1
|
Lillo HL, Buss JA. A dinuclear nickel peroxycarbonate complex: CO 2 addition promotes H 2O 2 release. Chem Commun (Camb) 2024; 60:8549-8552. [PMID: 39041317 DOI: 10.1039/d4cc02241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Nickel coordination compounds featuring Ni-O bonds are key structural motifs in both bioinorganic and synthetic chemistries. They serve as precursors for organic substrate oxidation and are commonly invoked intermediates in water oxidation and oxygen reduction schemes. Herein, we disclose a series of well-defined dinuclear nickel complexes that, upon treatment with CO2 and H2O2, afford the first nickel-bound peroxycarbonate. This unprecedented nickel-oxygen intermediate is stabilized by hydrogen bonding templated across the bimetallic core. Contrasting copper and iron analogues, the nickel peroxycarbonate reversibly dissociates H2O2, a process that is shown to be accelerated by exogenous CO2.
Collapse
Affiliation(s)
- Hayley L Lillo
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| | - Joshua A Buss
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan 930 N. University Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Beagan DM, Rivera C, Szymczak NK. Appended Lewis Acids Enable Dioxygen Reactivity and Catalytic Oxidations with Ni(II). J Am Chem Soc 2024; 146:12375-12385. [PMID: 38661576 PMCID: PMC11148854 DOI: 10.1021/jacs.3c12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We disclose a suite of Ni(II) complexes featuring secondary sphere Lewis acids of varied Lewis acidity and tether lengths. Several of these complexes feature atypical behavior of Ni(II): reactivity with O2 that occurs only in the presence of a tethered Lewis acid. In situ UV-vis spectroscopy revealed that, although adducts are stable at -40 °C, complexes containing 9-borabicyclo[3.3.1]nonane (9-BBN) Lewis acids underwent irreversible oxidative deborylation when warmed to room temperature. We computationally and experimentally identified that oxidative instability of appended 9-BBN moieties can be mitigated using weaker Lewis acids such as pinacolborane (BPin). These insights enabled the realization of catalytic reactions: hydrogen atom abstraction from phenols and room temperature oxygen atom transfer to PPh3.
Collapse
Affiliation(s)
- Daniel M Beagan
- University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Carolina Rivera
- University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Nathaniel K Szymczak
- University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Awasthi A, Mallojjala SC, Kumar R, Eerlapally R, Hirschi JS, Draksharapu A. Altering the Localization of an Unpaired Spin in a Formal Ni(V) Species. Chemistry 2024; 30:e202302824. [PMID: 37903027 PMCID: PMC10841873 DOI: 10.1002/chem.202302824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
The participation of both ligand and the metal center in the redox events has been recognized as one of the ways to attain the formal high valent complexes for the late 3d metals, such as Ni and Cu. Such an approach has been employed successfully to stabilize a Ni(III) bisphenoxyl diradical species in which there exist an equilibrium between the ligand and the Ni localized resultant spin. The present work, however, broadens the scope of the previously reported three oxidized equivalent species by conveying the approaches that tend to affect the reported equilibrium in CH3 CN at 233 K. Various spectroscopic characterization revealed that employing exogenous N-donor ligands like 1-methyl imidazole and pyridine favors the formation of the Ni centered localized spin though axial binding. In contrast, due to its steric hinderance, quinoline favors an exclusive ligand localized radical species. DFT studies shed light on the novel intermediates' complex electronic structure. Further, the three oxidized equivalent species with the Ni centered spin was examined for its hydrogen atom abstraction ability stressing their key role in alike reactions.
Collapse
Affiliation(s)
- Ayushi Awasthi
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | | - Rakesh Kumar
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Raju Eerlapally
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York, 13902, USA
| | - Apparao Draksharapu
- Southern Laboratories-208 A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
4
|
Hu CH, Kim ST, Baik MH, Mirica LM. Nickel-Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species. J Am Chem Soc 2023; 145:11161-11172. [PMID: 37183827 DOI: 10.1021/jacs.3c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Described herein is the synthesis of the NiII complex (tBuMe2tacn)NiII(cycloneophyl) (tBuMe2tacn = 1-tert-butyl-4,7-dimethyl-1,4,7-triazacyclononane, cycloneophyl = -CH2CMe2-o-C6H4-) and its reactivity with dioxygen and peroxides. The new tBuMe2tacn ligand is designed to enhance the oxidatively induced bond-forming reactivity of high-valent Ni intermediates. Tunable chemoselectivity for Csp2-O vs Csp2-Csp3 bond formation was achieved by selecting the appropriate solvent and reaction conditions. Importantly, the use of cumene hydroperoxide and meta-chloroperbenzoic acid suggests a heterolytic O-O bond cleavage upon reaction with (tBuMe2tacn)NiII(cycloneophyl). Mechanistic studies using isotopically labeled H2O2 support the generation of a high-valent Ni-oxygen species via an inner-sphere mechanism and subsequent reductive elimination to form the Csp2-O bond. Kinetic studies of the exceptionally fast Csp2-O bond-forming reaction reveal a first-order dependence on both (tBuMe2tacn)NiII(cycloneophyl) and H2O2, and thus an overall second-order reaction. Eyring analysis further suggests that the oxidation of the NiII complex by H2O2 is the rate-determining step, which can be modulated by the presence of coordinating solvents. Moreover, computational studies fully support the conclusions drawn from experimental results. Overall, this study reveals for the first time the ability to control the oxidatively induced C-C vs C-O bond formation reactions at a Ni center. Importantly, the described system merges the known organometallic reactivity of Ni with the biomimetic oxidative transformations resembling oxygenases and peroxidases, and involving high-valent metal-oxygen intermediates, which is a novel approach that should lead to unprecedented oxidative catalytic transformations.
