1
|
Benchimol E, Rivoli A, Kabiri M, Zhang B, Holstein JJ, Ballester P, Clever GH. Guest Segregation in Heteromeric Multicage Systems. J Am Chem Soc 2025. [PMID: 39823563 DOI: 10.1021/jacs.4c16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e., the coformation of multiple low-symmetry assemblies, we herein describe the first instance of emerging functionality from a heteromeric multicage system. In particular, one heteroleptic cage coexists in equilibrium with one or two different homoleptic cages, each capable of preferentially encapsulating one out of three guests within their cavities. Guest segregation occurs under thermodynamic control and can be reached following several distinct paths. Each pathway involves different sequential transformations, eventually leading to the same outcome. We found that the most complex mixture of components (three ligands, three guests, plus palladium cations) always yields an ordered, pathway-independent final state of three coexisting host-guest species, thus representing a case of simplexity in self-sorted systems. This study forms a basis for expanding the scope of dynamic transformation processes implemented in multicage host-guest systems. Together with the incorporation of stimuli-responsive elements and other functionality, complex cage populations with bioinspired applications in controllable compound separation schemes, compartmentalized cascade reactions, and multistep (even bifurcated) molecular information processing will become accessible.
Collapse
Affiliation(s)
- Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Andrea Rivoli
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Michele Kabiri
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Bo Zhang
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Hajra A, Chattopadhyay A. Chemically Reversible Translational Moiré Superlattice Formations in the Two-Dimensional Films of the Zinc Phthalate Complex. J Phys Chem Lett 2024; 15:10046-10053. [PMID: 39324760 DOI: 10.1021/acs.jpclett.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The exciting electronic properties of two-dimensional layered materials introduced by twist angle and lattice mismatch between two consecutive layers are well-recognized. The major challenge lies in the control over the moiré periodicity. Herein, we report a chemically directed way to achieve the desired precision over moiré periodicity of the assembly of a complex of zinc ions and o-phthalic acid utilizing soft bonds. The reaction of o-phthalic acid with zinc ions in the aqueous medium at 80 °C for 1 h followed by preserving the reaction mixture at ambient temperature (35 °C) resulted in translational moiré superlattices with precise periods. Those lattices are further stacked angularly to give rotational super-moiré lattices. Further, the role of the π-zinc ion interaction in the origin of moiré fringes was examined with the reaction with 8-hydroxyquinoline-5-sulfonic acid (HQS) that also established the reversible nature of the superlattices. The present observations also suggest the formation of moiré superlattice through ion insertion in a chemical lattice.
Collapse
Affiliation(s)
- Archismita Hajra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Doellerer D, Rückert AK, Doria S, Hilbers M, Simeth NA, Buma WJ, Di Donato M, Feringa BL, Szymanski W, Crespi S. Modulation of the isomerization of iminothioindoxyl switches by supramolecular confinement. Chem Commun (Camb) 2024; 60:9388-9391. [PMID: 39132823 DOI: 10.1039/d4cc02423k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Here we present the formation of an iminothioindoxyl (ITI)⊂Cage complex that retains the photochemical properties of the photoswitch within a confined environment in water. At the same time, besides ultrafast switching inside the cage, the ITI photoswitch displays an intriguing bifurcation of the excited state isomerization pathway when encapsulated.
