1
|
Gómez AM, David AHG, Campaña AG, Cuerva JM, Diaz-Casado L, Uriel C, Oliden-Sánchez A, Bañuelos J, García-Moreno I, Infantes L, Ticona-Chambi J, Cruz CM, López JC. Enhanced Circularly Polarized Luminescence of Urea-Bridged Dimers of Axially Chiral BODIPY-Carbohydrate Hybrids. J Org Chem 2024; 89:18522-18528. [PMID: 39654055 DOI: 10.1021/acs.joc.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Herein, we report the synthesis of novel dimeric urea-bridged BODIPY-carbohydrate conjugates, which display circularly polarized luminescence (CPL). The dimers are composed of diastereomerically pure, axially chiral (P or M) BODIPY monomers containing a pendant glucose (d- or l-) unit. The latter was intended to add chirality, biocompatibility, and enhanced water solubility and facilitate the chromatographic resolution of the intermediate atropisomers. The dimerization process was based on the ureation reaction of azidomethyl BODIPYs. The rigorous structural assignment was possible by X-ray diffraction analysis of one of the BODIPY atropisomers.
Collapse
Affiliation(s)
- Ana M Gómez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Arthur H G David
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Laura Diaz-Casado
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del Pais Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del Pais Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Química-Física de Materiales, Instituto de Química-Física "Blas Cabrera", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Lourdes Infantes
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Blas Cabrera", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Julian Ticona-Chambi
- Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física "Blas Cabrera", CSIC, Serrano 119, 28006 Madrid, Spain
| | - Carlos M Cruz
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - J Cristobal López
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
2
|
Ruggieri S, Mizzoni S, Cavalli E, Sissa C, Anselmi M, Gualandi A, Cozzi PG, Carneiro Neto AN, Melchior A, Zinna F, Willis OG, Di Bari L, Piccinelli F. Influence of Hydroxycoumarin Substituents on the Photophysical Properties of Chiroptical Tb(III) and Eu(III) Complexes. Inorg Chem 2024; 63:23188-23201. [PMID: 39589457 DOI: 10.1021/acs.inorgchem.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In this article, the synthesis, density functional theory (DFT) structural characterization, and spectroscopic investigation of chiral and heteroleptic Tb(III) and Eu(III) complexes are presented. These molecules are characterized by two different ligands: the enantiopure N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetic acid (H2bpcd) and a hydroxycoumarin-based ligand bearing different substituents in C(3) position (i.e., acetyl group in Coum, ethyl ester in CoumA, secondary and tertiary amides in CoumB and CoumC, respectively). The coumarin ligands exhibited different luminescence sensitization efficiency toward Tb(III) and Eu(III) ions in the related complexes of chemical formula [Ln(bpcd)(Coum)], [Ln(bpcd)(CoumA)], [Ln(bpcd)(CoumB)], [Ln(bpcd)(CoumC)]. Through theoretical calculations of intramolecular energy transfer (IET) processes (ligand-to-metal) in Eu(III) and Tb(III) complexes, along with quantum yield calculations, we provide a reasonable explanation for the observed differences in their luminescence properties. The nature of the coumarin ligand also affects the chiroptical properties of the Tb(III) complexes [i.e., circularly polarized luminescence (CPL) and electronic circular dichroism (ECD)].
Collapse
Affiliation(s)
- Silvia Ruggieri
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Silvia Mizzoni
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Enrico Cavalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/a, Parma 43124, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 17/a, Parma 43124, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, via Gobetti 85, Bologna 40129, Italy
| | - Andrea Gualandi
- Department of Chemistry "G. Ciamician", University of Bologna, via Gobetti 85, Bologna 40129, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - University of Bologna, via Gobetti 85, Bologna 40129, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry "G. Ciamician", University of Bologna, via Gobetti 85, Bologna 40129, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - University of Bologna, via Gobetti 85, Bologna 40129, Italy
| | - Albano N Carneiro Neto
- Physics Department and CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Andrea Melchior
- Polytechnic Department of Engineering, Laboratory of Chemical Technologies, University of Udine, via Cotonificio 108, Udine 33100, Italy
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa 56124, Italy
| | - Oliver G Willis
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, Pisa 56124, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
3
|
Gao Y, Liu Z, Tian S, Min Y, Li X, Chen Y, Hong X, Zhang W, Wang L. Catalytic Enantioselective Synthesis of Boron-Stereogenic and Axially Chiral BODIPYs via Rhodium(II)-Catalyzed C-H (Hetero) Arylation with Diazonaphthoquinones and Diazoindenines. Angew Chem Int Ed Engl 2024:e202418888. [PMID: 39467832 DOI: 10.1002/anie.202418888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
The molecular engineering of boron dipyrromethenes (BODIPYs) has garnered widespread attention due to their structural diversity enabling tailored physicochemical properties for optimal applications. However, catalytic enantioselective synthesis of structurally diverse boron-stereogenic BODIPYs through intermolecular desymmetrization and BODIPYs with atroposelectivity remains elusive. Here, we showcase rhodium(II)-catalyzed site-specific C-H (hetero)arylations of prochiral BODIPYs and polysubstituted BODIPYs with diazonaphthoquinonesand diazoindenines, providing efficient pathways for the rapid assembly of versatile (hetero)arylated boron-stereogenic and axially chiral BODIPYs through long-range desymmetrization and axial rotational restriction modes. The synthetic application of the procedures has been emphasized by the efficient synthesis of BODIPY derivatives with various functions. Photophysical properties, bioimaging, and lipid droplet-specific targeting capability of tailored BODIPYs are also demonstrated, indicating their promising applications in biomedical research, medicinal chemistry, and material science.
Collapse
Affiliation(s)
- Yankun Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Zizhen Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Sichao Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Ying Min
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Xiangyu Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Yuxi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Weidong Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
| | - Lei Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100193, China
- Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, Hainan, 570311, China
| |
Collapse
|
4
|
Bertuolo M, Zinna F, Aronica LA, Pescitelli G, Di Bari L, Albano G. Strong Non-Reciprocal Chiroptical Properties in Thin Films of Chiral Alkylthio-Decorated 1,4-Phenylene/Thiophene Dyes. Chem Asian J 2024:e202401160. [PMID: 39436970 DOI: 10.1002/asia.202401160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
In the context of chiral π-conjugated materials, the use of enantiopure alkylthio appendages represents a valid alternative to conventional alkoxy groups: sulphur atom is bigger and more electron-rich than oxygen, thus allowing for higher polarizability, greater flexibility, larger bulkiness and lower structural anisotropy. In light of these considerations, here we report two new chiral alkylthio-decorated 1,4-phenylene/thiophene dyes, obtained by simple synthetic strategies involving Pd-catalyzed cross-coupling protocols, looking for strong non-reciprocal chiroptical features in thin films. In particular, for the chiral alkylthio-decorated 1,4-phenylene-bis(thiophenylpropynone) (Thio-PTPO) dye, which proved to be the most promising for our purpose, a detailed investigation in thin films was carried out, involving optical and chiroptical spectroscopies in absorption and emission, as well as optical microscopy techniques.