Collapse
Affiliation(s)
- Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Heim P, Spedalotto G, Lovisari M, Gericke R, O'Brien J, Farquhar ER, McDonald AR. Synthesis and Characterization of a Masked Terminal Nickel-Oxide Complex. Chemistry 2023; 29:e202203840. [PMID: 36696360 PMCID: PMC10101870 DOI: 10.1002/chem.202203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In exploring terminal nickel-oxo complexes, postulated to be the active oxidant in natural and non-natural oxidation reactions, we report the synthesis of the pseudo-trigonal bipyramidal NiII complexes (K)[NiII (LPh )(DMF)] (1[DMF]) and (NMe4 )2 [NiII (LPh )(OAc)] (1[OAc]) (LPh =2,2',2''-nitrilo-tris-(N-phenylacetamide); DMF=N,N-dimethylformamide; - OAc=acetate). Both complexes were characterized using NMR, FTIR, ESI-MS, and X-ray crystallography, showing the LPh ligand to bind in a tetradentate fashion, together with an ancillary donor. The reaction of 1[OAc] with peroxyphenyl acetic acid (PPAA) resulted in the formation of [(LPh )NiIII -O-H⋅⋅⋅OAc]2- , 2, that displays many of the characteristics of a terminal Ni=O species. 2 was characterized by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a NiII -phenolate complex 3 (through aromatic electrophilic substitution) that was characterized by NMR, FTIR, ESI-MS, and X-ray crystallography. 2 was capable of hydroxylation of hydrocarbons and epoxidation of olefins, as well as oxygen atom transfer oxidation of phosphines at exceptional rates. While the oxo-wall remains standing, this complex represents an excellent example of a masked metal-oxide that displays all of the properties expected of the ever elusive terminal M=O beyond the oxo-wall.
Collapse
Affiliation(s)
- Philipp Heim
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Giuseppe Spedalotto
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Marta Lovisari
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - John O'Brien
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory Case Western Reserve University, Upton, NY 11973, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
6
|
Panda C, Anny-Nzekwue O, Doyle LM, Gericke R, McDonald AR. Evidence for a High-Valent Iron-Fluoride That Mediates Oxidative C(sp 3)-H Fluorination. JACS AU 2023; 3:919-928. [PMID: 37006763 PMCID: PMC10052241 DOI: 10.1021/jacsau.3c00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
[FeII(NCCH3)(NTB)](OTf)2 (NTB = tris(2-benzimidazoylmethyl)amine, OTf = trifluoromethanesulfonate) was reacted with difluoro(phenyl)-λ3-iodane (PhIF2) in the presence of a variety of saturated hydrocarbons, resulting in the oxidative fluorination of the hydrocarbons in moderate-to-good yields. Kinetic and product analysis point towards a hydrogen atom transfer oxidation prior to fluorine radical rebound to form the fluorinated product. The combined evidence supports the formation of a formally FeIV(F)2 oxidant that performs hydrogen atom transfer followed by the formation of a dimeric μ-F-(FeIII)2 product that is a plausible fluorine atom transfer rebound reagent. This approach mimics the heme paradigm for hydrocarbon hydroxylation, opening up avenues for oxidative hydrocarbon halogenation.
Collapse
|
7
|
Heim P, Gericke R, Spedalotto G, Lovisari M, Farquhar ER, McDonald AR. Aromatic and aliphatic hydrocarbon hydroxylation via a formally Ni IVO oxidant. Dalton Trans 2023; 52:2663-2671. [PMID: 36745393 PMCID: PMC9972353 DOI: 10.1039/d2dt03949d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The reaction of (NMe4)2[NiII(LPh)(OAc)] (1[OAc], LPh = 2,2',2''-nitrilo-tris-(N-phenylacetamide); OAc = acetate) with 3-chloroperoxybenzoic acid (m-CPBA) resulted in the formation of a self-hydroxylated NiIII-phenolate complex, 2, where one of the phenyl groups of LPh underwent hydroxylation. 2 was characterised by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a previously characterised NiII-phenolate complex, 3. We postulate that self-hydroxylation was mediated by a formally NiIVO oxidant, formed from the reaction of 1[OAc] with m-CPBA, which undergoes electrophilic aromatic substitution to yield 2. This is supported by an analysis of the kinetic and thermodynamic properties of the reaction of 1[OAc] with m-CPBA. Addition of exogenous hydrocarbon substrates intercepted the self-hydroxylation process, producing hydroxylated products, providing further support for the formally NiIVO entity. This study demonstrates that the reaction between NiII salts and m-CPBA can lead to potent metal-based oxidants, in contrast to recent studies demonstrating carboxyl radical is a radical free-chain reaction initiator in NiII/m-CPBA hydrocarbon oxidation catalysis.
Collapse
Affiliation(s)
- Philipp Heim
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Robert Gericke
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Giuseppe Spedalotto
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Marta Lovisari
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory Case Western Reserve University, Upton, NY 11973, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
8
|
Khamespanah F, Patel NM, Forney AK, Heitger DR, Amarasekarage CM, Springer LE, Belecki K, Lucas HR. Flavonol dioxygenase chemistry mediated by a synthetic nickel superoxide. J Inorg Biochem 2023; 238:112021. [PMID: 36395718 DOI: 10.1016/j.jinorgbio.2022.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022]
Abstract
Nature exploits transition metal centers to enhance and tune the oxidizing power of natural oxidants such as O2 and H2O2. The design and interrogation of synthetic metallocomplexes with similar reactivity to metalloproteins provides one strategy for gaining insight into the mechanistic underpinnings of oxygen-activating enzymes such as oxidases, oxygenases, and dioxygenases like Ni-quercetinase (Ni-QueD). Ni-QueD catalyzes the oxidative ring opening of the polyphenol quercetin, a natural product with antioxidant properties. Herein, we report the synthesis and characterization of Ni(13-DOB), a Ni(II) species complexed by an N4-macrocycle that has been characterized by single crystal X-ray crystallography. Ni(13-DOB) forms a Ni-superoxide intermediate (Ni(13-DOB)O2•-) upon treatment with H2O2 and Et3N, as verified by resonance Raman spectroscopy. We demonstrate through UV/vis and LCMS that Ni(13-DOB)O2•- is capable of the 1-electron oxidation of flavonols, including both 3-hydroxyflavone (3-HF, the simplest flavonol) and quercetin itself. Incorporation of two O-atoms into the flavonol radical via superoxide from Ni(13-DOB)O2•- precedes oxidative cleavage of the flavonol scaffold in each case, consistent with quercetinase ring cleavage by Ni-QueD in Streptomyces sp. FLA. Conversion of 3-HF into 2-hydroxybenzoylbenzoic acid was accomplished with catalytic turnover of Ni(13-DOB) at ambient temperature, as confirmed by HPLC timecourses and GCMS analysis of isotopic labeling studies. The Ni(13-DOB)-mediated oxidative cleavage of quercetin to the corresponding biomimetic phenolic ester was also verified through 18O-isotopic labeling studies. Through the HPLC characterization of both on- and off-pathway products of flavonol dioxygenation by Ni(13-DOB)O2•-, the stringent reaction pathway control provided by enzyme active sites is highlighted.
