1
|
Puglisi R, Cavallaro A, Pappalardo A, Petroselli M, Santonocito R, Trusso Sfrazzetto G. A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines. Molecules 2024; 29:3714. [PMID: 39125116 PMCID: PMC11314322 DOI: 10.3390/molecules29153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer's, schizophrenia, Parkinson's, Huntington's, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain;
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Puglisi R, Santonocito R, Pappalardo A, Trusso Sfrazzetto G. Smart Sensing of Nerve Agents. Chempluschem 2024; 89:e202400098. [PMID: 38647287 DOI: 10.1002/cplu.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The recent international scenario highlights the importance to protect human health and environmental quality from toxic compounds. In this context, organophosphorous (OP) Nerve Agents (NAs) have received particular attention, due to their use in terrorist attacks. Classical instrumental detection techniques are sensitive and selective, but they cannot be used in real field due to the high cost, specialized personnel requested and huge size. For these reasons, the development of practical, easy and fast detection methods (smart methods) is the future of this field. Indeed, starting from initial sensing research, based on optical and/or electrical sensors, today the development and use of smart strategies to detect NAs is the current state of the art. This review summarizes the smart strategies to detect NAs, highlighting some important parameters, such as linearity, limit of detection and selectivity. Furthermore, some critical comments of the future on this field, and in particular, the problems to be solved before a real application of these methods, are provided.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
3
|
Santonocito R, Cavallaro A, Puglisi R, Pappalardo A, Tuccitto N, Petroselli M, Trusso Sfrazzetto G. Smartphone-Based Sensing of Cortisol by Functionalized Rhodamine Probes. Chemistry 2024; 30:e202401201. [PMID: 38600692 DOI: 10.1002/chem.202401201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels should be extremely important to control the stress levels, and for this reason, it shows important medical applications. The common analytical methods (HPLC, GC-MS) cannot be used in real life, due to the bulky size of the instruments and the necessity of specialized personnel. Molecular probes solve these problems due to their fast and easy use. The synthesis of new fluorescent rhodamine probes, able to interact by non-covalent interactions with cortisol, the recognition properties in solution as well as in solid state by Strip Test, using a smartphone as detector, are here reported. DFT calculations and FT-IR measurements suggest the formation of supramolecular complexes through hydrogen bonds as main non-covalent interaction. The present study represents one of the first sensor, based on synthetical chemical receptors, able to detect cortisol in a linear range from 1 mM to 1 pM, based on non-covalent molecular recognition and paves the way to the realization of practical point-of-care device for the monitoring of cortisol in real live.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology - CSGI, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. PaÏsos Catalans 16, Tarragona, 43007, Spain
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
4
|
Puglisi R, Santonocito R, Butera E, Mendola GL, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Detection of a Sub-ppm Nerve Agent Simulant by a Smartphone Tool. ACS OMEGA 2023; 8:38038-38044. [PMID: 37867699 PMCID: PMC10586250 DOI: 10.1021/acsomega.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 10/24/2023]
Abstract
The widespread use of smartphones and related tools is extending their applications in several fields. Herein, we report a reusable smartphone coupled portable detection system for the sensing of sub-ppm level of a nerve agent mimic (dimethylmethylphosphonate) in the gas phase. The detection system is based on multiple hydrogen-bond interactions of the vapor analyte with an ad-hoc functionalized Bodipy chromophore scaffold. The multitopic approach used for the molecular recognition of DMMP leads to the highest binding constant values, high selectivity, and low limits of detection.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Ester Butera
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Giulia Lorenza Mendola
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- INSTM
Udr of Catania, Viale
Andrea Doria 6, Catania 95125, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy
- INSTM
Udr of Catania, Viale
Andrea Doria 6, Catania 95125, Italy
| |
Collapse
|
5
|
Akine S, Nomura K, Takahashi M, Sakata Y, Mori T, Nakanishi W, Ariga K. Synthesis of amphiphilic chiral salen complexes and their conformational manipulation at the air-water interface. Dalton Trans 2023; 52:260-268. [PMID: 36374017 DOI: 10.1039/d2dt03201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of amphiphilic salen complexes, [L1a,bM] and [L2a,bM], were designed and synthesized. These complexes consist of two or four hydrophilic triethylene glycol (TEG) chains and a hydrophobic π-extended metallosalen core based on naphthalene or phenanthrene. The obtained amphiphilic complexes, [L1bM] (M = Ni, Cu, Zn), formed a monolayer at the air-water interface, while the monocationic [L1bCo(MeNH2)2](OTf) did not form a well-defined monolayer. The number of hydrophilic TEG chains also had an influence on the monolayerformation behavior; the tetra-TEG derivatives, [L1bNi] and [L2bNi], showed a pressure rise at a less compressed region than the bis-TEG derivatives, [L1aNi] and [L2aNi]. In addition, the investigation of their compressibility and compression modulus suggested that the tetra-TEG derivatives, [L1bNi] and [L2bNi], are more flexible than the corresponding bis-TEG analogues, [L1aNi] and [L2aNi], and that the phenanthrene derivatives [L1a,bNi] were more rigid than the corresponding naphthalene analogues, [L2a,bNi]. The Langmuir-Blodgett (LB) films of one of the complexes, [L1bNi], showed CD spectra slightly different from that in solution, which may originate from the unique anisotropic environment of the air-water interface. Thus, we demonstrated the possibility of controlling the chiroptical properties of metal complexes by mechanical compression.
