1
|
Zhu S, Zhang R, Xia T, Yu R, Liu S, Lan Y, Shen R. Divergent Access to Polycyclic Fluorenofuran Systems via Palladium-Catalyzed Cascade Furan-Participated Diels-Alder Cycloaddition Reactions. Org Lett 2024; 26:10746-10751. [PMID: 39641804 DOI: 10.1021/acs.orglett.4c03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The Pd-catalyzed reaction of 1-(2-iodophenyl)-3-arylprop-2-yn-1-ones with benzene-tethered furan-ynes produces novel fused hexacyclic indenone-furan scaffolds, while the reaction with propargyl furfuryl ethers affords the pentacyclic indenone-spirodifuran system. The thiophene-containing alkynes also proceed by similar transformations. A mechanism involving the Pd-catalyzed coupling and propargylic Alder-ene reaction to generate the indenone-allene intermediate, followed by an intramolecular furan/thiophene-participated inverse electron-demand Diels-Alder reaction, is proposed.
Collapse
Affiliation(s)
- Shugao Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ting Xia
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Rongjing Yu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shihan Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
2
|
Unveiling the Chemistry and Synthetic Potential of Catalytic Cycloaddition Reaction of Allenes: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020704. [PMID: 36677762 PMCID: PMC9860688 DOI: 10.3390/molecules28020704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Allenes with two carbon-carbon double bonds belong to a unique class of unsaturated hydrocarbons. The central carbon atom of allene is sp hybridized and forms two σ-bonds and two π-bonds with two terminal sp2 hybridized carbon atoms. The chemistry of allenes has been well documented over the last decades. They are more reactive than alkenes due to higher strain and exhibit significant axial chirality, thus playing a vital role in asymmetric synthesis. Over a variety of organic transformations, allenes specifically undergo classical metal catalyzed cycloaddition reactions to obtain chemo-, regio- and stereoselective cycloadducts. This review briefly describes different types of annulations including [2+2], [2+2+1], [3+2], [2+2+2], [4+2], [5+2], [6+2] cycloadditions using titanium, cobalt, rhodium, nickel, palladium, platinum, gold and phosphine catalyzed reactions along with a mechanistic study of some highlighted protocols. The synthetic applications of these reactions towards the synthesis of natural products such as aristeromycin, ent-[3]-ladderanol, waihoensene(-)-vindoline and (+)-4-epi-vindoline have also been described.
Collapse
|
3
|
Chen Y, Xu W, Xie X, Pei M, Lu M, Wang Y, Liu Y. Gold-Catalyzed Spirocyclization of Furan-ynones and Unexpected Skeleton Rearrangement of the Resulting Spirohydrofurans. Org Lett 2021; 23:1090-1095. [PMID: 33428411 DOI: 10.1021/acs.orglett.0c04312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A gold-catalyzed cyclization of aniline-tethered furan-ynones has been developed. The reaction proceeds via trapping of the resulting stabilized cationic intermediate with an amide group leading to polycycles featured with a spiro-cyclohexadienone-hydrofuran framework with high efficiency. The resulting N-alkyl products undergo photorearrangements to afford the ring-enlarged benzo[b]azepine derivatives or iron-promoted novel rearrangement to diketone-containing spirocycles involving multiple C-X bond cleavages and formations.
Collapse
Affiliation(s)
- Yulong Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| | - Miaomiao Pei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| | - Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| | - Yaotong Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu , Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Makarov AS, Fadeev AA, Uchuskin MG. Intramolecular iron-catalyzed transannulation of furans with O-acetyl oximes: synthesis of functionalized pyrroles. Org Chem Front 2021. [DOI: 10.1039/d1qo01281a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intramolecular iron(iii)-catalyzed reaction of furyl-tethered O-acetyl oximes yields substituted pyrroles through electrophilic 5-exo-trig ipso-addition of nitrogen to the furan ring.