Collapse
Affiliation(s)
- Daniel Doellerer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ann-Kathrin Rückert
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
| | - Sandra Doria
- ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- Laboratorio Europeo di Spettroscopia Non Lineare (LENS), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Michiel Hilbers
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Wybren Jan Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Mariangela Di Donato
- ICCOM-CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- Laboratorio Europeo di Spettroscopia Non Lineare (LENS), via N. Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Stefano Crespi
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
| |
Collapse
|
4
|
Huang YH, Lu YL, Cao ZM, Zhang XD, Liu CH, Xu HS, Su CY. Multipocket Cage Enables the Binding of High-Order Bulky and Drug Guests Uncovered by MS Methodology. J Am Chem Soc 2024; 146:21677-21688. [PMID: 39042557 DOI: 10.1021/jacs.4c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Collapse
Affiliation(s)
- Yin-Hui Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu-Lin Lu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhong-Min Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Dong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen-Hui Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai-Sen Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Yong Su
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Kundu A, De GC, Ghosh S. Design and Synthesis of a Novel Binuclear Palladium Complex as a Turn on Fluorescent Receptor for Neurotransmitter Dopamine. J Fluoresc 2024:10.1007/s10895-024-03861-z. [PMID: 39060826 DOI: 10.1007/s10895-024-03861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
A novel binuclear palladium complex has been synthesized by the reaction of tetramethylethylenediamine palladium nitrate and sodium salt of pyromellitic acid. UV vis, NMR as well as fluorescent titration techniques show that this binuclear palladium complex interacts with neurotransmitter dopamine. The fluorescence of the palladium complex in aqueous solution gets enhanced with the gradual addition of the neurotransmitter dopamine which makes this complex to act as a turn on fluorescent sensor for neurotransmitter dopamine.
Collapse
Affiliation(s)
- Arunangshu Kundu
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, Westbengal, India
| | - Gobinda Chandra De
- Department of Chemistry, Coochbehar Panchanan Barma University, Coochbehar, West Bengal, India
| | - Sushobhan Ghosh
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, Westbengal, India.
| |
Collapse
|
6
|
Harada K, Ono Y, Sekiya R, Haino T. Selective encapsulation of carboxylic acid dimers within a size-regulable resorcinarene-based hemicarcerand. Chem Commun (Camb) 2024; 60:6603-6606. [PMID: 38836696 DOI: 10.1039/d4cc00699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A cavity within a resorcinarene-based hemicarcerand was contracted and expanded through conformational changes induced by the complexation and decomplexation, allowing self-sorting of homo- and heterodimeric carboxylic acid pairs.
Collapse
Affiliation(s)
- Kentaro Harada
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Yudai Ono
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
7
|
Dutton KG, Jones TJ, Emge TJ, Lipke MC. Cage Match: Comparing the Anion Binding Ability of Isostructural Versus Isofunctional Pairs of Metal-Organic Nanocages. Chemistry 2024; 30:e202303013. [PMID: 37907394 DOI: 10.1002/chem.202303013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Affinities of six anions (mesylate, acetate, trifluoroacetate, p-toluenecarboxylate, p-toluenesulfonate, and perfluorooctanoate) for three related Pt2+ -linked porphyrin nanocages were measured to probe the influence of different noncovalent recognition motifs (e. g., hydrogen bonding, electrostatics, π bonding) on anion binding. Two new hosts of M6 L3 12+ (1b) and M4 L2 8+ (2) composition (M=(en)Pt2+ , L=(3-py)4 porphyrin) were prepared in a one-pot synthesis and allowed comparison of hosts that differ in structure while maintaining similar N-H hydrogen-bond donor ability. Comparisons of isostructural hosts that differ in hydrogen-bonding ability were made between 1b and a related M6 L3 12+ nanoprism (1a, M=(tmeda)Pt2+ ) that lacks N-H groups. Considerable variation in association constants (K1 =1.6×103 M-1 to 1.3×108 M-1 ) and binding mode (exo vs. endo) were found for different host-guest combinations. Strongest binding was seen between p-toluenecarboxylate and 1b, but surprisingly, association of this guest with 1a was only slightly weaker despite the absence of NH⋅⋅⋅O interactions. The high affinity between p-toluenecarboxylate and 1a could be turned off by protonation, and this behavior was used to toggle between the binding of this guest and the environmental pollutant perfluorooctanoate, which otherwise has a lower affinity for the host.