Collapse
Affiliation(s)
- Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. .,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Nomura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mizuho Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. .,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taizo Mori
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Waka Nakanishi
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
6
|
Santonocito R, Tuccitto N, Pappalardo A, Trusso Sfrazzetto G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022; 27:7503. [PMID: 36364331 PMCID: PMC9654496 DOI: 10.3390/molecules27217503] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm-100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid-base cycles, paving the way for the realization of real practical sensor for human dopamine detection.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology—CSGI, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Santonocito R, Tuccitto N, Cantaro V, Carbonaro AB, Pappalardo A, Greco V, Buccilli V, Maida P, Zavattaro D, Sfuncia G, Nicotra G, Maccarrone G, Gulino A, Giuffrida A, Trusso Sfrazzetto G. Smartphone-Assisted Sensing of Trinitrotoluene by Optical Array. ACS OMEGA 2022; 7:37122-37132. [PMID: 36312398 PMCID: PMC9609071 DOI: 10.1021/acsomega.2c02958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Here we report the design and fabrication of an array-based sensor, containing functionalized Carbon Dots, Bodipy's and Naphthalimide probes, that shows high fluorescence emissions and sensitivity in the presence of low amounts of TNT explosive. In particular, we have fabricated the first sensor device based on an optical array for the detection of TNT in real samples by using a smartphone as detector. The possibility to use a common smartphone as detector leads to a prototype that can be also used in a real-life field application. The key benefit lies in the possibility of even a nonspecialist operator in the field to simply collect and send data (photos) to the trained artificial intelligence server for rapid diagnosis but also directly to the bomb disposal unit for expert evaluation. This new array sensor contains seven different fluorescent probes that are able to interact via noncovalent interactions with TNT. The interaction of each probe with TNT has been tested in solution by fluorescence titrations. The solid device has been tested in terms of selectivity and linearity toward TNT concentration. Tests performed with other explosives and other nitrogen-based analytes demonstrate the high selectivity for TNT molecules, thus supporting the reliability of this sensor. In addition, TNT can be detected in the range of 98 ng∼985 μg, with a clear different response of each probe to the different amounts of TNT.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Nunzio Tuccitto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- Laboratory
for Molecular Surfaces and Nanotechnology, CSGI, 95125Catania, Italy
| | - Valentina Cantaro
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | | | - Andrea Pappalardo
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Valentina Greco
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Valeria Buccilli
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Pietro Maida
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Davide Zavattaro
- Reparto
Carabinieri Investigazioni Scientifiche Messina, Via Monsignor D’Arrigo 5, 98122Messina, Italy
| | - Gianfranco Sfuncia
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Nicotra
- Consiglio
Nazionale delle Ricerche, Istituto per la
Microelettronica e Microsistemi, I-95121Catania, Italy
| | - Giuseppe Maccarrone
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Antonino Gulino
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| | - Alessandro Giuffrida
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department
of Chemical Sciences, University of Catania, viale A. Doria 6, 95100Catania, Italy
- National
Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.)Research Unit of Catania, 95125Catania, Italy
| |
Collapse
|
8
|
Tuccitto N, Catania G, Pappalardo A, Trusso Sfrazzetto G. Agile Detection of Chemical Warfare Agents by Machine Vision: a Supramolecular Approach. Chemistry 2021; 27:13715-13718. [PMID: 34414611 PMCID: PMC8518932 DOI: 10.1002/chem.202102094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Indexed: 12/18/2022]
Abstract
The supramolecular detection by image analysis of a simulant chemical warfare agent on a solid device containing a selective molecular sensor based on a BODIPY scaffold is reported. The recognition properties were investigated in solution, demonstrating high affinity (log K 6.60) and sensitivity (LOD 10 ppt). A test strip also confirmed the sensing properties in gas phase. Image analysis of the solid device allows quantitative information about the simulant to be obtained, recovering the sensor almost 5 times and thus confirming the goal of the supramolecular approach.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- Laboratory for Molecular Surfaces and Nanotechnology – CSGI95125CataniaItaly
| | - Gaetano Catania
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
| | - Andrea Pappalardo
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania95125CataniaItaly