Collapse
Affiliation(s)
- Marco Bertuolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
5
|
He J, Wang S, Song XF, Chang X, Zou C, Lu W, Li K. Tetradentate carbene-anilido boron complexes: highly fluorescent dyes with larger Stokes shifts than BODIPY analogues. Chem Commun (Camb) 2024; 60:11524-11527. [PMID: 39310925 DOI: 10.1039/d4cc03944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A new class of carbene-anilido boron complexes have been designed and synthesized. The complexes show intense fluorescence with large Stokes shift because of their charge-transfer excited states, different from typical BODIPY dyes. By using a chiral 1,1'-bi(2-naphthol) ligand, dyes exhibiting circularly polarized luminescence can also be facilely developed.
Collapse
Affiliation(s)
- Jiang He
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Songmeng Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan 523808, P. R. China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China.
| |
Collapse
|
6
|
Tubau À, Zinna F, Di Bari L, Font-Bardía M, Vicente R. Dinuclear enantiopure Ln 3+ complexes with ( S-) and ( R-) 2-phenylbutyrate ligands. Luminescence, CPL and magnetic properties. Dalton Trans 2024. [PMID: 39078094 DOI: 10.1039/d4dt01295j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The reaction of Ln(NO3)2·6H2O (Ln = Nd, Sm, Eu, Tb, Dy, Tm and Yb) with the respective enantiopure (R)-(-)-2-phenylbutyric or (S)-(+)-2-phenylbutyric acid (R/S-2-HPhBut) and 4,7-diphenyl-1,10-phenanthroline (Bphen) allows the isolation of chiral dinuclear compounds of the formula [Ln2(μ-R/S-2-PhBut)4(R/S-2PhBut)2(Bphen)2] where Ln = Nd3+ (R/S-Nd-a), Sm3+ (R/S-Sm-a), Eu3+ (R/S-Eu-a), Tb3+ (R/S-Tb-a and R/S-Tb-b), Dy3+ (R/S-Dy-a and R/S-Dy-b), Tm3+ (R/S-Tm-b) and Yb3+ (R/S-Yb-b). Single crystal X-ray diffraction was performed for compounds S-Eu-a and S-Tm-b. Powder crystal X-ray diffraction was performed for all complexes. From the crystallographic data two different structural motifs were found which are referred to as structure type a and structure type b. In structure type a, the Ln3+ atoms are bridged through four R or S-2-PhBut ligands with two different kinds of coordination modes whereas in structure type b the two Ln3+ atoms are bridged through four R or S-2-PhBut ligands showing only one kind of coordination mode. For those lanthanide ions exhibiting both structure types, Tb3+ and Dy3+, a difference in the luminescence and magnetism behavior is observed. All compounds (except R/S-Tm-b) exhibit sensitized luminescence, notably the Eu3+ and Tb3+ analogues. Circular Dichroism (CD) and Circular Polarized Luminescence (CPL) in the solid state and in 1 mM dichloromethane (DCM) solutions are reported, leading to improved chiroptical properties for the DCM solutions. The asymmetry factor (glum) in 1 mM DCM is ±0.02 (+ for R-Eu-a) for the magnetically allowed transition 5D0 → 7F1 and ±0.03 (+ for R-Tb-a and R-Tb-b) for the 5D4 → 7F5 transition. Magnetic properties of all compounds were studied and the Dy3+ compound with the structural motif b (R-Dy-b) shows Single Molecular Magnet (SMM) behavior under a 0 T magnetic field. However, R-Dy-a is a field-induced SMM.
Collapse
Affiliation(s)
- Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, I 56124 Pisa, Italy.
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, I 56124 Pisa, Italy.
| | - Mercè Font-Bardía
- Departament de Mineralogia, Cristal·lografia i Dipòsits Minerals and Unitat de Difracció de Raigs X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
7
|
Saleh N, Sucre-Rosales E, Zinna F, Besnard C, Vauthey E, Lacour J. Axially-chiral boramidine for detailed (chir)optical studies. Chem Sci 2024; 15:6530-6535. [PMID: 38699281 PMCID: PMC11062121 DOI: 10.1039/d4sc00870g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
The inclusion of boron atoms into chiral π-conjugated systems is an effective strategy to unlock unique chiroptical properties. Herein, the preparation and characterization of a configurationally stable axially-chiral boramidine are reported, showcasing absorption in the UV domain, deep-blue fluorescence (Φ up to 94%), and ca. |10-3| gabs and glum values. Detailed photophysical studies and quantum-chemical calculations clearly elucidate the deactivation pathways of the emissive state to triplet excited states, involving increased spin-orbit coupling between the lowest singlet excited state and an upper triplet state.
Collapse
Affiliation(s)
- Nidal Saleh
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Estefanía Sucre-Rosales
- Department of Physical Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva Quai Ernest Ansermet 24 1211 Geneva 4 Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Switzerland
| |
Collapse
|
8
|
Dai Y, Dellai A, Bassan E, Bellatreccia C, Gualandi A, Anselmi M, Cozzi PG, Ceroni P, Negri F. Solvent and alkyl substitution effects on charge-transfer mediated triplet state generation in BODIPY dyads: a combined computational and experimental study. Photochem Photobiol Sci 2024; 23:451-462. [PMID: 38324165 DOI: 10.1007/s43630-023-00530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Donor-acceptor dyads based on BODIPYs have been recently employed to enhance the formation of triplet excited states with the process of spin-orbit charge transfer intersystem crossing (SOCT-ISC) which does not require introduction of transition metals or other heavy atoms into the molecule. In this work we compare two donor-acceptor dyads based on meso-naphthalenyl BODIPY by combining experimental and computational investigations. The photophysical and electrochemical characterization reveals a significant effect of alkylation of the BODIPY core, disfavoring the SOCT-ISC mechanism for the ethylated BODIPY dyad. This is complemented with a computational investigation carried out to rationalize the influence of ethyl substituents and solvent effects on the electronic structure and efficiency of triplet state population via charge recombination (CR) from the photoinduced electron transfer (PeT) generated charge-transfer (CT) state. Time dependent-density functional theory (TD-DFT) calculations including solvent effects and spin-orbit coupling (SOC) calculations uncover the combined role played by solvent and alkyl substitution on the lateral positions of BODIPY.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Angela Dellai
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Elena Bassan
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Caterina Bellatreccia
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Michele Anselmi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy.
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
| | - Fabrizia Negri
- Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy.
- Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- INSTM, UdR Bologna, Via F. Selmi, 2, 40126, Bologna, Italy.
| |
Collapse
|
9
|
Tsuji M, Abuhadba S, Chen A, Ito M, Makhijani A, Kuwahara Y, Esipova T, Mani T. Red-Colored Circularly Polarized Luminescence from a Benzo-Fused BODIPY-BINOL Complex. J Phys Chem B 2023; 127:9781-9787. [PMID: 37915207 DOI: 10.1021/acs.jpcb.3c05496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Red emission with sharp bandwidth and high quantum yield is a desired characteristic for organic chromophores in optoelectronic, spintronic, and biomedical applications. Here, we observe circularly polarized luminescence (CPL) with these characteristics from a benzo-fused BODIPY-BINOL complex (1). Using time-resolved optical spectroscopy, electrochemistry, and density functional theory calculations, we showed that the emissive excited state of 1 does not have a charge-transfer (CT) character, unlike that of the regular BODIPY counterpart (2). The rigidity and the lack of CT character make this class of molecules an appealing platform for CPL-active molecules in the red spectral region, with ample room for improvement in the dissymmetry factor and brightness.
