:8434-8438. [PMID: 29936839 DOI: 10.1021/jacs.8b05421] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Conjugated dienes and polyenes are typically synthesized by sequential introduction of C═C bonds. Here, we report a practical and scalable, catalytic dienylation that is highly regio- and stereoselective for both C═C bonds. The reaction is enabled by a stereoselective palladium-catalyzed cross-coupling that is preceded by a regioselective base-induced ring opening of readily available sulfolenes. The dienylation reaction is particularly useful for the synthesis of synthetically challenging dienes containing cis double bonds. We also show that the reaction can serve as a synthetic platform for the construction of conjugated polyenes.
Collapse
Affiliation(s)
- Vu T Nguyen
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Hang T Dang
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Hoang H Pham
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Viet D Nguyen
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Carsten Flores-Hansen
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Hadi D Arman
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| | - Oleg V Larionov
- Department of Chemistry , The University of Texas at San Antonio , San Antonio , Texas 78249 , United States
| |
Collapse
|
50
|
Szyling J, Franczyk A, Stefanowska K, Walkowiak J. A recyclable Ru(CO)Cl(H)(PPh3
)3
/PEG catalytic system for regio- and stereoselective hydroboration of terminal and internal alkynes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jakub Szyling
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznan Poland
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznan Poland
| | - Adrian Franczyk
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznan Poland
| | - Kinga Stefanowska
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznan Poland
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznan Poland
| | - Jędrzej Walkowiak
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznan Poland
| |
Collapse
|