Collapse
Affiliation(s)
- Anton S. Makarov
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| | - Alexander A. Fadeev
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12800, Czech Republic
| | - Maxim G. Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| |
Collapse
|
5
|
Nejrotti S, Prandi C. Gold Catalysis and Furans: A Powerful Match for Synthetic Connections. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractThis review summarizes the advances made on the synthesis and functionalization of furans via gold catalysis during the period between 2016 and 2020. A separate section is dedicated to the tandem gold-catalyzed synthesis and functionalization of furans.1 Introduction2 Gold-Catalyzed Synthesis of Furans2.1 Cycloisomerizations of Alkynyl and Cumulenyl Alcohols2.2 Cycloisomerizations of Alkynyl and Allenyl Ketones2.3 Reactions with External Oxidants2.4 Miscellaneous3 Gold-Catalyzed Functionalization of Furans3.1 Cycloadditions3.2 Furan Ring Decorations3.3 Reactions Involving Furan Ring Opening4 Gold-Catalyzed Tandem Synthesis and Functionalization of Furans4.1 Cycloisomerizations Followed by Gold-Catalyzed Cycloaddition4.2 Cycloisomerizations to a Gold 1,3- or 1,4-Dipole and Intermolecular Annulation4.3 Cycloisomerizations to a Gold Carbene and Intermolecular Trapping5 Conclusion
Collapse
|
6
|
Kreuzahler M, Haberhauer G. Gold(I)-Catalyzed Haloalkynylation of Aryl Alkynes: Two Pathways, One Goal. Angew Chem Int Ed Engl 2020; 59:9433-9437. [PMID: 32078231 PMCID: PMC7318269 DOI: 10.1002/anie.201916027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Indexed: 11/29/2022]
Abstract
Haloalkynylation reactions provide an efficient method for the simultaneous introduction of a halogen atom and an acetylenic unit. For the first time, we report a gold(I)‐catalyzed haloalkynylation of aryl alkynes that delivers exclusively the cis addition product. This method enables the simple synthesis of conjugated and halogenated enynes in yields of up to 90 %. Notably, quantum chemical calculations reveal an exceptional interplay between the place of the attack at the chloroacetylene: No matter which C−C bond is formed, the same enyne product is always formed. This is only possible through rearrangement of the corresponding skeleton. Hereby, one reaction pathway proceeds via a chloronium ion with a subsequent aryl shift; in the second case the corresponding vinyl cation is stabilized by a 1,3‐chlorine shift. 13C‐labeling experiments confirmed that the reaction proceeds through both reaction pathways.
Collapse
Affiliation(s)
- Mathis Kreuzahler
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| | - Gebhard Haberhauer
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| |
Collapse
|
7
|
Kreuzahler M, Haberhauer G. Gold(I)‐katalysierte Haloalkinylierung von Arylalkinen: Zwei Wege, ein Ziel. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mathis Kreuzahler
- Institut für Organische ChemieUniversität Duisburg-Essen Universitätsstraße 7 45117 Essen Deutschland
| | - Gebhard Haberhauer
- Institut für Organische ChemieUniversität Duisburg-Essen Universitätsstraße 7 45117 Essen Deutschland
| |
Collapse
|
8
|
Makarov AS, Uchuskin MG, Hashmi ASK. Intramolecular azavinyl carbene-triggered rearrangement of furans. Chem Sci 2019; 10:8583-8588. [PMID: 31803433 PMCID: PMC6839507 DOI: 10.1039/c9sc02299f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/16/2019] [Indexed: 01/16/2023] Open
Abstract
An intramolecular rhodium-catalyzed reaction of 1-tosyl-1,2,3-triazoles with furans has been explored. The tosylimino functionality was found to play a significant chemical role participating in the subsequent domino-transformations of a key reaction intermediate. One of the reaction pathways leads to valuable 2-formyl- and 2-acetylpyridine building blocks, which could be obtained in one-pot starting from easily accessible (furan-2-ylmethyl)propargyl amines. An original method for the synthesis of highly functionalized indolizines from the obtained pyridines has been proposed.
Collapse
Affiliation(s)
- Anton S Makarov
- Department of Chemistry , Perm State University , Bukireva 15 , 614990 Perm , Russia .
| | - Maxim G Uchuskin
- Department of Chemistry , Perm State University , Bukireva 15 , 614990 Perm , Russia .
| | - A Stephen K Hashmi
- Institut für Organische Chemie , Heidelberg University , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany
- Chemistry Department , King Abdulaziz University , Jeddah 21589 , Saudi Arabia .
| |
Collapse
|
9
|
Lofstrand VA, McIntosh KC, Almehmadi YA, West FG. Strain-Activated Diels-Alder Trapping of 1,2-Cyclohexadienes: Intramolecular Capture by Pendent Furans. Org Lett 2019; 21:6231-6234. [PMID: 31343882 DOI: 10.1021/acs.orglett.9b02085] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intramolecular [4 + 2] cycloaddition reactions of substituted 1,2-cyclohexadienes with pendent furans enables the synthesis of complex tetracyclic scaffolds in a single step under mild conditions. All Diels-Alder cycloadducts were obtained as single diastereomers, assigned as the endo isomer. Substrates were easily assembled via Stork-Danheiser alkylation of 3-ethoxy-2-bromocyclohex-2-enone to accommodate a range of tethers and furan traps. Cleavage of enol acetate moieties resulted in room-temperature Diels-Alder cycloreversion to tethered furyl cyclohexenones.