Collapse
Affiliation(s)
- Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| | - Taro J Jones
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| | - Thomas J Emge
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, 123 Bevier Road Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Metal-Organic Framework-Derived Atomically Dispersed Co-N-C Electrocatalyst for Efficient Oxygen Reduction Reaction. Catalysts 2022. [DOI: 10.3390/catal12111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this work, an atomically dispersed cobalt-nitrogen-carbon (Co-N-C) catalyst is prepared for the oxygen reduction reaction (ORR) by using a metal-organic framework (MOF) as a self-sacrifice template under high-temperature pyrolysis. Spherical aberration-corrected electron microscopy is employed to confirm the atomic dispersion of high-density Co atoms on the nitrogen-doped carbon scaffold. The X-ray photoelectron spectroscopy results verify the existence of Co-N-C active sites and their content changes with the Co content. The electrochemical results show that the electrocatalytic activity shows a volcano-shaped relationship, which increases with the Co content from 0 to 0.99 wt.% and then decreases when the presence of Co nanoparticles at 1.61 wt.%. The atomically dispersed Co-N-C catalyst with Co content of 0.99 wt.% shows an onset potential of 0.96 V vs. reversible hydrogen electrode (RHE) and a half-wave potential of 0.89 V vs. RHE toward ORR. The excellent ORR activity is attributed to the high density of the Co-N-C sites with high intrinsic activity and high specific surface area to expose more active sites.
Collapse
|
9
|
Tabuchi R, Takezawa H, Fujita M. Selective Confinement of Rare‐Earth‐Metal Hydrates by a Capped Metallo‐Cage under Aqueous Conditions. Angew Chem Int Ed Engl 2022; 61:e202208866. [DOI: 10.1002/anie.202208866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ryosuke Tabuchi
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 227-0882 Japan
| | - Hiroki Takezawa
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 227-0882 Japan
| | - Makoto Fujita
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 227-0882 Japan
- Division of Advanced Molecular Science Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
10
|
Li S, Cai L, Hong M, Chen Q, Sun Q. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204732. [DOI: 10.1002/anie.202204732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Shao‐Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qihui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
| |
Collapse
|
11
|
Tabuchi R, Takezawa H, Fujita M. Selective Confinement of Rare‐Earth‐Metal Hydrates by a Capped Metallo‐Cage under Aqueous Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryosuke Tabuchi
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Applied Chemistry JAPAN
| | - Hiroki Takezawa
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Applied Chemistry Mitsui Link Lab Kashiwanoha 1, FS CREATION,6-6-2 Kashiwanoha, Kashiwa 227-0882 Chiba JAPAN
| | - Makoto Fujita
- The University of Tokyo Graduate School of Engineering 7-3-1 Hongo, Bunkyo-kuDepartment of Applied Chemistry 113-8656 Tokyo JAPAN
| |
Collapse
|
12
|
Li SC, Cai LX, Hong M, Chen Q, Sun QF. Combinatorial Self‐Assembly of Coordination Cages with Systematically Fine‐Tuned Cavities for Efficient Co‐Encapsulation and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shao-Chuan Li
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Maochun Hong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qihui Chen
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Strutral Chemistry CHINA
| | - Qing-Fu Sun
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
13
|
Encapsulation within a coordination cage modulates the reactivity of redox-active dyes. Commun Chem 2022; 5:44. [PMID: 36697669 PMCID: PMC9814915 DOI: 10.1038/s42004-022-00658-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023] Open
Abstract
Confining molecules within well-defined nanosized spaces can profoundly alter their physicochemical characteristics. For example, the controlled aggregation of chromophores into discrete oligomers has been shown to tune their optical properties whereas encapsulation of reactive species within molecular hosts can increase their stability. The resazurin/resorufin pair has been widely used for detecting redox processes in biological settings; yet, how tight confinement affects the properties of these two dyes remains to be explored. Here, we show that a flexible PdII6L4 coordination cage can efficiently encapsulate both resorufin and resazurin in the form of dimers, dramatically modulating their optical properties. Furthermore, binding within the cage significantly decreases the reduction rate of resazurin to resorufin, and the rate of the subsequent reduction of resorufin to dihydroresorufin. During our studies, we also found that upon dilution, the PdII6L4 cage disassembles to afford PdII2L2 species, which lacks the ability to form inclusion complexes - a process that can be reversed upon the addition of the strongly binding resorufin/resazurin guests. We expect that the herein disclosed ability of a water-soluble cage to reversibly modulate the optical and chemical properties of a molecular redox probe will expand the versatility of synthetic fluorescent probes in biologically relevant environments.