Collapse
Affiliation(s)
- F Khamespanah
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - N M Patel
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - A K Forney
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - D R Heitger
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - C M Amarasekarage
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - L E Springer
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - K Belecki
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America.
| | - H R Lucas
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States of America.
| |
Collapse
|
9
|
Kwon YM, Lee Y, Schmautz AK, Jackson TA, Wang D. C-H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. J Am Chem Soc 2022; 144:12072-12080. [PMID: 35767834 DOI: 10.1021/jacs.2c02454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent focus on developing high-valent non-oxo-metal complexes for late transition metals has proven to be an effective strategy to study the rich chemistry of these high-valent species while bypassing the synthetic challenges of obtaining the oxo-metal counterparts. In our continuing work of exploring late transition metal complexes of unusually high oxidation states, we have obtained in the present study a formal mononuclear Ni(IV)-nitrate complex (2) upon 1-e- oxidation of its Ni(III) derivatives (1-OH and 1-NO3). Characterization of these Ni complexes by combined spectroscopic and computational approaches enables deep understanding of their geometric and electronic structures, bonding interactions, and spectroscopic properties, showing that all of them are square planar complexes and exhibit strong π-covalency with the amido N-donors of the N3 ligand. Furthermore, results obtained from X-ray absorption spectroscopy and density functional theory calculations provide strong support for the assignment of the Ni(IV) oxidation state of complex 2, albeit with strong ligand-to-metal charge donation. Notably, 2 is able to oxidize hydrocarbons with C-H bond strength in the range of 76-92 kcal/mol, representing a rare example of high-valent late transition metal complexes capable of activating strong sp3 C-H bonds.
Collapse
Affiliation(s)
- Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Anna K Schmautz
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
10
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)-Fluoride-Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021; 60:26281-26286. [PMID: 34582619 PMCID: PMC9298026 DOI: 10.1002/anie.202112683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 01/08/2023]
Abstract
We anticipate high-valent metal-fluoride species will be highly effective hydrogen atom transfer (HAT) oxidants because of the magnitude of the H-F bond (in the product) that drives HAT oxidation. We prepared a dimeric FeIII (F)-F-FeIII (F) complex (1) by reacting [FeII (NCCH3 )2 (TPA)](ClO4 )2 (TPA=tris(2-pyridylmethyl)amine) with difluoro(phenyl)-λ3 -iodane (difluoroiodobenzene). 1 was a sluggish oxidant, however, it was readily activated by reaction with Lewis or Brønsted acids to yield a monomeric [FeIII (TPA)(F)(X)]+ complex (2) where X=F/OTf. 1 and 2 were characterized using NMR, EPR, UV/Vis, and FT-IR spectroscopies and mass spectrometry. 2 was a remarkably reactive FeIII reagent for oxidative C-H activation, demonstrating reaction rates for hydrocarbon HAT comparable to the most reactive FeIII and FeIV oxidants.
Collapse
Affiliation(s)
- Chakadola Panda
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| | - Lorna M. Doyle
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| | - Robert Gericke
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e. V.Institute of Resource EcologyBautzner Landstrasse 40001328DresdenGermany
| | - Aidan R. McDonald
- School of ChemistryTrinity College DublinThe University of Dublin, College GreenDublin 2Ireland
| |
Collapse
|
11
|
Panda C, Doyle LM, Gericke R, McDonald AR. Rapid Iron(III)−Fluoride‐Mediated Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chakadola Panda
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| | - Lorna M. Doyle
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| | - Robert Gericke
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e. V. Institute of Resource Ecology Bautzner Landstrasse 400 01328 Dresden Germany
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin, College Green Dublin 2 Ireland
| |
Collapse
|
12
|
Itoh S, Shinke T, Itoh M, Wada T, Morimoto Y, Yanagisawa S, Sugimoto H, Kubo M. Revisiting Alkane Hydroxylation with m-CPBA (mChloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes. Chemistry 2021; 27:14730-14737. [PMID: 34402568 DOI: 10.1002/chem.202102532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Mechanistic studies are performed on the alkane hydroxylation with m -CPBA ( m -chloroperbenzoic acid) catalyzed by nickel(II) complexes, Ni II (L). In the oxidation of cycloalkanes, Ni II (TPA) acts as an efficient catalyst with a high yield and a high alcohol selectivity. In the oxidation of adamantane, the tertiary carbon is predominantly oxidized. The reaction rate shows first-order dependence on [substrate] and [Ni II (L)] but is independent on [ m CPBA]; v obs = k 2 [substrate][ Ni II (L)]. The reaction exhibited a relatively large kinetic deuterium isotope effect ( KIE ) of 6.7, demonstrating that the hydrogen atom abstraction is involved in the rate-limiting step of the catalytic cycle. Furthermore, Ni II (L) supported by related tetradentate ligands exhibit apparently different catalytic activity, suggesting contribution of the Ni II (L) in the catalytic cycle. Based on the kinetic analysis and the significant effects of O 2 and CCl 4 on the product distribution pattern, possible contributions of (L)Ni II -O• and the acyloxyl radical as the reactive oxidants are discussed.