Collapse
Affiliation(s)
- Verner A Lofstrand
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Kyle C McIntosh
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Yaseen A Almehmadi
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - F G West
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
10
|
Marín-Luna M, Nieto Faza O, Silva López C. Gold-Catalyzed Homogeneous (Cyclo)Isomerization Reactions. Front Chem 2019; 7:296. [PMID: 31139614 PMCID: PMC6527766 DOI: 10.3389/fchem.2019.00296] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Gold is currently one of the most used metals in organometallic catalysis. The ability of gold to activate unsaturated groups in different modes, together with its tolerance to a wide range of functional groups and reaction conditions, turns gold-based complexes into efficient and highly sought after catalysts. Natural products and relevant compounds with biological and pharmaceutical activity are often characterized by complex molecular structures. (Cyclo)isomerization reactions are often a useful strategy for the generation of this molecular complexity from synthetically accessible reactants. In this review, we collect the most recent contributions in which gold(I)- and/or gold(III)-catalysts mediate intramolecular (cyclo)isomerization transformations of unsaturated species, which commonly feature allene or alkyne motifs, and organize them depending on the substrate and the reaction type.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | | | | |
Collapse
|
11
|
Bao M, Wang X, Qiu L, Hu W, Hong Chan PW, Xu X. Gold-Catalyzed 1,2-Acyloxy Migration/Coupling Cascade of Propargyl Diazoacetates: Synthesis of Isomycin Derivatives. Org Lett 2019; 21:1813-1817. [DOI: 10.1021/acs.orglett.9b00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ming Bao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lihua Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Philip Wai Hong Chan
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Boreux A, Lambion A, Campeau D, Sanita M, Coronel R, Riant O, Gagosz F. Gold-catalyzed synthesis of β-trifluoromethylated α,β-unsaturated ketones from CF3-substituted propargylic carboxylates and their reactivity in Diels-Alder reactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kong XF, Zhan F, He GX, Pan CX, Gu CX, Lu K, Mo DL, Su GF. Gold-Catalyzed Selective 6-exo-dig and 7-endo-dig Cyclizations of Alkyn-Tethered Indoles To Prepare Rutaecarpine Derivatives. J Org Chem 2018; 83:2006-2017. [DOI: 10.1021/acs.joc.7b02956] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang-Fei Kong
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
- College
of Chemistry and Bioengineering, Guilin University of Technology, 12 Jian Gan Road, Guilin 541004, China
| | - Feng Zhan
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Guo-Xue He
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cheng-Xue Pan
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chen-Xi Gu
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Ke Lu
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Gui-Fa Su
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Ministry of Science and Technology of China, School of
Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
14
|
Zhao J, Yang S, Xie X, Li X, Liu Y. Ligand-Effect in Gold(I)-Catalyzed Rautenstrauch Rearrangement: Regio- and Stereoselective Synthesis of Bicyclo[3.2.1]octa-3,6-dienes through Cyclodimerization of 1-Ethynyl-2-propenyl Esters. J Org Chem 2018; 83:1287-1297. [PMID: 29327933 DOI: 10.1021/acs.joc.7b02816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold(I) complexes bearing sterically demanding phosphine ligands such as tBuXphos catalyze the cascade Rautenstrauch rearrangement/[4 + 3] cycloaddition of 1-ethynyl-2-propenyl esters. The reaction provides an efficient and straightforward route to bicyclo[3.2.1]octa-3,6-dienes with high regio- and stereoselectivity. The formation of the [4 + 3] cycloadducts likely proceeds through the cycloaddition of a gold(I) carbenoid/gold-stabilized allyl cation intermediate with cyclopentadiene arising from Rautenstrauch rearrangement.
Collapse
Affiliation(s)
- Jidong Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Shuang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xin Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiangdong Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
15
|
Ke Z, Chit Tsui G, Peng XS, Yeung YY. Five-Membered Ring Systems. PROGRESS IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1016/b978-0-08-102310-5.00007-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|