Collapse
|
14
|
Mansoor IF, Dutton KG, Rothschild DA, Remsing RC, Lipke MC. Uptake, Trapping, and Release of Organometallic Cations by Redox-Active Cationic Hosts. J Am Chem Soc 2021; 143:16993-17003. [PMID: 34596386 DOI: 10.1021/jacs.1c06121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The host-guest chemistry of metal-organic nanocages is typically driven by thermodynamically favorable interactions with their guests such that uptake and release of guests can be controlled by switching this affinity on or off. Herein, we achieve this effect by reducing porphyrin-walled cationic nanoprisms 1a12+ and 1b12+ to zwitterionic states that rapidly uptake organometallic cations Cp*2Co+ and Cp2Co+, respectively. Cp*2Co+ binds strongly (Ka = 1.3 × 103 M-1) in the neutral state 1a0 of host 1a12+, which has its three porphyrin walls doubly reduced and its six (bipy)Pt2+ linkers singly reduced (bipy = 2,2'-bipyridine). The less-reduced states of the host 1a3+ and 1a9+ also bind Cp*2Co+, though with lower affinities. The smaller Cp2Co+ cation binds strongly (Ka = 1.7 × 103 M-1) in the 3e- reduced state 1b9+ of the (tmeda)Pt2+-linked host 1b12+ (tmeda = N,N,N',N'-tetramethylethylenediamine). Upon reoxidation of the hosts with Ag+, the guests become trapped to provide unprecedented metastable cation-in-cation complexes Cp*2Co+@1a12+ and Cp2Co+@1b12+ that persist for >1 month. Thus, dramatic kinetic effects reveal a way to confine the guests in thermodynamically unfavorable environments. Experimental and DFT studies indicate that PF6- anions kinetically stabilize Cp*2Co+@1a12+ through electrostatic interactions and by influencing conformational changes of the host that open and close its apertures. However, when Cp*2Co+@1a12+ was prepared using ferrocenium (Fc+) instead of Ag+ to reoxidize the host, dissociation was accelerated >200× even though neither Fc+ nor Fc have any observable affinity for 1a12+. This finding shows that metastable host-guest complexes can respond to subtler stimuli than those required to induce guest release from thermodynamically favorable complexes.
Collapse
Affiliation(s)
- Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
15
|
Takezawa H, Fujita M. Molecular Confinement Effects by Self-Assembled Coordination Cages. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hiroki Takezawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
16
|
Yu MH, Liu XT, Space B, Chang Z, Bu XH. Metal-organic materials with triazine-based ligands: From structures to properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Lei Z, Finnegan TJ, Gunawardana VWL, Pavlović RZ, Xie H, Moore CE, Badjić JD. A Molecular Capsule with Revolving Doors Partitioning Its Inner Space. Chemistry 2020; 26:16480-16485. [PMID: 32648599 DOI: 10.1002/chem.202003247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 11/06/2022]
Abstract
Covalent capsule 1 was designed to include two molecular baskets linked with three mobile pyridines tucked into its inner space. On the basis of both theory (DFT) and experiments (NMR and X-ray crystallography), we found that the pyridine "doors" split the chamber (380 Å3 ) of 1 so that two equally sizeable compartments (190 Å3 ) became joined through a conformationally flexible aromatic barrier. The compartments of such unique host could be populated with CCl4 (88 Å3 ; PC=46 %), CBr4 (106 Å3 ; 56 %) or their combination CCl4 /CBr4 (PC=51 %), with thermodynamic stabilities ΔG° tracking the values of packing coefficients (PC). Halogen (C-X⋅⋅⋅π) and hydrogen bonding (C-H⋅⋅⋅X) contacts held the haloalkane guests in the cavities of 1. The consecutive complexations were found to occur in a negative allosteric manner, which we propose to result from the induced-fit mode of complexation. Newly designed 1 opens a way for probing the effects of inner conformational dynamics on noncovalent interactions, reactivity and intramolecular translation in confined spaces of hollow molecules.