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical SciencesUniversity of Catania95125CataniaItaly
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania95125CataniaItaly
| |
Collapse
|
9
|
Wang L, Schubert US, Hoeppener S. Surface chemical reactions on self-assembled silane based monolayers. Chem Soc Rev 2021; 50:6507-6540. [PMID: 34100051 DOI: 10.1039/d0cs01220c] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this review, we aim to update our review "Chemical modification of self-assembled silane-based monolayers by surface reactions" which was published in 2010 and has developed into an important guiding tool for researchers working on the modification of solid substrate surface properties by chemical modification of silane-based self-assembled monolayers. Due to the rapid development of this field of research in the last decade, the utilization of chemical functionalities in self-assembled monolayers has been significantly improved and some new processes were introduced in chemical surface reactions for tailoring the properties of solid substrates. Thus, it is time to update the developments in the surface functionalization of silane-based molecules. Hence, after a short introduction on self-assembled monolayers, this review focuses on a series of chemical reactions, i.e., nucleophilic substitution, click chemistry, supramolecular modification, photochemical reaction, and other reactions, which have been applied for the modification of hydroxyl-terminated substrates, like silicon and glass, which have been reported during the last 10 years.
Collapse
Affiliation(s)
- Limin Wang
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany
| | | | | |
Collapse
|
10
|
Butera E, Zammataro A, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Sensing of Chemical Warfare Agents. Chempluschem 2021; 86:681-695. [PMID: 33881227 DOI: 10.1002/cplu.202100071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Chemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e. g., luminescence, color, electrical resistance) can be cheaper and faster. Today, molecular sensing of chemical warfare agents is mainly based on the "covalent approach", in which the sensor reacts with the analyte, or on the "supramolecular approach", which involves the formation of non-covalent interactions between the sensor and the analyte. This Review is focused on the recent developments of supramolecular sensors of organophosphorus chemical warfare agents (from 2013). In particular, supramolecular sensors are classified by function of the sensing mechanism: i) Lewis Acids, ii) hydrogen bonds, iii) macrocyclic hosts, iv) multi-topic sensors, v) nanosensors. It is shown how the supramolecular non-covalent approach leads to a reversible sensing and higher selectivity towards the selected analyte respect to other interfering molecules.
Collapse
Affiliation(s)
- Ester Butera
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Agatino Zammataro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
11
|
Gangemi CMA, Rimkaite U, Pappalardo A, Trusso Sfrazzetto G. Light-up photoluminescence sensing of a nerve agent simulant by a bis-porphyrin–salen–UO 2 complex. RSC Adv 2021; 11:13047-13050. [PMID: 35423859 PMCID: PMC8697308 DOI: 10.1039/d1ra01397a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023] Open
Abstract
A luminescent bis-porphyrin–salen–UO2 complex, showing a significant fluorescence light-up response upon reacting with DMMP (a simulant of nerve agents), is reported. The fluorescence change of this complex by excitation at 365 nm can be clearly observed with the naked eye, and this complex was successfully employed to construct a test paper to detect nerve agents. The exposure of a nerve agent simulant to a fluorogenic sensor results in a significant increase in fluorescence response, allowing the construction of a paper test for the naked-eye detection of DMMP.![]()
Collapse
Affiliation(s)
| | - Ugne Rimkaite
- Faculty of Chemistry and Geosciences
- University of Vilnius
- Vilnius
- Lithuania
| | - Andrea Pappalardo
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
- INSTM Udr of Catania
| | | |
Collapse
|
12
|
Tuccitto N, Spitaleri L, Li Destri G, Pappalardo A, Gulino A, Trusso Sfrazzetto G. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles. Molecules 2020; 25:molecules25235731. [PMID: 33291853 PMCID: PMC7730470 DOI: 10.3390/molecules25235731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Real-time sensing of chemical warfare agents by optical sensors is today a crucial target to prevent terroristic attacks by chemical weapons. Here the synthesis, characterization and detection properties of a new sensor, based on covalently functionalized carbon nanoparticles, are reported. This nanosensor exploits noncovalent interactions, in particular hydrogen bonds, to detect DMMP, a simulant of nerve agents. The nanostructure of the sensor combined with the supramolecular sensing approach leads to high binding constant affinity, high selectivity and the possibility to reuse the sensor.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- Laboratory for Molecular Surfaces and Nanotechnology–CSGI, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (N.T.); (G.T.S.); Tel.: +39-0957385201 (G.T.S.)