Collapse
Affiliation(s)
- Miu Tsuji
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sara Abuhadba
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Angela Chen
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mio Ito
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Amrita Makhijani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tatiana Esipova
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
10
|
Kitzmann WR, Freudenthal J, Reponen APM, VanOrman ZA, Feldmann S. Fundamentals, Advances, and Artifacts in Circularly Polarized Luminescence (CPL) Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302279. [PMID: 37658497 DOI: 10.1002/adma.202302279] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/06/2023] [Indexed: 09/03/2023]
Abstract
Objects are chiral when they cannot be superimposed with their mirror image. Materials can emit chiral light with an excess of right- or left-handed circular polarization. This circularly polarized luminescence (CPL) is key to promising future applications, such as highly efficient displays, holography, sensing, enantiospecific discrimination, synthesis of drugs, quantum computing, and cryptography. Here, a practical guide to CPL spectroscopy is provided. First, the fundamentals of the technique are laid out and a detailed account of recent experimental advances to achieve highly sensitive and accurate measurements is given, including all corrections required to obtain reliable results. Then the most common artifacts and pitfalls are discussed, especially for the study of thin films, for example, based on molecules, polymers, or halide perovskites, as opposed to dilute solutions of emitters. To facilitate the adoption by others, custom operating software is made publicly available, equipping the reader with the tools needed for successful and accurate CPL determination.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55122, Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - John Freudenthal
- Hinds Instruments Inc., 7245 NE Evergreen Parkway, Hillsboro, OR, 97124, USA
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - Zachary A VanOrman
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| |
Collapse
|
11
|
Bertocchi F, Sissa C, Painelli A. Circular dichroism of molecular aggregates: A tutorial. Chirality 2023; 35:681-691. [PMID: 36987936 DOI: 10.1002/chir.23565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
In this tutorial, we guide the reader through two alternative approaches to the calculation of circular dichroism (CD) spectra of chiral supramolecular assemblies of non-chiral chromophores. The two seemingly different approaches rely on the same basic approximations and are therefore expected to lead to similar results. For a dimer, we obtain explicit analytic expressions for the CD responses in the two approaches and demonstrate the perfect equivalence of the two methods. Numerical results for larger systems further validate this result. We hope that this tutorial will help young students and scientists entering the field to approach the fascinating topic of supramolecular chirality.
Collapse
Affiliation(s)
- Francesco Bertocchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| |
Collapse
|
12
|
Nowak K, Morawski O, Zinna F, Pescitelli G, Di Bari L, Górecki M, Grzybowski M. Strong Chiroptical Effects in the Absorption and Emission of Macrocycles Based on the 2,5-Diaminoterephthalate Minimal Fluorophore. Chemistry 2023; 29:e202300932. [PMID: 37194186 DOI: 10.1002/chem.202300932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Chiral fluorescent macrocycles consisting of two to four units of dimethyl 2,5-diaminoterephthalate can be readily synthesized in a one-pot manner from inexpensive building blocks. Depending on the concentration, either a paracyclophane-like dimer with closely stacked benzene rings or a triangular trimer is the main product of the reaction. The macrocycles exhibit fluorescence in solution as well as in the solid state with maxima that are red-shifted with decreasing size of the macrocyclic ring and are observed at wavelengths from 590 (tetramer in solution) to 700 nm (dimer in the solid state). Chirality dictates the differential absorption and emission of circularly polarized light by these molecules. The ECD and CPL effects are particularly strong for the trimer, which is characterized by relatively large dissymmetry factors gabs =±2.8×10-3 at 531 nm and glum =±2.3×10-3 at 580 nm in n-hexane, being at the same time highly luminescent (Φfl =13.7 %). Despite the small chromophore, the circularly polarized brightness BCPL of 2.3 dm3 mol-1 cm-1 is comparable to values reported for other classes of established CPL emitters in the visible region, such as expanded helicenes or larger π-conjugated systems.
Collapse
Affiliation(s)
- Krzysztof Nowak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Olaf Morawski
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warsaw, Poland
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124, Pisa, Italy
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
13
|
Ruggieri S, Mizzoni S, Nardon C, Cavalli E, Sissa C, Anselmi M, Cozzi PG, Gualandi A, Sanadar M, Melchior A, Zinna F, Willis OG, Di Bari L, Piccinelli F. Circularly Polarized Luminescence from New Heteroleptic Eu(III) and Tb(III) Complexes. Inorg Chem 2023. [PMID: 37262334 DOI: 10.1021/acs.inorgchem.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The complexes [Eu(bpcd)(tta)], [Eu(bpcd)(Coum)], and [Tb(bpcd)(Coum)] [tta = 2-thenoyltrifluoroacetyl-acetonate, Coum = 3-acetyl-4-hydroxy-coumarin, and bpcd = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane-N,N'-diacetate] have been synthesized and characterized from photophysical and thermodynamic points of view. The optical and chiroptical properties of these complexes, such as the total luminescence, decay curves of the Ln(III) luminescence, electronic circular dichroism, and circularly polarized luminescence, have been investigated. Interestingly, the number of coordinated solvent (methanol) molecules is sensitive to the nature of the metal ion. This number, estimated by spectroscopy, is >1 for Eu(III)-based complexes and <1 for Tb(III)-based complexes. A possible explanation for this behavior is provided via the study of the minimum energy structure obtained by density functional theory (DFT) calculations on the model complexes of the diamagnetic Y(III) and La(III) counterparts [Y(bpcd)(tta)], [Y(bpcd)(Coum)], and [La(bpcd)(Coum)]. By time-dependent DFT calculations, estimation of donor-acceptor (D-A) distances and of the energy position of the S1 and T1 ligand excited states involved in the antenna effect was possible. These data are useful for rationalizing the different sensitization efficiencies (ηsens) of the antennae toward Eu(III) and Tb(III). The tta ligand is an optimal antenna for sensitizing Eu(III) luminescence, while the Coum ligand sensitizes better Tb(III) luminescence {ϕovl = 55%; ηsens ≥ 55% for the [Tb(bpcd)(Coum)] complex}. Finally, for the [Eu(bpcd)(tta)] complex, a sizable value of glum (0.26) and a good quantum yield (26%) were measured.
Collapse
Affiliation(s)
- Silvia Ruggieri
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Mizzoni
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Chiara Nardon
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Enrico Cavalli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parco Area delle Scienze, 17/a, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parco Area delle Scienze, 17/a, 43124 Parma, Italy
| | - Michele Anselmi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Pier Giorgio Cozzi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Gualandi
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, via Cotonificio 108, 33100 Udine, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, Università di Udine, via Cotonificio 108, 33100 Udine, Italy
| | - Francesco Zinna
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Oliver G Willis
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, DB, University of Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
14
|
Xu Y, Ni Z, Xiao Y, Chen Z, Wang S, Gai L, Zheng YX, Shen Z, Lu H, Guo Z. Helical β-isoindigo-Based Chromophores with B-O-B Bridge: Facile Synthesis and Tunable Near-Infrared Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2023; 62:e202218023. [PMID: 36583391 DOI: 10.1002/anie.202218023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
It is essential to create organic compounds that exhibit circularly polarized luminescence (CPL) in the near-infrared (NIR) range. Helicene-type emitters possess appealing chiroptical features, however, such NIR molecules are scarce due to a paucity of synthetic strategies. Herein, we developed a series of helical β-isoindigo-based B-O-B bridged aza-BODIPY analogs that were synthesized conveniently. The reaction of diimino-β-isoindigo with a heteroaromatic amine produced a restricted ligand cavity, which triggered off the generation of a B-O-B bridge. The B-O-B bridge led to distorted conformations that satisfy the helical requirements, resulting in excellent spectroscopic and chiroptical properties. Tunable CPL with the highest luminescence dissymmetry factor (glum ) of 1.3×10-3 and a CPL brightness (BCPL =11.5 M-1 cm-1 ) in the NIR region was achieved. This synthetic approach is expected to offer a new opportunity to chiral chemistry and increase flexibility for chiroptical tuning.