Collapse
Affiliation(s)
- Zhiquan Lei
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43228, USA
| | - Tyler J Finnegan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43228, USA
| | | | - Radoslav Z Pavlović
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43228, USA
| | - Han Xie
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43228, USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43228, USA
| | - Jovica D Badjić
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43228, USA
| |
Collapse
|
18
|
Bravin C, Licini G, Hunter CA, Zonta C. Hetero‐Coencapsulation within a Supramolecular Cage: Moving away from the Statistical Distribution of Different Guests. Chemistry 2020; 26:9454-9458. [DOI: 10.1002/chem.202000574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Carlo Bravin
- Department of Chemical SciencesInstitution University of Padova via Marzolo 1 35131 Padova (PD) Italy
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Giulia Licini
- Department of Chemical SciencesInstitution University of Padova via Marzolo 1 35131 Padova (PD) Italy
| | | | - Cristiano Zonta
- Department of Chemical SciencesInstitution University of Padova via Marzolo 1 35131 Padova (PD) Italy
| |
Collapse
|
19
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
20
|
Interactions of Small-Molecule Guests with Interior and Exterior Surfaces of a Coordination Cage Host. CHEMISTRY 2020. [DOI: 10.3390/chemistry2020031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Coordination cages are well-known to act as molecular containers that can bind small-molecule guests in their cavity. Such cavity binding is associated with interactions of the guests with the surrounding set of surfaces that define the cavity; a guest that is a good fit for the cavity will have many favourable interactions with the interior surfaces of the host. As cages have exterior as well as interior surfaces, possibilities also exist for ‘guests’ that are not well-bound in the cavity to interact with the exterior surface of the cage where spatial constraints are fewer. In this paper, we report a combined solid-state and solution study using an octanuclear cubic M8L12 coordination cage which illustrates the occurrence of both types of interaction. Firstly, crystallographic studies show that a range of guests bind inside the cavity (either singly or in stacked pairs) and/or interact with the cage exterior surface, depending on their size. Secondly, fluorescence titrations in aqueous solution show how some flexible aromatic disulfides show two separate types of interaction with the cage, having different spectroscopic consequences; we ascribe this to separate interactions with the exterior surface and the interior surface of the host cage with the former having a higher binding constant. Overall, it is clear that the idea of host/guest interactions in molecular containers needs to take more account of external surface interactions as well as the obvious cavity-based binding.
Collapse
|
21
|
Yadav S, Kannan P, Qiu G. Cavity-based applications of metallo-supramolecular coordination cages (MSCCs). Org Chem Front 2020. [DOI: 10.1039/d0qo00681e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review describes cavity-based applications of cage-like SCCs such as molecular recognition and separation, stabilization of reactive species by encapsulation, as drug delivery systems and as molecular flasks.