| | - Luca Spitaleri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Li Destri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- Laboratory for Molecular Surfaces and Nanotechnology–CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonino Gulino
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (N.T.); (G.T.S.); Tel.: +39-0957385201 (G.T.S.)
| |
Collapse
|
13
|
Pappalardo A, Gangemi CM, Toscano RM, Sfrazzetto GT. A New Fluorescent Salen-uranyl Sensor for the Sub-ppm Detection of Chemical Warfare Agents. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200930150313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Real-time sensing of Chemical Warfare Agents (CWAs) is today a crucial topic to
prevent the lethal effects of a terroristic chemical attack. For this reason, the development of
efficient, selective, sensitive and reversible sensoristic devices, able to detect by optical response
ppm levels of these compounds, is strongly required. Here, the synthesis of a new fluorescent
sensor based on a salen-uranyl scaffold, functionalized with two bodipy moieties, and
its application for the detection of sub-ppm levels of CWAs is reported. Detection properties
were evaluated by fluorescence measurements and selectivity tests demonstrated the strong
affinity for CWAs.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Chiara M.A. Gangemi
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Rosa Maria Toscano
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| |
Collapse
|
14
|
Abstract
Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review.
Collapse
|
15
|
Legnani L, Puglisi R, Pappalardo A, Chiacchio MA, Trusso Sfrazzetto G. Supramolecular recognition of phosphocholine by an enzyme-like cavitand receptor. Chem Commun (Camb) 2019; 56:539-542. [PMID: 31829317 DOI: 10.1039/c9cc07577a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The first example of supramolecular recognition of phosphocholine by a cavitand receptor has been reported here. The chemical structure of the receptor has been optimized by DFT calculations. The recognition mechanism is based on a "multi-topic approach", which leads to highly efficient (K value up to 107 M-1), selective and sensitive (ppb level) sensing of phosphocholine. The recognition mechanism proposed here is similar to those exploited by Nature, and paves the way for the realization of new sensors with important applications in medicine and security fields.
Collapse
Affiliation(s)
- Laura Legnani
- Dipartimento di Scienze Del Farmaco, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy. and INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Maria Assunta Chiacchio
- Dipartimento di Scienze Del Farmaco, Università di Catania, Viale A. Doria 6, Catania, 95125, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy. and INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
16
|
Kim MJ, Song EJ, Kim KH, Choi SS, Lee YS. The textural and chemical changes in ACFs with E-beam and their influence on the detection of nerve agent simulant gases. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
de A. Cavalcante SF, Simas ABC, Kuča K. Nerve Agents’ Surrogates: Invaluable Tools for Development of Acetylcholinesterase Reactivators. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190806114017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of nerve agents as warfare and in terrorist acts has drawn much attention from the governments and societies. Such toxic organophosphorus compounds are listed in Chemical Weapons Convention as Schedule 1 chemicals. The discussion about the chemical identity of the elusive Novichok agents, more potent compounds than best known G- and V-Agents, which have been implicated in recent rumorous assassination plots, clearly demonstrating the importance of the matter. Furthermore, accidents with pesticides or misuse thereof have been a pressing issue in many countries. In this context, the continued development of novel cholinesterase reactivators, antidotes for organophosphorus poisoning, a rather restricted class of pharmaceutical substances, is warranted. Testing of novel candidates may require use of actual nerve agents. Nonetheless, only a few laboratories comply with the requirements for storing, possession and manipulation of such toxic chemicals. To overcome such limitations, nerve agents’ surrogates may be a useful alternative, as they undergo the same reaction with cholinesterases, yielding similar adducts, allowing assays with novel antidote candidates, among other applications.