Collapse
Affiliation(s)
- Shinobu Itoh
- Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| | - Tomoya Shinke
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Mayu Itoh
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Takuma Wada
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Yuma Morimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | | | - Hideki Sugimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Minoru Kubo
- Graduate School of Science, Life Science, JAPAN
| |
Collapse
|
13
|
Kim S, Jeong HY, Kim S, Kim H, Lee S, Cho J, Kim C, Lee D. Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex. Chemistry 2021; 27:4700-4708. [PMID: 33427344 DOI: 10.1002/chem.202005183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/11/2022]
Abstract
High-valent metal-oxo species are key intermediates for the oxygen atom transfer step in the catalytic cycles of many metalloenzymes. While the redox-active metal centers of such enzymes are typically supported by anionic amino acid side chains or porphyrin rings, peptide backbones might function as strong electron-donating ligands to stabilize high oxidation states. To test the feasibility of this idea in synthetic settings, we have prepared a nickel(II) complex of new amido multidentate ligand. The mononuclear nickel complex of this N5 ligand catalyzes epoxidation reactions of a wide range of olefins by using mCPBA as a terminal oxidant. Notably, a remarkably high catalytic efficiency and selectivity were observed for terminal olefin substrates. We found that protonation of the secondary coordination sphere serves as the entry point to the catalytic cycle, in which high-valent nickel species is subsequently formed to carry out oxo-transfer reactions. A conceptually parallel process might allow metalloenzymes to control the catalytic cycle in the primary coordination sphere by using proton switch in the secondary coordination sphere.
Collapse
Affiliation(s)
- Soohyung Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ha Young Jeong
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
| | - Seonghan Kim
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea
| | - Hongsik Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Sojeong Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
14
|
Liang Y, Shi SH, Jin R, Qiu X, Wei J, Tan H, Jiang X, Shi X, Song S, Jiao N. Electrochemically induced nickel catalysis for oxygenation reactions with water. Nat Catal 2021. [DOI: 10.1038/s41929-020-00559-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Zhao N, Filatov AS, Xie J, Hill EA, Rogachev AY, Anderson JS. Generation and Reactivity of a Ni III2(μ-1,2-peroxo) Complex. J Am Chem Soc 2020; 142:21634-21639. [PMID: 33320644 DOI: 10.1021/jacs.0c10958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-valent transition metal-oxo, -peroxo, and -superoxo complexes are crucial intermediates in both biological and synthetic oxidation of organic substrates, water oxidation, and oxygen reduction. While high-valent oxygenated complexes of Mn, Fe, Co, and Cu are increasingly well-known, high-valent oxygenated Ni complexes are comparatively rarer. Herein we report the isolation of such an unusual high-valent species in a thermally unstable NiIII2(μ-1,2-peroxo) complex, which has been characterized using single-crystal X-ray diffraction and X-ray absorption, NMR, and UV-vis spectroscopies. Reactivity studies show that this complex is stable toward dissociation of oxygen but reacts with simple nucleophiles and electrophiles.
Collapse
Affiliation(s)
- Norman Zhao
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ethan A Hill
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrey Yu Rogachev
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
16
|
Abstract
The Ni-catalyzed oxidation of unactivated alkanes, including the oxidation of polyethylenes, by meta-chloroperbenzoic acid (mCPBA) occur with high turnover numbers under mild conditions, but the mechanism of such transformations has been a subject of debate. Putative, high-valent nickel-oxo or nickel-oxyl intermediates have been proposed to cleave the C-H bond, but several studies on such complexes have not provided strong evidence to support such reactivity toward unactivated C(sp3)-H bonds. We report mechanistic investigations of Ni-catalyzed oxidations of unactivated C-H bonds by mCPBA. The lack of an effect of ligands, the formation of carbon-centered radicals with long lifetimes, and the decomposition of mCPBA in the presence of Ni complexes suggest that the reaction occurs through free alkyl radicals. Selectivity on model substrates and deuterium-labeling experiments imply that the m-chlorobenzoyloxy radical derived from mCPBA cleaves C-H bonds in the alkane to form an alkyl radical, which subsequently reacts with mCPBA to afford the alcohol product and regenerate the aroyloxy radical. This free-radical chain mechanism shows that Ni does not cleave the C(sp3)-H bonds as previously proposed; rather, it catalyzes the decomposition of mCPBA to form the aroyloxy radical.
Collapse
Affiliation(s)
- Yehao Qiu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
McNeece AJ, Jesse KA, Xie J, Filatov AS, Anderson JS. Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. J Am Chem Soc 2020; 142:10824-10832. [PMID: 32429663 DOI: 10.1021/jacs.0c03244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal ligand cooperativity is a powerful strategy in transition metal chemistry. This type of mechanism for the activation of O2 is best exemplified by heme centers in biological systems. While aerobic oxidations with Fe and Cu are well precedented, Ni-based oxidations are frequently less common due to less-accessible metal-based redox couples. Some Ni enzymes utilize special ligand environments for tuning the Ni(II)/(III) redox couple such as strongly donating thiolates in Ni superoxide dismutase. A recently characterized example of a Ni-containing protein, however, suggests an alternative strategy for mediating redox chemistry with Ni by utilizing ligand-based reducing equivalents to enable oxygen binding. While this mechanism has little synthetic precedent, we show here that Ni complexes of the redox-active ligand tBu,TolDHP (tBu,TolDHP = 2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) activate O2 to generate a Ni(II) superoxo complex via ligand-based electron transfer. This superoxo complex is competent for stoichiometric oxidation chemistry with alcohols and hydrocarbons. This work demonstrates that coupling ligand-based redox chemistry with functionally redox-inactive Ni centers enables oxidative transformations more commonly mediated by metals such as Fe and Cu.