Collapse
Affiliation(s)
- Yongqiang Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yao Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ziwei Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Sisi Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Tubau À, Zinna F, Di Bari L, Font-Bardía M, Vicente R. Luminescence, CPL and magnetic properties of 1D enantiopure Ln 3+ complexes with ( S-) and ( R-) α-methoxyphenylacetate ligand. Dalton Trans 2023; 52:1122-1132. [PMID: 36606358 DOI: 10.1039/d2dt03356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The reaction of Ln(NO3)2·6H2O (Ln = Eu, Tb, Dy and Sm) with (R)-(-)-α-methoxyphenylacetic acid (R-HMPA) and 1,10-phenanthroline (phen) in EtOH/H2O allows the isolation of 1D chiral compounds of formula [Ln(μ-R-MPA)(R-MPA)2(phen)]n in which Ln = Eu (R-Eu), Tb (R-Tb), Dy (R-Dy) and Sm (R-Sm). The same synthesis by using (S)-(+)-α-methoxyphenylacetic acid (S-HMPA) instead of (R)-(-)-α-methoxyphenylacetic acid allows the isolation of the enantiomeric compounds with formula [Ln(μ-S-MPA)(S-MPA)2(phen)]n where Ln = Eu (S-Eu), Tb (S-Tb), Dy (S-Dy) and Sm (S-Sm). Single crystal X-Ray diffraction measurements were performed for compounds R/S-Eu, R/S-Tb, S-Dy and S-Sm. The luminescence and the circular dichroism measured in the solid state are reported. All compounds show sensitized luminescence, notably the Eu3+ and Tb3+ ones, whose emission color can be perceived by the naked eye. For the Eu3+ and Tb3+ derivatives the quantum yield and the circular polarized luminescence have been measured. For the magnetic allowed transition 5D0 → 7F1 of the Eu3+ compound, the anisotropy factor glum is ±0.013 (+for S-Eu). Also, magnetic properties of all compounds were studied with the Dy3+ analogue showing slow relaxation of the magnetization under a direct current magnetic field of 1000 Oe.
Collapse
Affiliation(s)
- Ànnia Tubau
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, I 56124 Pisa, Italy.
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, I 56124 Pisa, Italy.
| | - Mercè Font-Bardía
- Departament de Mineralogia, Cristal lografia i Dipòsits Minerals and Unitat de Difracció de Raigs X. Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB). Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Pecorari D, Giuliani E, Mazzanti A, Stagni S, Fiorini V, Vigarani G, Zinna F, Pescitelli G, Mancinelli M. Synthesis and Stereodynamic and Emission Properties of Dissymmetric Bis-Aryl Carbazole Boranes and Identification of a CPL-Active B-C Atropisomeric Compound. J Org Chem 2023; 88:871-881. [PMID: 36599041 PMCID: PMC9872089 DOI: 10.1021/acs.joc.2c02209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We synthesized bis-aryl carbazole borane derivatives having emissive properties and axial chirality. The resolution of a thermally stable atropisomeric pair (compound 1b), due to a B-C chiral axis, was achieved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). Complete photophysical properties of all compounds were measured and simulated by time-dependent density functional theory (TD-DFT) calculations of the complete fluorescence cycle, and circularly polarized luminescence spectra were obtained for the atropisomers of compound 1b, whose absolute configuration was derived using a TD-DFT simulation of the electronic circular dichroism (ECD) spectra.
Collapse
Affiliation(s)
- Daniel Pecorari
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Emanuele Giuliani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Stagni
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Valentina Fiorini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giulia Vigarani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Zinna
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mancinelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
17
|
Ikeshita M, He H, Kitahara M, Imai Y, Tsuno T. External environment sensitive circularly polarized luminescence properties of a chiral boron difluoride complex. RSC Adv 2022; 12:34790-34796. [PMID: 36540273 PMCID: PMC9724127 DOI: 10.1039/d2ra07386b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 08/23/2024] Open
Abstract
A chiral Schiff-base boron difluoride complex bearing a diethylamino group was synthesized. Its photophysical properties were investigated and compared with those of its non-substituted analogue. The complex was found to exhibit solvatofluorochromism with bluish-white emission in moderately polar solvents and intense blue emission in nonpolar solvent. Circularly polarized luminescence (CPL) properties were also examined and it was found that the absolute value of the luminescence dissymmetry factor (g lum) increases significantly in the KBr-dispersed pellet state compared to the solution state. Notably, CPL intensity of the complex enhanced approximately three times upon addition of CH3SO3H in CH2Cl2. Density functional theory (DFT) calculations were conducted to further understand the photophysical properties.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Hongxi He
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University Narashino Chiba 275-8575 Japan
| |
Collapse
|
18
|
Yuan J, Jiang L, Nishimura T, Sauvé ER, Hean D, Maeda K, Wolf MO. Effect of Oxidation on the Chiroptical Properties of Sulfur-Bridged Binaphthyl Dimers. J Org Chem 2022; 87:12315-12322. [PMID: 36066048 DOI: 10.1021/acs.joc.2c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of axially chiral sulfur-bridged dimers were prepared from 1,1'-binaphthyl-2,2'-diol and subsequently oxidized to the respective sulfones. The chiroptical properties of the chiral chromophores were studied as a function of the oxidation state. Upon oxidation, an increase in quantum yields was observed for directly linked sulfur bridged binaphthyls (0.04 to 0.32), and a modest increase in dissymmetry factor was observed for diphenylsulfide-bridged binaphthyls (-8.9 × 10-4 to -1.4 × 10-3). Computational calculations were used to elucidate the changes in photophysical properties.
Collapse
Affiliation(s)
- Jennifer Yuan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lanting Jiang
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ethan R Sauvé
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
19
|
Cui L, Shinjo H, Ichiki T, Deyama K, Harada T, Ishibashi K, Ehara T, Miyata K, Onda K, Hisaeda Y, Ono T. Highly Fluorescent Bipyrrole-Based Tetra-BF 2 Flag-Hinge Chromophores: Achieving Multicolor and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202204358. [PMID: 35511507 DOI: 10.1002/anie.202204358] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 12/12/2022]
Abstract
This study reports the facile syntheses of tetra-boron difluoride (tetra-BF2 ) complexes, flag-hinge-like molecules that exhibit intense green-to-orange luminescence in solution and yellow-to-red emission in the solid states. Single-crystal structure analysis and density functional theory calculations suggested a bent structure of this series of compounds. The complexes also exhibited excellent optical properties, with quantum yields reaching 100 % and a large Stokes shift. These properties were attributed to the altered bending angle of the molecule in the S1 excited state. As the rotational motion was suppressed around the 2,2'-bipyrrole axis, atropisomers with axial chirality were formed, which are optically resolvable into (R) and (S)-enantiomers through a chiral column. The atropisomers thus function as circularly polarized luminescent (CPL) materials, in which the color (green, green-yellow, and yellow) can be varied by controlling the aggregation state. This rational design of multi-BF2 complexes can potentially realize novel photofunctional materials.
