1
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
2
|
Xu Z, Gu S, Li Y, Wu J, Zhao Y. Recognition-Enabled Automated Analyte Identification via 19F NMR. Anal Chem 2022; 94:8285-8292. [PMID: 35622989 DOI: 10.1021/acs.analchem.2c00642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear magnetic resonance (NMR) is an indispensable tool for structural elucidation and noninvasive analysis. Automated identification of analytes with NMR is highly pursued in metabolism research and disease diagnosis; however, this process is often complicated by the signal overlap and the sample matrix. We herein report a detection scheme based on 19F NMR spectroscopy and dynamic recognition, which effectively simplifies the detection signal and mitigates the influence of the matrix on the detection. It is demonstrated that this approach can not only detect and differentiate capsaicin and dihydrocapsaicin in complex real-world samples but also quantify the ibuprofen content in sustained-release capsules. Based on the 19F signals obtained in the detection using a set of three 19F probes, automated analyte identification is achieved, effectively reducing the odds of misrecognition caused by structural similarity.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yipeng Li
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
3
|
Abstract
The widespread application of nuclear magnetic resonance (NMR) spectroscopy in detection is currently hampered by its inherently low sensitivity and complications resulting from the undesired signal overlap. Here, we report a detection scheme to address these challenges, where analytes are recognized by 19F-labeled probes to induce characteristic shifts of 19F resonances that can be used as "chromatographic" signatures to pin down each low-concentration analyte in complex mixtures. This unique signal transduction mechanism allows detection sensitivity to be enhanced by using massive chemically equivalent 19F atoms, which was achieved through the proper installation of nonafluoro-tert-butoxy groups on probes of high structural symmetry. It is revealed that the binding of an analyte to the probe can be sensed by as many as 72 chemically equivalent 19F atoms, allowing the quantification of analytes at nanomolar concentrations to be routinely performed by NMR. Applications on the detection of trace amounts of prohibited drug molecules and water contaminants were demonstrated. The high sensitivity and robust resolving ability of this approach represent a first step toward extending the application of NMR to scenarios that are now governed by chromatographic and mass spectrometry techniques. The detection scheme also makes possible the highly sensitive non-invasive multi-component analysis that is difficult to achieve by other analytical methods.
Collapse
Affiliation(s)
- Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Direct quantification of cysteine and glutathione by 1H NMR based on β-cyclodextrin modified silver nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Lyu Y, Morillas-Becerril L, Mancin F, Scrimin P. Hydrolytic cleavage of nerve agent simulants by gold nanozymes. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125644. [PMID: 33773245 DOI: 10.1016/j.jhazmat.2021.125644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although banned by the Chemical Weapons Convention, organophosphorus nerve agents are still available and have been used in regional wars, terroristic attacks or for other crtaiminal purposes. Their degradation is of primary importance for the severe toxicity of these compounds. Here we report that gold nanoparticles passivated with thiolated molecules bearing 1,3,7-triazacyclononane and 1,3,7,10-tetraazacyclododecane ligands efficiently hydrolyze nerve agents simulants p-nitrophenyl diphenyl phosphate and methylparaoxon as transition metal complexes at 25 °C and pH 8 with half-lives of the order of a few minutes. Mechanistically, these catalysts show an enzyme-like behavior, hence they constitute an example of nanozymes. The catalytic site appears to involve a single metal ion and its recognition of the substrates is driven mostly by hydrophobic interactions. The ease of preparation and the mild conditions at which they operate, make these nanozymes appealing catalysts for the detoxification after contamination with organophosphorus nerve agents, particularly those poorly soluble in water.
Collapse
Affiliation(s)
- Yanchao Lyu
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| |
Collapse
|
6
|
Mazzei LF, Martínez Á, Trevisan L, Rosa-Gastaldo D, Cortajarena AL, Mancin F, Salassa L. Toward supramolecular nanozymes for the photocatalytic activation of Pt(IV) anticancer prodrugs. Chem Commun (Camb) 2021; 56:10461-10464. [PMID: 32910125 DOI: 10.1039/d0cc03450a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular nanozyme for the photocatalytic conversion of a Pt(iv) anticancer complex to cisplatin is described herein. We employed 1.9 nm Au nanoparticles decorated with thiol ligands bearing a TACN (1,4,7-triazacyclononane) headgroup to encapsulate FMN (riboflavin-5'-phosphate). In the presence of an electron donor, flavin-loaded nanoparticles photocatalyzed the reductive activation of the prodrug cis,cis,trans-[Pt(NH3)2(Cl2)(O2CCH2CH2COOH)2] to cisplatin, achieving turnover frequency values of 7.4 min-1.