Collapse
Affiliation(s)
- Andrew J McNeece
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Jiaze Xie
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
19
|
Mondal P, Lovisari M, Twamley B, McDonald AR. Fast Hydrocarbon Oxidation by a High‐Valent Nickel–Fluoride Complex. Angew Chem Int Ed Engl 2020; 59:13044-13050. [DOI: 10.1002/anie.202004639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prasenjit Mondal
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Marta Lovisari
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Brendan Twamley
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| | - Aidan R. McDonald
- School of Chemistry Trinity College Dublin The University of Dublin College Green Dublin 2 Ireland
| |
Collapse
|
20
|
Martínez‐Prieto LM, Cámpora J. Nickel and Palladium Complexes with Reactive σ‐Metal‐Oxygen Covalent Bonds. Isr J Chem 2020. [DOI: 10.1002/ijch.202000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luis M. Martínez‐Prieto
- Instituto de Tecnología Química. CSIC –Universidad Politécnica de Valencia Avda. Los Naranjos, S/N 46022 Valencia Spain
| | - Juan Cámpora
- Instituto de Investigaciones Químicas, CSIC –Universidad de Sevilla. C/ Américo Vespucio, 49. 41092 Seville Spain
| |
Collapse
|
21
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Abboud M, Sahlabji T, Eissa M, Bel-Hadj-Tahar R, Mubarak AT, Al-Zaqri N, Hamdy MS. Nickel( ii)dibenzotetramethyltetraaza[14]annulene complex immobilized on amino-functionalized TUD-1: an efficient catalyst for immediate and quantitative epoxidation of cyclohexene under ambient conditions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03822a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nickel(ii)dibenzotetramethyltetraaza[14]annulene complex immobilized on amino-functionalized TUD-1 as a new nanocatalyst for spontaneous and quantitative epoxidation of cyclohexene under ambient conditions.
Collapse
Affiliation(s)
- Mohamed Abboud
- Catalysis Research Group (CRG)
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| | - Taher Sahlabji
- Catalysis Research Group (CRG)
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| | - Murad Eissa
- Catalysis Research Group (CRG)
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| | - Radhouane Bel-Hadj-Tahar
- Catalysis Research Group (CRG)
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| | - Ahmed T. Mubarak
- Catalysis Research Group (CRG)
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| | - Nabil Al-Zaqri
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Mohamed S. Hamdy
- Catalysis Research Group (CRG)
- Department of Chemistry
- College of Science
- King Khalid University
- Abha 61413
| |
Collapse
|
23
|
Unjaroen D, Gericke R, Lovisari M, Nelis D, Mondal P, Pirovano P, Twamley B, Farquhar ER, McDonald AR. High-Valent d 7 Ni III versus d 8 Cu III Oxidants in PCET. Inorg Chem 2019; 58:16838-16848. [PMID: 31804808 DOI: 10.1021/acs.inorgchem.9b03101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygenases have been postulated to utilize d4 FeIV and d8 CuIII oxidants in proton-coupled electron transfer (PCET) hydrocarbon oxidation. In order to explore the influence the metal ion and d-electron count can hold over the PCET reactivity, two metastable high-valent metal-oxygen adducts, [NiIII(OAc)(L)] (1b) and [CuIII(OAc)(L)] (2b), L = N,N'-(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamidate, were prepared from their low-valent precursors [NiII(OAc)(L)]- (1a) and [CuII(OAc)(L)]- (2a). The complexes 1a/b-2a/b were characterized using nuclear magnetic resonance, Fourier transform infrared, electron paramagnetic resonance, X-ray diffraction, and absorption spectroscopies and mass spectrometry. Both complexes were capable of activating substrates through a concerted PCET mechanism (hydrogen atom transfer, HAT, or concerted proton and electron transfer, CPET). The reactivity of 1b and 2b toward a series of para-substituted 2,6-di-tert-butylphenols (p-X-2,6-DTBP; X = OCH3, C(CH3)3, CH3, H, Br, CN, NO2) was studied, showing similar rates of reaction for both complexes. In the oxidation of xanthene, the d8 CuIII oxidant displayed a small increase in the rate constant compared to that of the d7 NiIII oxidant. The d8 CuIII oxidant was capable of oxidizing a large family of hydrocarbon substrates with bond dissociation enthalpy (BDEC-H) values up to 90 kcal/mol. It was previously observed that exchanging the ancillary anionic donor ligand in such complexes resulted in a 20-fold enhancement in the rate constant, an observation that is further enforced by comparison of 1b and 2b to the literature precedents. In contrast, we observed only minor differences in the rate constants upon comparing 1b to 2b. It was thus concluded that in this case the metal ion has a minor impact, while the ancillary donor ligand yields more kinetic control over HAT/CPET oxidation.