Collapse
Affiliation(s)
- Luxia Cui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hyuga Shinjo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takafumi Ichiki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Koichi Deyama
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takunori Harada
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita City, 870-1192, Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita City, 870-1192, Japan
| | - Takumi Ehara
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
20
|
Ikeshita M, Suzuki T, Matsudaira K, Kitahara M, Imai Y, Tsuno T. Multi-colour circularly polarized luminescence properties of chiral Schiff-base boron difluoride complexes. Phys Chem Chem Phys 2022; 24:15502-15510. [PMID: 35713179 DOI: 10.1039/d2cp01861f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of chiral Schiff-base boron difluoride complexes was synthesized and their photophysical properties were examined. These complexes showed multi-colour (blue, yellow and red) photoluminescence in solution and in the solid state with good emission quantum yield (Φ) depending on the π-systems of the ligands. The chiral complexes exhibited circularly polarized luminescence (CPL) with an absolute luminescence dissymmetry factor (glum) of up to the 1.3 × 10-3 in solution and 1.9 × 10-2 in the drop-cast film state. Density functional theory (DFT) and time-dependent (TD) DFT calculations were conducted to further understand the photophysical properties.
Collapse
Affiliation(s)
- Masahiro Ikeshita
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
| | - Takato Suzuki
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
| | - Kana Matsudaira
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Maho Kitahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Takashi Tsuno
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Narashino, Chiba, 275-8575, Japan.
| |
Collapse
|
21
|
Abstract
Recent synthetic achievements have led to 4,4-disubstituted-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) with varying substituents at the meso, pyrrolic and/or boron sites, with each influencing photophysical properties and utility. This Feature article gives an overview of chemistry at the boron atom in BODIPYs, highlighting our contributions that evolved from synthetic curiosities and now offer this dipyrrolic skeleton potential across a wider range of applications. We first summarise preparative routes to BODIPYs through complexation of boron with the dipyrrinato ligand. The role of boron in protecting dipyrrins is then discussed, followed by strategies by which to achieve facile substitution at the boron atom.
Collapse
Affiliation(s)
- Rosinah Liandrah Gapare
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
22
|
Cui L, Shinjo H, Ichiki T, Deyama K, Harada T, Ishibashi K, Ehara T, Miyata K, Onda K, Hisaeda Y, Ono T. Highly Fluorescent Bipyrrole‐Based Tetra‐BF
2
Flag‐Hinge Chromophores: Achieving Multicolor and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luxia Cui
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hyuga Shinjo
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takafumi Ichiki
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Koichi Deyama
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takunori Harada
- Faculty of Science and Technology Graduate School of Engineering Oita University 700 Dannoharu Oita City 870-1192 Japan
| | - Kohei Ishibashi
- Faculty of Science and Technology Graduate School of Engineering Oita University 700 Dannoharu Oita City 870-1192 Japan
| | - Takumi Ehara
- Department of Chemistry Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kiyoshi Miyata
- Department of Chemistry Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Onda
- Department of Chemistry Graduate School of Science Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
23
|
Wang LY, Liu ZF, Teng KX, Niu LY, Yang QZ. Circularly polarized luminescence from helical N,O-boron-chelated dipyrromethene (BODIPY) derivatives. Chem Commun (Camb) 2022; 58:3807-3810. [PMID: 35233587 DOI: 10.1039/d1cc06051a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report N,O-boron-chelated dipyrromethene derivatives exhibiting circularly polarized luminescence (CPL) in the red/near-infrared region, both in solution and the aggregated state. The CPL is originated from the helical chirality through intramolecular substitution of fluorine by an alkenolic substituent. The self-assembly of the fluorophores significantly enhances the |glum| values from 10-4 to 10-2.
Collapse
Affiliation(s)
- Ling-Yun Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Kun-Xu Teng
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Edsucation, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
24
|
Rapp MR, Leis W, Zinna F, Di Bari L, Arnold T, Speiser B, Seitz M, Bettinger HF. Bright Luminescence by Combining Chiral [2.2]Paracyclophane with a Boron-Nitrogen-Doped Polyaromatic Hydrocarbon Building Block. Chemistry 2022; 28:e202104161. [PMID: 34918840 PMCID: PMC9306876 DOI: 10.1002/chem.202104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/11/2022]
Abstract
Novel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira-Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π-π overlap between the pairs of NBN-building blocks. Excellent optical and chiroptical properties in racemic and enantiopure conditions were measured, with molar absorption coefficients up to ϵ=2.04×105 M-1 cm-1 , fluorescence quantum yields up to ΦPL =0.70, and intense, mirror-image electronic circular dichroism and circularly polarized luminescence signals of the magnitude of 10-3 for the absorption and luminescence dissymmetry factors. Computed glum,calcd. values match the experimental ones. Electroanalytical data show both oxidation and reduction of the ethynyl-linked tetra-NBN-substituted paracyclophane, with an overlap of two redox processes for oxidation leading to a diradical dication.
Collapse
Affiliation(s)
- Mario R. Rapp
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Wolfgang Leis
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Francesco Zinna
- Department of Chemistry and Industrial ChemistryUniversità di Pisa56124PisaItaly
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial ChemistryUniversità di Pisa56124PisaItaly
| | - Tamara Arnold
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Bernd Speiser
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Michael Seitz
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
25
|
Abhervé A, Mastropasqua Talamo M, Vanthuyne N, Zinna F, Di Bari L, Grasser M, Le Guennic B, Avarvari N. Chiral Emissive Lanthanide Complexes from Enantiopure [6]Helicene‐bis(pyrazolyl)‐pyridine Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Francesco Zinna
- University of Pisa: Universita degli Studi di Pisa Chemistry ITALY
| | - Lorenzo Di Bari
- Università di Pisa: Universita degli Studi di Pisa Chemistry ITALY
| | | | | | - Narcis Avarvari
- University of Angers UMR 6200 CNRS-Univ. d'Angers 2 Bd. LavoisierBat. K 49045 Angers FRANCE
| |
Collapse
|
26
|
Effect of the iodine atom position on the phosphorescence of BODIPY derivatives: a combined computational and experimental study. Photochem Photobiol Sci 2022; 21:777-786. [PMID: 35023042 DOI: 10.1007/s43630-021-00152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
A new BODIPY derivative (o-I-BDP) containing an iodine atom in the ortho position of the meso-linked phenyl group was prepared. Photophysical and electrochemical properties of the molecule were compared to previously reported iodo BODIPY derivatives, as well as to the non-iodinated analog. While in the case of derivatives featuring iodine substituents in the BODIPY core, efficient population of the triplet state is accompanied by a substantial positive shift of the reduction potential compared to pristine BODIPY, o-I-BDP displays phosphorescence and simultaneously maintains the electrochemical properties of unsubstituted BODIPYs. A theoretical investigation was settled to analyze results and rationalize the influence of iodine position on electronic and photophysical properties, with the purpose of preparing a fully organic phosphorescent BODIPY derivative. TD-DFT and spin-orbit coupling calculations shed light on the subtle effects played by the introduction of iodine atom in different positions of BODIPY.