Collapse
Affiliation(s)
- Laura F Mazzei
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. and CIC biomaGUNE, Basque Research Technology Alliance, BRTA, Parque Tecnológico de San Sebastián, Paseo Miramón 194, 20014 Donostia/San Sebastián, Spain and Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, 35131, Italy.
| | - Álvaro Martínez
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain.
| | - Lucia Trevisan
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, 35131, Italy.
| | - Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, 35131, Italy.
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Basque Research Technology Alliance, BRTA, Parque Tecnológico de San Sebastián, Paseo Miramón 194, 20014 Donostia/San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, 35131, Italy.
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain and Kimika Fakultatea, Euskal Herriko Unibertsitatea, UPV/EHU, Donostia, 20080, Spain
| |
Collapse
|
7
|
Dong C, Xu Z, Wen L, He S, Wu J, Deng QH, Zhao Y. Tailoring Sensors and Solvents for Optimal Analysis of Complex Mixtures Via Discriminative 19F NMR Chemosensing. Anal Chem 2021; 93:2968-2973. [PMID: 33503366 DOI: 10.1021/acs.analchem.0c04768] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Separation-free analytic techniques capable of providing precise and real-time component information are in high demand. 19F NMR-based chemosensing, where the reversible binding between analytes and a 19F-labeled sensor produces chromatogram-like output, has emerged as a valuable tool for the rapid analysis of complex mixtures. However, the potential overlap of the 19F NMR signals still limits the number of analytes that can be effectively differentiated. In this study, we systematically investigated the influence of the sensor structure and NMR solvents on the resolution of structurally similar analytes. The substituents adjacent and distal to the 19F labels are both important to the resolving ability of the 19F-labeled sensors. More pronounced separation between 19F NMR peaks was observed in nonpolar and aromatic solvents. By using a proper sensor and solvent combination, more than 20 biologically relevant analytes can be simultaneously identified.
Collapse
Affiliation(s)
- Chanjuan Dong
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China.,Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Lixian Wen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Shengyuan He
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Xie M, Brüschweiler R. Degree of N-Methylation of Nucleosides and Metabolites Controls Binding Affinity to Pristine Silica Surfaces. J Phys Chem Lett 2020; 11:10401-10407. [PMID: 33252225 DOI: 10.1021/acs.jpclett.0c02888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biological molecules interact with silica (SiO2) surfaces with binding affinities that greatly vary depending on their physical-chemical properties. However, the quantitative characterization of biological compounds adsorbed on silica surfaces, especially of compounds involved in fast, reversible interactions, has been challenging, and the driving forces are not well understood. Here, we show how carbon-13 NMR spin relaxation provides quantitative atomic-detail information about the transient molecular binding to pristine silica surfaces, represented by colloidally dispersed silica nanoparticles (SNPs). Based on the quantitative analysis of almost two dozen biological molecules, we find that the addition of N-methyl motifs systematically increases molecular binding affinities to silica in a nearly quantitatively predictable manner. Among the studied compounds are methylated nucleosides, which are common in epigenetic signaling in nucleic acids. The quantitative understanding of N-methylation may open up new ways to detect and separate methylated nucleic acids or even regulate their cellular functions.
Collapse
Affiliation(s)
- Mouzhe Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43212, United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43212, United States
- The Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43212, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43212, United States
| |
Collapse
|
9
|
Czescik J, Lyu Y, Neuberg S, Scrimin P, Mancin F. Host-Guest Allosteric Control of an Artificial Phosphatase. J Am Chem Soc 2020; 142:6837-6841. [PMID: 32212681 PMCID: PMC7997383 DOI: 10.1021/jacs.9b12699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The
activity of many enzymes is regulated by associative processes.
To model this mechanism, we report here that the conformation of an
unstructured bimetallic Zn(II) complex can be controlled by its inclusion
in the cavity of a γ-cyclodextrin. This results in the formation
of a catalytic bimetallic site for the hydrolytic cleavage of the
RNA model substrate HPNP, whose reactivity is 30-fold larger with
respect to the unstructured complex. Competitive inhibition with 1-adamantanecarboxylate
displaces the metal complex from the cyclodextrin decreasing the reactivity.