Collapse
Affiliation(s)
- Duenpen Unjaroen
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Robert Gericke
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Marta Lovisari
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Daniel Nelis
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Prasenjit Mondal
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Paolo Pirovano
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| | - Erik R Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II , Brookhaven National Laboratory II , Upton , New York 11973 , United States
| | - Aidan R McDonald
- School of Chemistry, Trinity College Dublin , The University of Dublin , College Green , Dublin 2 , Ireland
| |
Collapse
|
24
|
McManus C, Mondal P, Lovisari M, Twamley B, McDonald AR. Carboxamidate Ligand Noninnocence in Proton Coupled Electron Transfer. Inorg Chem 2019; 58:4515-4523. [PMID: 30864788 DOI: 10.1021/acs.inorgchem.9b00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caitilín McManus
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Prasenjit Mondal
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Marta Lovisari
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Aidan R. McDonald
- School of Chemistry, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
25
|
Noh H, Cho J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Pandey B, Ray K, Rajaraman G. Structure, Bonding, Reactivity and Spectral Features of Putative NiIII
=O Species: A Theoretical Perspective. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bhawana Pandey
- Department of Chemistry; Indian Institute of Technology Bombay; 400 076 Powai India
| | - Kallol Ray
- Institut fár Chemie; Humboldt-Universität zu Berlin; Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; 400 076 Powai India
| |
Collapse
|
27
|
Duan PC, Manz DH, Dechert S, Demeshko S, Meyer F. Reductive O2 Binding at a Dihydride Complex Leading to Redox Interconvertible μ-1,2-Peroxo and μ-1,2-Superoxo Dinickel(II) Intermediates. J Am Chem Soc 2018; 140:4929-4939. [DOI: 10.1021/jacs.8b01468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Abstract
The isolation of terminal oxo complexes of the late transition metals promises new avenues in oxidation catalysis like the selective and catalytic hydroxylation of unreactive CH bonds, the activation of water, or the upgrading of olefins. While terminal oxo ligands are ubiquitous for early transition metals, well-characterized examples with group 10 metals remain hitherto elusive. In search for palladium terminal oxo complexes, the relative stability/reactivity of such compounds are evaluated computationally (CASSCF/NEVPT2; DFT). The calculations investigate only well-known ligand systems with established synthetic procedures and relevance for coordination chemistry and homogeneous catalysis. They delineate and quantify, which electronic properties of ancillary ligands are crucial for taming otherwise highly reactive terminal oxo intermediates. Notably, carbene ligands with both strong σ-donor and strong π-acceptor properties are best suited for the stabilization of palladium(ii) terminal oxo complexes, whereas ligands with a weaker ligand field lead to highly reactive complexes. Strongly donating ligands are an excellent choice for high-valent palladium(iv) terminal oxo compounds. Low coordinate palladium(ii) as well as high-valent palladium(iv) complexes are best suited for the activation of strong bonds.
Collapse
Affiliation(s)
- Dominik Munz
- Friedrich-Alexander Universität Erlangen-Nürnberg , Egerlandstr. 1 , 91058 Erlangen , Germany .
| |
Collapse
|
29
|
Mondal P, Pirovano P, Das A, Farquhar ER, McDonald AR. Hydrogen Atom Transfer by a High-Valent Nickel-Chloride Complex. J Am Chem Soc 2018; 140:1834-1841. [DOI: 10.1021/jacs.7b11953] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasenjit Mondal
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Paolo Pirovano
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Ankita Das
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R. Farquhar
- Case
Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory II, Upton, New York 11973, United States
| | - Aidan R. McDonald
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
30
|
Pirovano P, Berry AR, Swart M, McDonald AR. Indirect evidence for a NiIII–oxyl oxidant in the reaction of a NiII complex with peracid. Dalton Trans 2018; 47:246-250. [DOI: 10.1039/c7dt03316h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of a NiII complex with m-CPBA is shown to promote the formation of a transient NiIII–O˙ species. Methine C–H bond activation in the supporting ligand by this species led to a benzoxazine product.
Collapse
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute
- Trinity College Dublin
- The University of Dublin
- College Green
- Dublin 2
| | - Abigail R. Berry
- School of Chemistry and CRANN/AMBER Nanoscience Institute
- Trinity College Dublin
- The University of Dublin
- College Green
- Dublin 2
| | - Marcel Swart
- ICREA
- Pg. Lluís Companys 23
- 08010 Barcelona
- Spain
- Institut de Química Computacional i Catálisi
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute
- Trinity College Dublin
- The University of Dublin
- College Green
- Dublin 2
| |
Collapse
|
31
|
Martínez-Prieto LM, Palma P, Álvarez E, Cámpora J. Nickel Pincer Complexes with Frequent Aliphatic Alkoxo Ligands [( iPrPCP)Ni-OR] (R = Et, nBu, iPr, 2-hydroxyethyl). An Assessment of the Hydrolytic Stability of Nickel and Palladium Alkoxides. Inorg Chem 2017; 56:13086-13099. [PMID: 28985067 DOI: 10.1021/acs.inorgchem.7b01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of nickel pincer complexes with terminal alkoxo ligands [(iPrPCP)Ni-OR] (R = Et, nBu, iPr, CH2CH2OH; iPrPCP is the 2,6-bis(diisopropylphosphinomethyl)phenyl pincer ligand) was synthesized and fully characterized. Together with the previously reported methoxo analogues of Ni and Pd, these complexes constitute a unique series of isostructural late transition-metal alkoxides. Spectroscopic and X-ray diffraction data provide direct indications of the strong polarization of their covalent Ni-OR bonds. One of the most salient features of this class of compounds is their facile hydrolysis with traces of moisture, leading to equilibrium mixtures with the corresponding hydroxides [(iPrPCP)M-OH] (M = Ni or Pd) and alcohols, ROH. To compare the hydrolytic stability of nickel and palladium alkoxides, we performed NMR titrations of both hydroxides with several alcohols and determined the corresponding equilibrium constants. In general, these constants are ca. 1 order of magnitude smaller for M = Ni than Pd, indicating that Ni alkoxide complexes are more readily hydrolyzed than their Pd counterparts. For alkoxide complexes containing heteroatom-free R groups, the tendency to hydrolyze decreases as the parent alcohol ROH becomes more acidic, that is, R = Me > Et > iPr. This intuitive trend is broken for 2-methoxyethanol, the most acidic alcohol investigated. The hydroxo/2-methoxyethanol exchange equilibrium constants are comparable to those of ethanol (M = Ni) or methanol (M = Pd), showing that the corresponding 2-methoxyethoxide complexes are more prone to hydrolysis than anticipated. These experimental observations were rationalized in the light of density functional theory calculations.