Collapse
|
27
|
Freytag E, Holzapfel M, Swain A, Bringmann G, Stolte M, Würthner F, Lambert C. Axially chiral indolenine derived chromophore dimers and their chiroptical absorption and emission properties. Chem Sci 2022; 13:12229-12238. [PMID: 36349102 PMCID: PMC9601394 DOI: 10.1039/d2sc04600h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Yamamoto homocoupling of two chiral oxindoles led to the atropo-diastereoselective formation of an axially chiral oxindole dimer. This building block served as the starting material for the syntheses of axially chiral squaraine and merocyanine chromophore dimers. These dimers show pronounced chiroptical properties, this is, outstandingly high ECD signals (Δε up to ca. 1500 M−1 cm−1) as a couplet with positive Cotton effect for the P-configuration around the biaryl axis and a negative Cotton effect for the M-configuration. All investigated dimers also exhibit pronounced circularly polarised emission with anisotropy values of ca. 10−3 cgs. Time-dependent density functional calculations were used to analyse the three contributions (local one electron, electric–magnetic coupling, and exciton coupling) to the rotational strength applying the Rosenfeld equation to excitonically coupled chromophores. While the exciton coupling term proves to be the dominant one, the electric–magnetic coupling possesses the same sign and adds significantly to the total rotational strength owing to a favourable geometric arrangement of the two chromophores within the dimer. From an axially chiral oxindole, squaraine and merocyanine chromophore dimers with pronounced chiroptical properties were prepared.![]()
Collapse
Affiliation(s)
- Emely Freytag
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Asim Swain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Gerhard Bringmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| |
Collapse
|
28
|
Li K, Ji H, Yang Z, Duan W, Ma Y, Liu H, Wang H, Gong S. 3D Boranil Complexes with Aggregation-Amplified Circularly Polarized Luminescence. J Org Chem 2021; 86:16707-16715. [PMID: 34747181 DOI: 10.1021/acs.joc.1c01956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of small organic CPL-active molecules with large luminescent dissymmetry factors is highly demanded due to their promising applications in chiroptical devices and sensors. This work describes the design and synthesis of a new family of CPL-active BF2 complexes, (Rp)/(Sp)-3a-3e, which were constructed by fusing a N̂O-chelated BF2 complex with [2.2]paracyclophane. These complexes display aggregation-amplified CPL with moderate dissymmetry factors values and moderate quantum yields both in solution and in the solid state. In addition, these photophysical properties were rationalized via X-ray diffraction and TD-DFT calculations.
Collapse
Affiliation(s)
- Kang Li
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| | - Honghan Ji
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| | - Zeren Yang
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| | - Wenzeng Duan
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| | - Yudao Ma
- Department of Chemistry, Shandong University, Shanda South Road No. 27, Jinan 250100, People's Republic of China
| | - Houting Liu
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| | - Huaiwei Wang
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| | - Shuwen Gong
- Institute of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1 Hunan Road, Liaocheng 252000, People's Republic of China
| |
Collapse
|
29
|
Tang X, Jiang H, Si Y, Rampal N, Gong W, Cheng C, Kang X, Fairen-Jimenez D, Cui Y, Liu Y. Endohedral functionalization of chiral metal-organic cages for encapsulating achiral dyes to induce circularly polarized luminescence. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Antina LA, Kalyagin AA, Ksenofontov AA, Pavelyev RS, Lodochnikova OA, Islamov DR, Antina EV, Berezin MB. Effect of polar protic solvents on the photophysical properties of bis(BODIPY) dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Insight into the Influence of the Chiral Molecular Symmetry on the Chiroptics of Fluorescent BINOL-Based Boron Chelates. PROCEEDINGS OF ECSOC- ... INTERNATIONAL ELECTRONIC CONFERENCE ON SYNTHETIC ORGANIC CHEMISTRY 2021; 3. [PMID: 34396371 PMCID: PMC8356127 DOI: 10.3390/ecsoc-24-08308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The prominent influence of the molecular symmetry, as defined by the symmetry point group, on the chiroptical behavior (electronic circular dichroism and, especially, circularly polarized luminescence) of simple fluorescent boron chelates (BODIPY and related BOPHY analogues) is studied and discussed. It is shown that increasing the dye symmetry by means of the D3 chiral symmetry group is a workable design option to enhance the level of differential emission of right- and left-circularly polarized light in BODIPY dyes and related emitters, and that the influence of the level of symmetry is stronger than the influence of the higher number of chiral moieties perturbing the acting achiral chromophore.
Collapse
|
32
|
Arrico L, Benetti C, Di Bari L. Combining Lanthanides with PyBox Ligands: A Simple Route to Circularly Polarized Light Emitters**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Arrico
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Costanza Benetti
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial Chemistry University of Pisa Via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
33
|
ÇINAR ME. Dimeric aza-BODIPY and Dichloro-aza-BODIPY: A DFT Study. GAZI UNIVERSITY JOURNAL OF SCIENCE 2021. [DOI: 10.35378/gujs.846075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Chen CH, Zheng WH. Planar Chiral B-N Heteroarenes Based on [2.2]Paracyclophane as Circularly Polarized Luminescence Emitters. Org Lett 2021; 23:5554-5558. [PMID: 34196557 DOI: 10.1021/acs.orglett.1c01924] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Planar chiral boron-nitrogen heteroarenes based on [2.2]paracyclophane were successfully synthesized in a few steps as a new family of circularly polarized luminescence emitters. It represents the first case of boron-nitrogen heteroarenes with planar chirality. Those compounds have been demonstrated to exhibit strong circularly polarized luminescence signals and high quantum yields, in both solution and doped film (with glum up to 5.0 × 10-3 and Φsolution up to 73%).
Collapse
Affiliation(s)
- Chun-Hua Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
35
|
Lee S, Lee Y, Kim K, Heo S, Jeong DY, Kim S, Cho J, Kim C, You Y. Twist to Boost: Circumventing Quantum Yield and Dissymmetry Factor Trade-Off in Circularly Polarized Luminescence. Inorg Chem 2021; 60:7738-7752. [PMID: 33760606 DOI: 10.1021/acs.inorgchem.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circularly polarized luminescence (CPL) enables promising applications in asymmetric photonics. However, the performances of CPL molecules do not yet meet the requirements of these applications. The shortcoming originates from the trade-off in CPL between the photoluminescence quantum yield (PLQY) and the photoluminescence dissymmetry factor (gPL). In this study, we developed a molecular strategy to circumvent this trade-off. Our approach takes advantage of the strong propensity of [Pt(N^C^N)Cl], where the N^C^N ligand is 1-(2-oxazoline)-3-(2-pyridyl)phenylate, to form face-to-face stacks. We introduced chiral substituents, including (S)-methyl, (R)- and (S)-isopropyl, and (S)-indanyl groups, into the ligand framework. This asymmetric control induces torsional displacements that give homohelical stacks of the Pt(II) complexes. X-ray single-crystal structure analyses for the (S)-isopropyl Pt(II) complex reveal the formation of a homohelical dimer with a Pt···Pt distance of 3.48 Å, which is less than the sum of the van der Waals radii of Pt. This helical stack elicits the metal-metal-to-ligand charge-transfer (MMLCT) transition that exhibits strong chiroptical activity due to the electric transition moment making an acute angle to the magnetic transition moment. The PLQY and gPL values of the MMLCT phosphorescence emission of the (S)-isopropyl Pt(II) complex are 0.49 and 8.4 × 10-4, which are improved by factors of ca. 6 and 4, respectively, relative to the values of the unimolecular emission (PLQY, 0.078; gPL, 2.4 × 10-4). Our photophysical measurements for the systematically controlled Pt(II) complexes reveal that the CPL amplifications depend on the chiral substituent. Our investigations also indicate that excimers are not responsible for the enhanced chiroptical activity. To demonstrate the effectiveness of our approach, organic electroluminescence devices were fabricated. The MMLCT emission devices were found to exhibit simultaneous enhancements in the external quantum efficiency (EQE, 9.7%) and the electroluminescence dissymmetry factor (gEL, 1.2 × 10-4) over the unimolecular emission devices (EQE, 5.8%; gEL, 0.3 × 10-4). These results demonstrate the usefulness of using the chiroptically active MMLCT emission for achieving an amplified CPL.