Collapse
Affiliation(s)
- Samir F. de A. Cavalcante
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandro B. C. Simas
- Walter Mors Institute of Research on Natural Products (IPPN), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
18
|
Self-Assembled Nanoscaled Metalloporphyrin for Optical Detection of Dimethylmethylphosphonate. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7689183. [PMID: 31011578 PMCID: PMC6442447 DOI: 10.1155/2019/7689183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/04/2018] [Accepted: 01/13/2019] [Indexed: 01/30/2023]
Abstract
The self-assembly approach has been widely adopted in the effort to design and prepare functional materials. Herein, we report the synthesis and optical properties of metalloporphyrin nanoparticles. Nanoscaled particles of 5,10,15,20-tetraphenylporphyrin manganese (MnTPP) and 5,10,15,20-tetraphenylporphyrin indium (InTPP) were produced in the water/dimethylsulfoxide (DMSO) mixed solution by self-assembly approach. The absorbance intensity at the characteristic peak of the monomeric and nanoscaled metalloporphyrins decreased when they interact with dimethylmethylphosphonate (DMMP). Detection limits of MnTPP and InTPP nanoparticles to DMMP were 10−9 and 10−10 L/L, respectively, and detection limits of monomeric MnTPP and InTPP to DMMP were 10−6 and 10−7 L/L, respectively. Density functional theory (DFT) calculations on MnTPP and InTPP with DMMP as axial ligands had been performed in the B3LYP/6-31g (d) approximation. Their optimized geometries and binding energies were found to depend very strongly on the central metal ion, and InTPP was more sensitive for DMMP detection in contract to MnTPP. All the experimental and theoretical results demonstrated that nanoscaled metalloporphyrin have potential prospects in determination for public safety.
Collapse
|
19
|
Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn-Salen Oligomer Receptors. Molecules 2019; 24:molecules24112160. [PMID: 31181723 PMCID: PMC6600340 DOI: 10.3390/molecules24112160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 11/16/2022] Open
Abstract
We report on new Zn-Salen oligomer receptors able to recognize a nerve agent simulant, namely dimethyl methylphosphonate (DMMP), by a supramolecular approach. In particular, three Zn-Salen oligomers (Zn-Oligo-A, -B, and -C), differing by the length distribution, were obtained and characterized by NMR, Gel Permeation Chromatography (GPC), UV-Vis, and fluorescence spectroscopy. Furthermore, we investigated their recognition properties towards DMMP by using fluorescence measurements. We found that the recognition ability depends on the length of the oligomeric chain, and the Zn-Oligo-C shows a binding constant value higher than those already reported in literature for the DMMP detection.
Collapse
|
20
|
Zammataro A, Gangemi CMA, Pappalardo A, Toscano RM, Puglisi R, Nicotra G, Fragalà ME, Tuccitto N, Sfrazzetto GT. Covalently functionalized carbon nanoparticles with a chiral Mn-Salen: a new nanocatalyst for enantioselective epoxidation of alkenes. Chem Commun (Camb) 2019; 55:5255-5258. [DOI: 10.1039/c9cc01825e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first nanocatalyst, obtained via “step-by-step” functionalization of CNPs, for enantioselective epoxidation of non-functionalized alkenes is reported here.
Collapse
Affiliation(s)
| | | | - Andrea Pappalardo
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
- INSTM Udr of Catania
| | | | - Roberta Puglisi
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
| | | | | | - Nunzio Tuccitto
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
| | | |
Collapse
|
21
|
A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water. Catalysts 2018. [DOI: 10.3390/catal8040129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Puglisi R, Pappalardo A, Gulino A, Trusso Sfrazzetto G. Supramolecular recognition of a CWA simulant by metal–salen complexes: the first multi-topic approach. Chem Commun (Camb) 2018; 54:11156-11159. [DOI: 10.1039/c8cc06425c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new methodology to detect efficiently and selectively a CWA simulant using multi-topic receptors is reported here.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences
- University of Catania
- 95100 Catania
- Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences
- University of Catania
- 95100 Catania
- Italy
- University of Catania Research Unit (I.N.S.T.M.) UdR of Catania
| | - Antonino Gulino
- Department of Chemical Sciences
- University of Catania
- 95100 Catania
- Italy
- University of Catania Research Unit (I.N.S.T.M.) UdR of Catania
| | | |
Collapse
|