Collapse
Affiliation(s)
- Luis M Martínez-Prieto
- Instituto de Investigaciones Químicas. CSIC-Universidad de Sevilla . c/Américo Vespucio, 49. 41092, Sevilla, Spain
| | - Pilar Palma
- Instituto de Investigaciones Químicas. CSIC-Universidad de Sevilla . c/Américo Vespucio, 49. 41092, Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas. CSIC-Universidad de Sevilla . c/Américo Vespucio, 49. 41092, Sevilla, Spain
| | - Juan Cámpora
- Instituto de Investigaciones Químicas. CSIC-Universidad de Sevilla . c/Américo Vespucio, 49. 41092, Sevilla, Spain
| |
Collapse
|
32
|
Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C. Synthesis, Characterization, and Efficient Catalytic Activities of a Nickel(II) Porphyrin: Remarkable Solvent and Substrate Effects on Participation of Multiple Active Oxidants. Chemistry 2017; 23:11969-11976. [PMID: 28731593 DOI: 10.1002/chem.201702750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/13/2022]
Abstract
A new nickel(II) porphyrin complex, [NiII (porp)] (1), has been synthesized and characterized by 1 H NMR, 13 C NMR and mass spectrometry analysis. This NiII porphyrin complex 1 quantitatively catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Reactivity and Hammett studies, H218 O-exchange experiments, and the use of PPAA (peroxyphenylacetic acid) as a mechanistic probe suggested that participation of multiple active oxidants NiII -OOC(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4 within olefin epoxidation reactions by the nickel porphyrin complex is markedly affected by solvent polarity, concentration, and type of substrate. In aprotic solvent systems, such as toluene, CH2 Cl2 , and CH3 CN, multiple oxidants, NiII -(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4, operate simultaneously as the key active intermediates responsible for epoxidation reactions of easy-to-oxidize substrate cyclohexene, whereas NiIV -Oxo 3 and NiIII -Oxo 4 species become the common reactive oxidant for the difficult-to-oxidize substrate 1-octene. In a protic solvent system, a mixture of CH3 CN and H2 O (95:5), the NiII -OOC(O)R 2 undergoes heterolytic or homolytic O-O bond cleavage to afford NiIV -Oxo 3 and NiIII -Oxo 4 species by general acid catalysis prior to direct interaction between 2 and olefin, regardless of the type of substrate. In this case, only NiIV -Oxo 3 and NiIII -Oxo 4 species were the common reactive oxidant responsible for olefin epoxidation reactions.
Collapse
Affiliation(s)
- Hye Mi Ahn
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Jeong Mi Bae
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Min Jeong Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Kwon Hee Bok
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Ha Young Jeong
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Suk Joong Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| |
Collapse
|
33
|
Sasi D, Ramkumar V, Murthy NN. Bite-Angle-Regulated Coordination Geometries: Tetrahedral and Trigonal Bipyramidal in Ni(II) with Biphenyl-Appended (2-Pyridyl)alkylamine N, N'-Bidentate Ligands. ACS OMEGA 2017; 2:2474-2481. [PMID: 31457593 PMCID: PMC6640959 DOI: 10.1021/acsomega.7b00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/17/2017] [Indexed: 06/10/2023]
Abstract
Two simple biphenyl-appended (2-pyridyl)alkylamine N-bidentate ligands, Le and Lm, having ethylene and methylene spacers between donor groups, with bite angles Le ≈ 100° and Lm ≈ 80°, dictate pseudotetrahedral and trigonal-bipyramidal geometries in six high-spin Ni(II)-halide complexes, [Ni(Le)X2] and [Ni(Lm)2X](ClO4) (where X = Cl-, Br-, I-), respectively. The structures in the solid state, determined using X-ray crystallography, and in solution, determined using spectroscopic methods (UV-vis-NIR and paramagnetic 1H NMR), which complement each other, are described.
Collapse
|
34
|
Padamati S, Angelone D, Draksharapu A, Primi G, Martin DJ, Tromp M, Swart M, Browne WR. Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex. J Am Chem Soc 2017; 139:8718-8724. [PMID: 28581745 PMCID: PMC5492195 DOI: 10.1021/jacs.7b04158] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Indexed: 12/15/2022]
Abstract
A reactive high-valent dinuclear nickel(IV) oxido bridged complex is reported that can be formed at room temperature by reaction of [(L)2Ni(II)2(μ-X)3]X (X = Cl or Br) with NaOCl in methanol or acetonitrile (where L = 1,4,7-trimethyl-1,4,7-triazacyclononane). The unusual Ni(IV) oxido species is stabilized within a dinuclear tris-μ-oxido-bridged structure as [(L)2Ni(IV)2(μ-O)3]2+. Its structure and its reactivity with organic substrates are demonstrated through a combination of UV-vis absorption, resonance Raman, 1H NMR, EPR, and X-ray absorption (near-edge) spectroscopy, ESI mass spectrometry, and DFT methods. The identification of a Ni(IV)-O species opens opportunities to control the reactivity of NaOCl for selective oxidations.
Collapse
Affiliation(s)
- Sandeep
K. Padamati
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Davide Angelone
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
- IQCC
& Departament de Química, Universitat
de Girona, Campus Montilivi
(Ciències), 17003 Girona, Spain
| | - Apparao Draksharapu
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Gloria Primi
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - David J. Martin
- Sustainable
Materials Characterisation, Van’t Hoff Institute for Molecular
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Moniek Tromp
- Sustainable
Materials Characterisation, Van’t Hoff Institute for Molecular
Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Marcel Swart
- IQCC
& Departament de Química, Universitat
de Girona, Campus Montilivi
(Ciències), 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Wesley R. Browne
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
35
|
Parrot A, Morimoto Y, Paria S, Sugimoto H, Fujieda N, Itoh S. Generation and characterisation of a stable nickel(ii)-aminoxyl radical complex. Dalton Trans 2017; 46:8013-8016. [PMID: 28617501 DOI: 10.1039/c7dt01789h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A stable nickel(ii)-aminoxyl radical complex was generated by the reaction of a nickel(ii) complex supported by a tren ligand (tris(2-aminoethyl)amine) having bulky m-terphenyl substituents (TIPT: 3,5-bis(2,6-diisopropylphenyl)phenyl) and m-CPBA (m-chloroperoxybenzoic acid). The formation mechanism of the nickel(ii)-aminoxyl radical complex was examined.