Collapse
Affiliation(s)
- Joanna Czescik
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| | - Yanchao Lyu
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| | - Samuele Neuberg
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| | - Paolo Scrimin
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
De Biasi F, Mancin F, Rastrelli F. Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:70-88. [PMID: 32471535 DOI: 10.1016/j.pnmrs.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/11/2023]
Abstract
Sensing methodologies for the detection of target compounds in mixtures are important in many different contexts, ranging from medical diagnosis to environmental analysis and quality assessment. Ideally, such detection methods should allow for both identification and quantification of the targets, minimizing the possibility of false positives. With very few exceptions, most of the available sensing techniques rely on the selective interaction of the analyte with some detector, which in turn produces a signal as a result of the interaction. This approach hence provides indirect information on the targets, whose identity is generally ensured by comparison with known standards, if available, or by the selectivity of the sensor system itself. Pursuing a different approach, NMR chemosensing aims at generating signals directly from the analytes, in the form of a (complete) NMR spectrum. In this way, not only are the targets unequivocally identified, but it also becomes possible to identify and assign the structures of unknown species. In this review we show how relaxation- and diffusion-based NMR techniques, assisted by appropriate nanoparticles, can be used to edit the 1H NMR spectrum of a mixture and extract the signals of specific target compounds. Monolayer-protected nanoparticles, in particular those made from gold, are well suited to this task because they provide a versatile, protein-size support to build or incorporate supramolecular receptors. Remarkably, the self-organized and multifunctional nature of the nanoparticle coating allows exploitation of different kinds of non-covalent interactions, to provide tailored binding sites for virtually any class of molecules. From the NMR standpoint, the reduced translational and rotational diffusion rates of bulky nanoparticles offer a way to manipulate the states of the monolayer spins and build a reservoir of magnetization that can be selectively transferred to the interacting analytes. In addition, the low correlation time and the enhanced rigidity of the coating molecules (due to their grafting and crowding on the particle surface) promote efficient spin diffusion, useful in saturation transfer experiments. The optimized combination of NMR experiments and nanoreceptors can ultimately allow the detection of relevant analytes in the micromolar concentration range, paving the way to applications in the diagnostic field and beyond.
Collapse
Affiliation(s)
- Federico De Biasi
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
11
|
De Biasi F, Rosa-Gastaldo D, Sun X, Mancin F, Rastrelli F. Nanoparticle-Assisted NMR Spectroscopy: Enhanced Detection of Analytes by Water-Mediated Saturation Transfer. J Am Chem Soc 2019; 141:4870-4877. [DOI: 10.1021/jacs.8b13225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Federico De Biasi
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Daniele Rosa-Gastaldo
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Xiaohuan Sun
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
12
|
Salassa G, Bürgi T. NMR spectroscopy: a potent tool for studying monolayer-protected metal nanoclusters. NANOSCALE HORIZONS 2018; 3:457-463. [PMID: 32254134 DOI: 10.1039/c8nh00058a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer protected metal clusters are currently in the focus of interest both for fundamental reasons and for their use in possible applications. In the past two decades the interest was mainly focused on the evolution of the structrue and properties as the clusters grow in size. The field profited tremednously from mass spectrometry and X-ray structure analysis. For future applications of monolayer protected clusters other properties like the interaction of the clusters with molecules will become important. Also, it has been realized more recently that these monolayer protected clusters are rather dynamic, which calls for techniques able to address this property. By discussing selected examples we demonstrate the power of nuclear magnetic resonance (NMR) spectroscopy to study the structure and the dynamics of clusters and their interacion with molecules (sensing). NMR spectroscopy is an abundant technique and has become very sophisticated. Future work in the field of monolayer protected clusters may greatly profit from this. We believe that NMR spectroscopy, although not yet used much in the field of monolayer protected clusters, has the potential to become a key technique complementary to mass spectrometry and X-ray structure determination.
Collapse
Affiliation(s)
- G Salassa
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
13
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Gabrielli L, Rosa-Gastaldo D, Salvia MV, Springhetti S, Rastrelli F, Mancin F. Detection and identification of designer drugs by nanoparticle-based NMR chemosensing. Chem Sci 2018; 9:4777-4784. [PMID: 29910928 PMCID: PMC5975544 DOI: 10.1039/c8sc01283k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Properly designed monolayer-protected nanoparticles (2 nm core diameter) can be used as nanoreceptors for selective detection and identification of phenethylamine derivatives (designer drugs) in water. The molecular recognition mechanism is driven by the combination of electrostatic and hydrophobic interactions within the coating monolayer. Each nanoparticle can bind up to 30-40 analyte molecules. The affinity constants range from 105 to 106 M-1 and are modulated by the hydrophobicity of the aromatic moiety in the substrate. Detection of drug candidates (such as amphetamines and methamphetamines) is performed by using magnetization (NOE) or saturation (STD) transfer NMR experiments. In this way, the NMR spectrum of the drug is isolated from that of the mixture, allowing broad-class multianalyte detection and even identification of unknowns. The introduction of a dimethylsilane moiety in the coating monolayer allows performing STD experiments in complex mixtures. In this way, a detection limit of 30 μM is reached with standard instruments.