Collapse
Affiliation(s)
- Sarita Yadav
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Palanisamy Kannan
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| | - Guanyinsheng Qiu
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing 314001
- P. R. China
| |
Collapse
|
22
|
Takaishi K, Nath BD, Yamada Y, Kosugi H, Ema T. Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO
2
Fixations. Angew Chem Int Ed Engl 2019; 58:9984-9988. [DOI: 10.1002/anie.201904224] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Bikash Dev Nath
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Yuya Yamada
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Hiroyasu Kosugi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
23
|
Takaishi K, Nath BD, Yamada Y, Kosugi H, Ema T. Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO
2
Fixations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Bikash Dev Nath
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Yuya Yamada
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Hiroyasu Kosugi
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied ChemistryGraduate School of Natural Science and TechnologyOkayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
24
|
|
25
|
Komine S, Takahashi S, Kojima T, Sato H, Hiraoka S. Self-Assembly Processes of Octahedron-Shaped Pd6L4 Cages. J Am Chem Soc 2019; 141:3178-3186. [DOI: 10.1021/jacs.8b12890] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Shohei Komine
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Takahashi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
26
|
Bender TA, Morimoto M, Bergman RG, Raymond KN, Toste FD. Supramolecular Host-Selective Activation of Iodoarenes by Encapsulated Organometallics. J Am Chem Soc 2019; 141:1701-1706. [PMID: 30667233 DOI: 10.1021/jacs.8b11842] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular hosts offer defined microenvironments that facilitate selective host-guest interactions, enabling reactivity that would otherwise be challenging in bulk solution. While impressive rate enhancements and selectivities have been reported, similar reactivity can often be accessed through modifications of reaction conditions even in the absence of the host. We report here an oxidative addition of aryl halides across the metal centers in Cu(I) and Pd(II) organometallics that is assisted by the presence of a supramolecular host, realized via electrostatic stabilization and increased local substrate concentrations. When reaction conditions were screened to assess background reactivity, alternative reactivity (typically decomposition) resulted, indicating that encapsulation led to host-selective reaction trajectories.
Collapse
Affiliation(s)
- Trandon A Bender
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Mariko Morimoto
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
27
|
Chang X, Zhou Z, Shang C, Wang G, Wang Z, Qi Y, Li ZY, Wang H, Cao L, Li X, Fang Y, Stang PJ. Coordination-Driven Self-Assembled Metallacycles Incorporating Pyrene: Fluorescence Mutability, Tunability, and Aromatic Amine Sensing. J Am Chem Soc 2019; 141:1757-1765. [PMID: 30608681 DOI: 10.1021/jacs.8b12749] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Constructing polycyclic aromatics-based, highly emissive fluorophores with good solubility and tunable aggregated structures and properties is of great importance for film fabrication, solution processing, and relevant functionality studies. Herein, we describe a general strategy to endow conventional organic fluorophores with enhanced solubility and modulated fluorescent properties via their incorporation into coordination-driven self-assembled metallacycles. A widely used fluorophore, pyrene, was decorated with two pyridyl groups to yield functionalized pyrene 4. Mixing 4 with three aromatic dicarboxylates with different lengths and a 90° Pt(II) metal acceptor in a 2:2:4 stoichiometric ratio resulted in the formation of three metallacycles, 1, 2, and 3. The metallacycles display good solubility in polar organic solvents, highly aggregation-dependent fluorescence, and size-dependent emissions at higher concentrations. Moreover, metallacycle 2-based, silica-gel-supported film as fabricated not only is more emissive than the ligand 4-based one but also displays much improved sensing properties for amines in the vapor state, as demonstrated by significantly increased response speed and decreased recovery time. The enhanced solubility, unique fluorescence behavior, and multi-factor modulation character show that coordination-driven self-assembly can be utilized for the development of new fluorophores through simple modification of conventional fluorophores. The fluorophores synthesized this way possess not only complex topological structures but also good modularity and tunability in fluorescence behavior, which are important for grafting multi-stage energy-transfer systems necessary for the development of high-performance sensing materials.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China.,Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Zhixuan Zhou
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yanyu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Zhong-Yu Li
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Heng Wang
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Liping Cao
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering and School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
28
|
Plessius R, Orth N, Ivanović-Burmazović I, Siegler MA, Reek JNH, van der Vlugt JI. Reversible multi-electron storage in dual-site redox-active supramolecular cages. Chem Commun (Camb) 2019; 55:12619-12622. [DOI: 10.1039/c9cc07138e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Redox-active M6L4 cages display multiple reversible redox-events, enabling switching from overall +12 to −4 charged species with reversible storage of 16 electrons.