Collapse
Affiliation(s)
- Arnaud Parrot
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Holze P, Corona T, Frank N, Braun-Cula B, Herwig C, Company A, Limberg C. Activation of Dioxygen at a Lewis Acidic Nickel(II) Complex: Characterization of a Metastable Organoperoxide Complex. Angew Chem Int Ed Engl 2017; 56:2307-2311. [PMID: 28111896 DOI: 10.1002/anie.201609526] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/31/2016] [Indexed: 11/05/2022]
Abstract
In metal-mediated O2 activation, nickel(II) compounds hardly play a role, but recently it has been shown that enzymes can use nickel(II) for O2 activation. Now a low-coordinate Lewis acidic nickel(II) complex has been synthesized that reacts with O2 to give a nickel(II) organoperoxide, as proposed for the enzymatic system. Its formation was studied further by UV/Vis absorption spectroscopy, leading to the observation of a short-lived intermediate that proved to be reactive in both oxygen atom transfer and hydrogen abstraction reactions, while the peroxide efficiently transfers O atoms. Both for the enzyme and for the functional model, the key to O2 activation is proposed to represent a concomitant electron shift from the substrate/co-ligand.
Collapse
Affiliation(s)
- Patrick Holze
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Teresa Corona
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, 17003, Girona, Catalonia, Spain
| | - Nicolas Frank
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Beatrice Braun-Cula
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Anna Company
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, 17003, Girona, Catalonia, Spain
| | - Christian Limberg
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
37
|
Jeong AR, Shin JW, Jeong JH, Bok KH, Kim C, Jeong D, Cho J, Hayami S, Min KS. Dinuclear Iron(III) and Nickel(II) Complexes Containing N-(
2-Pyridylmethyl)-N
′-(2-hydroxyethyl)ethylenediamine: Catalytic Oxidation and Magnetic Properties. Chemistry 2017; 23:3023-3033. [DOI: 10.1002/chem.201604498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Ah Rim Jeong
- Department of Chemistry; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Jong Won Shin
- Department of Chemistry; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Jong Hwa Jeong
- Department of Chemistry; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Kwon Hee Bok
- Department of Fine Chemistry; Seoul National University of Science and Technology; Seoul 01811 Republic of Korea
| | - Cheal Kim
- Department of Fine Chemistry; Seoul National University of Science and Technology; Seoul 01811 Republic of Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science; DGIST; Daegu 42988 Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science; DGIST; Daegu 42988 Republic of Korea
| | - Shinya Hayami
- Department of Chemistry; Kumamoto University; Kumamoto 860-8555 Japan
| | - Kil Sik Min
- Department of Chemistry Education; Kyungpook National University; Daegu 41566 Republic of Korea
| |
Collapse
|
38
|
Holze P, Corona T, Frank N, Braun-Cula B, Herwig C, Company A, Limberg C. Activation of Dioxygen at a Lewis Acidic Nickel(II) Complex: Characterization of a Metastable Organoperoxide Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Holze
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Teresa Corona
- Grup de Química Bioinspirada; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional i Catàlisi (IQCC); Departament de Química; Universitat de Girona; 17003 Girona Catalonia Spain
| | - Nicolas Frank
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Beatrice Braun-Cula
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Anna Company
- Grup de Química Bioinspirada; Supramolecular i Catàlisi (QBIS-CAT); Institut de Química Computacional i Catàlisi (IQCC); Departament de Química; Universitat de Girona; 17003 Girona Catalonia Spain
| | - Christian Limberg
- Humboldt-Universität zu Berlin; Institut für Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
39
|
Corona T, Padamati SK, Acuña-Parés F, Duboc C, Browne WR, Company A. Trapping of superoxido cobalt and peroxido dicobalt species formed reversibly from CoII and O2. Chem Commun (Camb) 2017; 53:11782-11785. [DOI: 10.1039/c7cc05904c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Superoxido cobalt(iii) and peroxido dicobalt(iii) species are formed in the temperature dependent reversible reaction of a common cobalt(ii) precursor with O2.
Collapse
Affiliation(s)
- Teresa Corona
- Grup de Química Bioinspirada
- Supramolecular i Catàlisi (QBIS-CAT)
- Institut de Química Computacional i Catàlisi (IQCC)
- Departament de Química
- Universitat de Girona
| | - Sandeep K. Padamati
- Molecular Inorganic Chemistry
- Stratingh Institute for Chemistry
- Faculty of Science and Engineering
- University of Groningen
- Nijenborgh 4
| | - Ferran Acuña-Parés
- Institut Català d’Investigació Química (ICIQ)
- Av. Països Catalans 16
- E-43007 Tarragona
- Spain
| | - Carole Duboc
- Univ. Grenoble Alpes
- UMR CNRS 5250
- Département de Chimie Moléculaire
- F-38000 Grenoble
- France
| | - Wesley R. Browne
- Molecular Inorganic Chemistry
- Stratingh Institute for Chemistry
- Faculty of Science and Engineering
- University of Groningen
- Nijenborgh 4
| | - Anna Company
- Grup de Química Bioinspirada
- Supramolecular i Catàlisi (QBIS-CAT)
- Institut de Química Computacional i Catàlisi (IQCC)
- Departament de Química
- Universitat de Girona
| |
Collapse
|
40
|
Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. J Biol Inorg Chem 2016; 22:407-424. [PMID: 27853875 DOI: 10.1007/s00775-016-1402-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The active sites of metalloenzymes that catalyze O2-dependent reactions generally contain iron or copper ions. However, several enzymes are capable of activating O2 at manganese or nickel centers instead, and a handful of dioxygenases exhibit activity when substituted with cobalt. This minireview summarizes the catalytic properties of oxygenases and oxidases with mononuclear Mn, Co, or Ni active sites, including oxalate-degrading oxidases, catechol dioxygenases, and quercetin dioxygenase. In addition, recent developments in the O2 reactivity of synthetic Mn, Co, or Ni complexes are described, with an emphasis on the nature of reactive intermediates featuring superoxo-, peroxo-, or oxo-ligands. Collectively, the biochemical and synthetic studies discussed herein reveal the possibilities and limitations of O2 activation at these three "overlooked" metals.
Collapse
|