Collapse
Affiliation(s)
- Luca Gabrielli
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Marie-Virginie Salvia
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Sara Springhetti
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| |
Collapse
|
15
|
Abstract
Understanding and harnessing the interactions between nanoparticles and biological molecules is at the forefront of applications of nanotechnology to modern biology. Metabolomics has emerged as a prominent player in systems biology as a complement to genomics, transcriptomics and proteomics. Its focus is the systematic study of metabolite identities and concentration changes in living systems. Despite significant progress over the recent past, important challenges in metabolomics remain, such as the deconvolution of the spectra of complex mixtures with strong overlaps, the sensitive detection of metabolites at low abundance, unambiguous identification of known metabolites, structure determination of unknown metabolites and standardized sample preparation for quantitative comparisons. Recent research has demonstrated that some of these challenges can be substantially alleviated with the help of nanoscience. Nanoparticles in particular have found applications in various areas of bioanalytical chemistry and metabolomics. Their chemical surface properties and increased surface-to-volume ratio endows them with a broad range of binding affinities to biomacromolecules and metabolites. The specific interactions of nanoparticles with metabolites or biomacromolecules help, for example, simplify metabolomics spectra, improve the ionization efficiency for mass spectrometry or reveal relationships between spectral signals that belong to the same molecule. Lessons learned from nanoparticle-assisted metabolomics may also benefit other emerging areas, such as nanotoxicity and nanopharmaceutics.
Collapse
|
16
|
Ertem E, Diez-Castellnou M, Ong QK, Stellacci F. Novel Sensing Strategies Based on Monolayer Protected Gold Nanoparticles for the Detection of Metal Ions and Small Molecules. CHEM REC 2017; 18:819-828. [DOI: 10.1002/tcr.201700065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Elif Ertem
- Department of Material Science; École Polytechnique Fédérale de Lausanne (EPFL). MXG 030, Station 12; 1015 Lausanne Switzerland
| | - Marta Diez-Castellnou
- Department of Material Science; École Polytechnique Fédérale de Lausanne (EPFL). MXG 030, Station 12; 1015 Lausanne Switzerland
| | - Quy Khac Ong
- Department of Material Science; École Polytechnique Fédérale de Lausanne (EPFL). MXG 030, Station 12; 1015 Lausanne Switzerland
| | - Francesco Stellacci
- Department of Material Science; École Polytechnique Fédérale de Lausanne (EPFL). MXG 030, Station 12; 1015 Lausanne Switzerland
| |
Collapse
|
17
|
Zhang B, Yuan J, Brüschweiler R. Differential Attenuation of NMR Signals by Complementary Ion-Exchange Resin Beads for De Novo Analysis of Complex Metabolomics Mixtures. Chemistry 2017; 23:9239-9243. [PMID: 28523725 DOI: 10.1002/chem.201701572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/06/2022]
Abstract
A primary goal of metabolomics is the characterization of a potentially very large number of metabolites that are part of complex mixtures. Application to biofluids and tissue samples offers insights into biochemical metabolic pathways and their role in health and disease. 1D 1 H and 2D 13 C-1 H HSQC NMR spectra are most commonly used for this purpose. They yield quantitative information about each proton of the mixture, but do not tell which protons belong to the same molecule. Interpretation requires the use of NMR spectral databases, which naturally limits these investigations to known metabolites. Here, a new method is presented that uses complementary ion exchange resin beads to differentially attenuate 2D NMR cross-peaks that belong to different metabolites. Based on their characteristic attenuation patterns, cross-peaks could be clustered and assigned to individual molecules, including unknown metabolites with multiple spin systems, as demonstrated for a metabolite model mixture and E. coli cell lysate.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jiaqi Yuan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA.,Campus Chemical Instrument Center, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio, 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, 1645 Neil Avenue, Columbus, Ohio, 43210, USA
| |
Collapse
|