Collapse
Affiliation(s)
- Raoul Plessius
- van’t Hoff Institute for Molecular Sciences
- University of Amsterdam
- Amsterdam
- The Netherlands
| | - Nicole Orth
- Department of Chemistry und Pharmacy
- Friedrich Alexander Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry und Pharmacy
- Friedrich Alexander Universität Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | | | - Joost N. H. Reek
- van’t Hoff Institute for Molecular Sciences
- University of Amsterdam
- Amsterdam
- The Netherlands
| | | |
Collapse
|
29
|
Kim TY, Vasdev RAS, Preston D, Crowley JD. Strategies for Reversible Guest Uptake and Release from Metallosupramolecular Architectures. Chemistry 2018; 24:14878-14890. [DOI: 10.1002/chem.201802081] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Tae Y. Kim
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; University of Wellington, PO Box 600; Wellington New Zealand
| | - Roan A. S. Vasdev
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; University of Wellington, PO Box 600; Wellington New Zealand
| | - Dan Preston
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - James D. Crowley
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; University of Wellington, PO Box 600; Wellington New Zealand
| |
Collapse
|
30
|
Gimeno N, Bijani C, Gouygou M, Volkman J. Coordination-driven self-assembly of chiral palladium(ii)-based supramolecular triangle structures. NEW J CHEM 2018. [DOI: 10.1039/c8nj02804d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral structures of palladium(ii)-based triangular supramolecular complexes, with achiral corners and edges, have been characterized in solution.
Collapse
|
31
|
Wu JY, Zhong MS, Chiang MH. Anion-Directed Metallocages: A Study on the Tendency of Anion Templation. Chemistry 2017; 23:15957-15965. [PMID: 28895232 DOI: 10.1002/chem.201702848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Indexed: 11/08/2022]
Abstract
Self-assembly of Cu(NO3 )2 ⋅3 H2 O and di(3-pyridylmethyl)amine (dpma) with addition of different acids (HNO3 , HOAc, HCl, HClO4 , HOTf, HPF6 , HBF4 , and H2 SO4 ) afforded a family of anion-templated tetragonal metallocages with a cationic prismatic structure of [(Gn- )⊂{Cu2 (Hdpma)4 }](8-n)+ (Gn- =NO3- , PF6- , SiF62- ) with different ligating anions/solvents (NO3- , Cl- , ClO4- , OTf- , H2 O) outside the cage. Systematic competitive experiments have rationalized the tendency of anion templation towards the formation of metallocages [(Gn- )⊂{Cu2 (Hdpma)4 }](8-n)+ as occurring in the order SiF62- ≈PF6- >NO3- >SO42- ≈ClO4- ≈BF4- . This sequence is mostly elucidated by shape control over size selectivity and electrostatic attraction between the cationic {Cu2 (Hdpma)4 }8+ host and the anionic guests. In addition, these results have also roughly ranked the anion coordination ability in the order Cl- , ClO4- , OTf- >NO3- >BF4- , CH3 SO4- . Magnetic studies of metallocages 1 t and 2-4 suggest that the fitted magnetic interaction, being weakly magnetically coupled overall, is interpreted as a result of the combination of intracage ferromagnetic coupling integrals and intercage antiferromagnetic exchange; both contributions are very weak and comparable in strength.