Collapse
Affiliation(s)
- Sumin Lee
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yongmoon Lee
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Seunga Heo
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangsub Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.,Department of Chemistry, UNIST, Ulsan 44919, Republic of Korea
| | - Changsoon Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
36
|
The TDDFT Excitation Energies of the BODIPYs; The DFT and TDDFT Challenge Continues. Molecules 2021; 26:molecules26061780. [PMID: 33810021 PMCID: PMC8005089 DOI: 10.3390/molecules26061780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The derivatives of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) are pivotal ingredients for a large number of functional, stimuli-responsive materials and therapeutic molecules based on their photophysical properties, and there is a urgent need to understand and predict their optical traits prior to investing a large amount of resources in preparing them. Density functional theory (DFT) and time-dependent DFT (TDDFT) computations were performed to calculate the excitation energies of the lowest-energy singlet excited state of a large series of common BODIPY derivatives employing various functional aiming at the best possible combination providing the least deviations from the experimental values. Using the common "fudge" correction, a series of combinations was investigated, and a methodology is proposed offering equal or better performances than what is reported in the literature.
Collapse
|
37
|
Algoazy N, Knight JG, Waddell PG, Aerts R, Herrebout W, Al-Sharif HHT, Karlsson JKG, Harriman A. Synthesis, Structure and Photophysical Properties of a New Class of Inherently Chiral Boron(III) Chelates-The tert-Leucine Complexes. Chemistry 2021; 27:5246-5258. [PMID: 33370464 DOI: 10.1002/chem.202005246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Indexed: 11/07/2022]
Abstract
A new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift. Orange fluorescence is also observed for this compound as a cast film. Temperature-dependence studies show that decay of the fluorescent state is weakly activated but emission is less than quantitative at 77 K. Quite rare for boron(III)-based chelates, this derivative undergoes intersystem crossing to form a meta-stable triplet-excited state. X-ray crystal structures are reported for both compounds, along with simulated ECD spectra.
Collapse
Affiliation(s)
- Nawaf Algoazy
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Julian G Knight
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Paul G Waddell
- Crystallography Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hatun H T Al-Sharif
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Joshua K G Karlsson
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
38
|
Meazza M, Cruz CM, Ortuño AM, Cuerva JM, Crovetto L, Rios R. Studying the reactivity of alkyl substituted BODIPYs: first enantioselective addition of BODIPY to MBH carbonates. Chem Sci 2021; 12:4503-4508. [PMID: 34163715 PMCID: PMC8179495 DOI: 10.1039/d0sc06574a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
The first enantioselective addition of alkyl BODIPYs to Morita-Baylis-Hillman (MBH) carbonates is reported. This is the first reported enantioselective methodology using the methylene position of BODIPYs as a nucleophile. The reaction is efficiently catalyzed by cinchona alkaloids, achieving high enantioselectivities and total diastereoselectivity. The use of cinchona alkaloid pseudo enantiomers (chinine/cinchonine) allows us to obtain both pairs of enantiomers in similar yields and enantioselectivities, a common issue in this type of reaction. The photophysical study of these dyes (absorption and fluorescence) has been performed in order to determine their parameters and explore future possible application in bioimaging. In addition, electronic circular dichroism (ECD) studies supported by time-dependent density functional theory (TD-DFT) calculations were also performed.
Collapse
Affiliation(s)
- Marta Meazza
- Faculty of Engineering & Physical Sciences, University of Southampton Highfield Campus Southampton SO17 1BJ UK
| | - Carlos M Cruz
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada Campus Fuentenueva 18071 Granada Spain
| | - Ana M Ortuño
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada Campus Fuentenueva 18071 Granada Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada Campus Fuentenueva 18071 Granada Spain
| | - Luis Crovetto
- Departamento de Fisicoquímica, Facultad de Farmacia, Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), Universidad de Granada Campus Cartuja 18071 Granada Spain
| | - Ramon Rios
- Faculty of Engineering & Physical Sciences, University of Southampton Highfield Campus Southampton SO17 1BJ UK
| |
Collapse
|
39
|
Chen CH, Zheng WH. Planar chiral boron difluoride complexes showing circularly polarized luminescence. Org Chem Front 2021. [DOI: 10.1039/d1qo01202a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel family of boron difluoride complexes based on [2.2]paracyclophane have been designed and facilely synthesized.
Collapse
Affiliation(s)
- Chun-Hua Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
40
|
Jiménez J, Moreno F, Arbeloa T, Cabreros TA, Muller G, Bañuelos J, García-Moreno I, Maroto BL, de la Moya S. Isopinocampheyl-based C-BODIPYs: a model strategy to construct cost-effective boron-chelate emitters of circularly polarized light. Org Chem Front 2021. [DOI: 10.1039/d1qo00717c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Use of building blocks coming from Nature (Chiral Pool) as a new strategy towards cheap and efficient CPL emitters based on boron chelates.
Collapse
Affiliation(s)
- Josué Jiménez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Florencio Moreno
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Teresa Arbeloa
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain
| | - Trevor A. Cabreros
- Department of Chemistry, San José State University, San José, CA 95192-0101, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, CA 95192-0101, USA
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080, Bilbao, Spain
| | - Inmaculada García-Moreno
- Departamento de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada, Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain
| | - Beatriz L. Maroto
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Santiago de la Moya
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
41
|
Savchuk M, Vertueux S, Cauchy T, Loumaigne M, Zinna F, Di Bari L, Zigon N, Avarvari N. Schiff-base [4]helicene Zn(II) complexes as chiral emitters. Dalton Trans 2021; 50:10533-10539. [PMID: 34259673 DOI: 10.1039/d1dt01752g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The controlled preparation of chiral emissive transition metal complexes is fundamental in the field of circularly polarized luminescence (CPL) active molecular materials. For this purpose, enantiopure Zn(ii) complexes 1 and 2 based on a tetradentate salen ligand surrounded by [4]helicene moieties, together with their racemic counterpart 3, have been herein synthesized. Chirality is primarily brought about by chiral 1,2-cyclohexane-diamines. Alternatively, achiral complex 4 based on ortho-phenylene-diamine has been prepared as well. Single crystal X-ray diffraction analyses have been performed on helicenic intermediates 8 and 9 and complexes 1 and 4. Complexes 1 and 4 display the typical tetradentate O,N,N,O coordination around Zn(ii) characteristic of salen ligands, and bear two [4]helicene moieties. The zinc complexes are luminescent in the visible range around 560 nm at room temperature in aerated solutions with the QY reaching ca. 15% for a luminescence lifetime of 5.5 ns. The optical activities of these complexes have been assessed by CD and CPL, and compared to DFT calculations.