Collapse
Affiliation(s)
- Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Ming-Shiou Zhong
- Department of Applied Chemistry, National Chi Nan University, Nantou, 545, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
32
|
Kim TY, Digal L, Gardiner MG, Lucas NT, Crowley JD. Octahedral [Pd6
L8
]12+
Metallosupramolecular Cages: Synthesis, Structures and Guest-Encapsulation Studies. Chemistry 2017; 23:15089-15097. [DOI: 10.1002/chem.201702518] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Tae Y. Kim
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Lori Digal
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - Michael G. Gardiner
- School of Physical Sciences (Chemistry); University of Tasmania; Hobart Australia
| | - Nigel T. Lucas
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| | - James D. Crowley
- Department of Chemistry; University of Otago; PO Box 56 Dunedin New Zealand
| |
Collapse
|
33
|
Vasdev RAS, Preston D, Crowley JD. Multicavity Metallosupramolecular Architectures. Chem Asian J 2017; 12:2513-2523. [PMID: 28755432 DOI: 10.1002/asia.201700948] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 12/22/2022]
Abstract
Discrete metallosupramolecular systems are often macrocyclic or cage-like architectures with an accessible internal cavity. Guest molecules can reside within these cavities and much of the interest in these systems is derived from these fascinating host-guest interactions. A range of potential applications stem from the ability of these metallosupramolecular architectures to encapsulate guests. These applications include catalysis or acting as molecular reaction flasks, the molecular scavenging of pollutants, storage of reactive species, and drug delivery. Multicavity metallosupramolecular architectures combine the ability of large hollow assemblies to bind multiple guests concurrently with the binding specificity associated with small cages. A variety of different approaches to generating separate compartments within a single metallosupramolecular assembly have emerged. These include interpenetrated cages, cages with polytopic ligands that have a long backbone, and molecules that have two or more clefts. This review examines these approaches, and highlights key contributions to the field.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Dan Preston
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
34
|
Preston D, Lewis JEM, Crowley JD. Multicavity [PdnL4]2n+ Cages with Controlled Segregated Binding of Different Guests. J Am Chem Soc 2017; 139:2379-2386. [DOI: 10.1021/jacs.6b11982] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dan Preston
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - James E. M. Lewis
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - James D. Crowley
- Department
of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
35
|
Kharel S, Joshi H, Bierschenk S, Stollenz M, Taher D, Bhuvanesh N, Gladysz JA. Homeomorphic Isomerization as a Design Element in Container Molecules; Binding, Displacement, and Selective Transport of MCl2 Species (M = Pt, Pd, Ni). J Am Chem Soc 2017; 139:2172-2175. [DOI: 10.1021/jacs.6b12788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sugam Kharel
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Hemant Joshi
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Stephen Bierschenk
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Michael Stollenz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Deeb Taher
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
36
|
Brenner W, Ronson TK, Nitschke JR. Separation and Selective Formation of Fullerene Adducts within an MII8L6 Cage. J Am Chem Soc 2016; 139:75-78. [DOI: 10.1021/jacs.6b11523] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wolfgang Brenner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
37
|
Leenders SHAM, Becker R, Kumpulainen T, de Bruin B, Sawada T, Kato T, Fujita M, Reek JNH. Selective Co-Encapsulation Inside an M 6 L 4 Cage. Chemistry 2016; 22:15468-15474. [PMID: 27624751 PMCID: PMC5096245 DOI: 10.1002/chem.201603017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 01/08/2023]
Abstract
There is broad interest in molecular encapsulation as such systems can be utilized to stabilize guests, facilitate reactions inside a cavity, or give rise to energy-transfer processes in a confined space. Detailed understanding of encapsulation events is required to facilitate functional molecular encapsulation. In this contribution, it is demonstrated that Ir and Rh-Cp-type metal complexes can be encapsulated inside a self-assembled M6 L4 metallocage only in the presence of an aromatic compound as a second guest. The individual guests are not encapsulated, suggesting that only the pair of guests can fill the void of the cage. Hence, selective co-encapsulation is observed. This principle is demonstrated by co-encapsulation of a variety of combinations of metal complexes and aromatic guests, leading to several ternary complexes. These experiments demonstrate that the efficiency of formation of the ternary complexes depends on the individual components. Moreover, selective exchange of the components is possible, leading to formation of the most favorable complex. Besides the obvious size effect, a charge-transfer interaction may also contribute to this effect. Charge-transfer bands are clearly observed by UV/Vis spectrophotometry. A change in the oxidation potential of the encapsulated electron donor also leads to a shift in the charge-transfer energy bands. As expected, metal complexes with a higher oxidation potential give rise to a higher charge-transfer energy and a larger hypsochromic shift in the UV/Vis spectrum. These subtle energy differences may potentially be used to control the binding and reactivity of the complexes bound in a confined space.
Collapse
Affiliation(s)
- Stefan H A M Leenders
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - René Becker
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tatu Kumpulainen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taito Kato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|