Collapse
Affiliation(s)
- Mariia Savchuk
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Steven Vertueux
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | | | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 13, 56124, Pisa, Italy
| | - Nicolas Zigon
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France.
| |
Collapse
|
42
|
Arrico L, Di Bari L, Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chemistry 2020; 27:2920-2934. [DOI: 10.1002/chem.202002791] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Lorenzo Arrico
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
43
|
Maeda C, Nomoto S, Takaishi K, Ema T. Aggregation-Induced Circularly Polarized Luminescence from Boron Complexes with a Carbazolyl Schiff Base. Chemistry 2020; 26:13016-13021. [PMID: 32297393 DOI: 10.1002/chem.202001463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/21/2022]
Abstract
A variety of carbazolyl-appended Schiff bases were readily synthesized from 1-formylcarbazoles and aniline derivatives. Boron complexation of the resulting ligands allowed for facile preparation of new carbazole-based BODIPY analogues showing solid-state fluorescence. Furthermore, some dyes were converted into chiral compounds through the Et2 AlCl-mediated incorporation of a binaphthyl unit. The chiral dyes showed aggregation-induced fluorescence and circularly polarized luminescence (CPL) with the ΦF and glum of up to 0.22 and -3.5×10-3 , respectively, in the solid state. The solid-state fluorescence and CPL were well characterized by the crystal packing analyses and DFT calculations.
Collapse
Affiliation(s)
- Chihiro Maeda
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Shuichi Nomoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama, 700-8530, Japan
| |
Collapse
|
44
|
Moneva Lorente P, Wallabregue A, Zinna F, Besnard C, Di Bari L, Lacour J. Synthesis and properties of chiral fluorescent helicene-BODIPY conjugates. Org Biomol Chem 2020; 18:7677-7684. [PMID: 32970060 DOI: 10.1039/d0ob01809k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of chiral fluorescent helicene-BODIPY conjugates was prepared by the regioselective formylation of aza[4]helicene precursors and then an efficient one-pot two-step BODIPY synthesis (13 examples, 28-82%). Fused conjugates exhibit absorption and fluorescence properties (ΦF 30-45%) in the red visible domain, and a CPL signature could be measured at 605 nm (glum ±5 × 10-4). Photophysical and electronic properties were investigated and rationalized through first principles.
Collapse
Affiliation(s)
- Pau Moneva Lorente
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Liu Y, Xu Q, Sun J, Wang L, He D, Wang M, Yang C. Insights for vibronic effects on spectral shapes of electronic circular dichroism and circularly polarized luminescence of aza[7]helicene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118475. [PMID: 32470807 DOI: 10.1016/j.saa.2020.118475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
We present a systematic study of vibrationally resolved absorption (ABS), electronic circular dichroism (ECD), emission (EMI), and circularly polarized luminescence (CPL) of aza[7]helicene. Because of the rare experience of theoretical CPL calculation, a variety of harmonic models have been employed to compute the vibronic structures. To fully understand the vibronic effects on the spectral shapes, Franck-Condon (FC) and Herzberg-Teller (HT) contributions, Duschinsky mixings and temperature effect have all been taken into consideration. The performance of different alternative approximate methods has been carefully compared and discussed in detail. The results show that Vertical Hessian (VH) model has a slight better performance on the spectral shapes than Adiabatic Hessian (AH), especially for CPL spectrum. The thermal excitation effect has led to a reduced resolution and a broader spectral width. The moderate HT effects on the different spectral shapes have been addressed. The dissymmetry factors have been correctly reproduced and the main vibronic features of the four different spectral shapes have been successfully captured. A good estimation of the overall spectral width, relative position and relative height of different spectral bands has been presented. The nice agreement with the experiment allows us to present a detailed interpretation of the spectral shapes.
Collapse
Affiliation(s)
- Yanli Liu
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China
| | - Qiushuang Xu
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China; School of Physics Engineering, Qufu Normal University, 2673100 Qufu, Shandong, PR China
| | - Jie Sun
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, Shandong, PR China
| | - Li Wang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China.
| | - Di He
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China
| | - Meishan Wang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China.
| | - Chuanlu Yang
- School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China
| |
Collapse
|
46
|
Selby J, Holzapfel M, Lombe BK, Schmidt D, Krause AM, Würthner F, Bringmann G, Lambert C. Chiroptical Properties of Indolenine Squaraines with a Stereogenic Center at Close Proximity. J Org Chem 2020; 85:12227-12242. [DOI: 10.1021/acs.joc.0c01422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Joshua Selby
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Blaise Kimbadi Lombe
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - David Schmidt
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg 9, 97074 Würzburg, Germany
| | - Ana-Maria Krause
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg 9, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg 9, 97074 Würzburg, Germany
| | - Gerhard Bringmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg 9, 97074 Würzburg, Germany
| |
Collapse
|
47
|
Nabeshima T, Chiba Y, Nakamura T, Matsuoka R. Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes. Synlett 2020. [DOI: 10.1055/s-0040-1707155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.1 Introduction2 Linear Oligomers of Boron–Dipyrrin Complexes3 Cyclic Oligomers of Boron–Dipyrrin Complexes4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes5 Group 13 Element Complexes of N2Ox Dipyrrins6 Chiral N2 and N2Ox Dipyrrin Complexes7 Group 14 Element Complexes of N2O2 Dipyrrins8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions9 Conclusion
Collapse
|
48
|
Yang Q, Fusè M, Bloino J. Theoretical Investigation of the Circularly Polarized Luminescence of a Chiral Boron Dipyrromethene (BODIPY) Dye. Front Chem 2020; 8:801. [PMID: 33102435 PMCID: PMC7522172 DOI: 10.3389/fchem.2020.00801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, molecules capable of emitting circularly polarized light have attracted growing attention for potential technological and biological applications. The efficiency of such devices depend on multiple parameters, in particular the magnitude and wavelength of the peak of emitted light, and also on the dissymmetry factor for chiral applications. In light of these considerations, molecular systems with tunable optical properties, preferably in the visible spectral region, are particularly appealing. This is the case of boron dipyrromethene (BODIPY) dyes, which exhibit large molecular absorption coefficients, have high fluorescence yields, are very stable, both thermally and photochemically, and can be easily functionalized. The latter property has been extensively exploited in the literature to produce chromophores with a wide range of optical properties. Nevertheless, only a few chiral BODIPYs have been synthetized and investigated so far. Using a recently reported axially chiral BODIPY derivative where an axially chiral BINOL unit has been attached to the chromophore unit, we present a comprehensive computational protocol to predict and interpret the one-photon absorption and emission spectra, together with their chiroptical counterparts. From the physico-chemical properties of this molecule, it will be possible to understand the origin of the circularly polarized luminescence better, thus helping to fine-tune the properties of interest. The sensitivity of such processes require accurate results, which can be achieved through a proper account of the vibrational structure in optical spectra. Methodologies to compute vibrationally-resolved electronic spectra can now be applied on relatively large chromophores, such as BODIPYs, but require more extensive computational protocols. For this reason, particular attention is paid in the description of the different steps of the protocol, and the potential pitfalls. Finally, we show how, by means of appropriate tools and approaches, data from intermediate steps of the simulation of the final spectra can be used to obtain further insights into the properties of the molecular system under investigation and the origin of the visible bands.
Collapse
Affiliation(s)
- Qin Yang
- Scuola Normale Superiore, Pisa, Italy
| | | | | |
Collapse
|
49
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 261] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
50
|
Affiliation(s)
- Miki Hasegawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hitomi Ohmagari
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|