1
|
Zhang P, Ma J, Liu X, Xue F, Zhang Y, Wang B, Jin W, Xia Y, Liu C. Electrochemical Synthesis of α-Thiocyanated/Methoxylated Ketones Using Enol Acetates. J Org Chem 2023; 88:16122-16131. [PMID: 37963225 DOI: 10.1021/acs.joc.3c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We have developed the synthesis of α-substituted ketone compounds with enol acetates in an electrochemical way. By using cheap NH4SCN and MeOH as the radical sources, a series of valuable α-thiocyanates/methoxy ketones were synthesized under mild electrolysis conditions in acceptable yields with diverse functional group compatibility. Additionally, the scale-up experiment and synthetic transformations reveal potential applications in organic synthesis.
Collapse
Affiliation(s)
- Peng Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Junwei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuan Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- College of Future Technology, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
2
|
Dong Y, Li T, Zhang S, Sanchis J, Yin H, Ren J, Sheng X, Li G, Reetz MT. Biocatalytic Baeyer–Villiger Reactions: Uncovering the Source of Regioselectivity at Each Evolutionary Stage of a Mutant with Scrutiny of Fleeting Chiral Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yijie Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Agricultural Microbiomics and Precision Application − Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tang Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany
| |
Collapse
|
3
|
Kieslich D, Christoffers J. The First Total Synthesis of Racemic Chebulic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Kieslich
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
4
|
Hu J, Zeng L, Hu J, Ma R, Liu X, Jiao Y, He H, Chen S, Xu Z, Wang H, Lei A. Electrochemical Difunctionalization of Terminal Alkynes: Access to 1,4-Dicarbonyl Compounds. Org Lett 2021; 24:289-292. [PMID: 34923826 DOI: 10.1021/acs.orglett.1c03955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,4-Dicarbonyl compounds are versatile scaffolds for the heterocycle synthesis, including the Paal-Knorr reaction. Herein, a feasible electrosynthesis method to access 1,4-dicarbonyl compounds has been developed from simple alkynes and 1,3-dicarbonyl compounds. When the undivided cell is combined with the constant current mode, aryl alkynes containing numerous medicinal motifs with 1,3-dicarbonyl esters or ketones react smoothly. External oxidant and catalyst-free conditions conform to the requirements of green synthesis.
Collapse
Affiliation(s)
- Jingcheng Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Jiayu Hu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Rui Ma
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Xue Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University Nanchang, Jiangxi 330022, People's Republic of China
| | - Ying Jiao
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Haoyu He
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Siyu Chen
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Zhexi Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Hongfei Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University Wuhan, Hubei 430072, People's Republic of China.,Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Yedase GS, Kumar S, Stahl J, König B, Yatham VR. Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones. Beilstein J Org Chem 2021; 17:1727-1732. [PMID: 34367351 PMCID: PMC8313980 DOI: 10.3762/bjoc.17.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/16/2021] [Indexed: 01/25/2023] Open
Abstract
We have developed a cerium-photocatalyzed aerobic oxidation of primary and secondary benzylic alcohols to aldehydes and ketones using inexpensive CeCl3·7H2O as photocatalyst and air oxygen as the terminal oxidant.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| | - Sumit Kumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| | - Jessica Stahl
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
| | - Burkhard König
- Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
| |
Collapse
|
6
|
Tripathy AR, Yedase GS, Yatham VR. Cerium photocatalyzed radical smiles rearrangement of 2-aryloxybenzoic acids. RSC Adv 2021; 11:25207-25210. [PMID: 35478894 PMCID: PMC9037003 DOI: 10.1039/d1ra04130d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
We report herein a cerium photocatalyzed aryl migration from an aryl ether to a carboxylic acid group through radical-Smiles rearrangement. This operationally simple protocol utilizes inexpensive CeCl3 as a photocatalyst and converted a variety of 2-aryloxybenzoic acids into aryl-2-hydroxybenzoates in good yields.
Collapse
Affiliation(s)
- Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| |
Collapse
|
7
|
Tsurugi H, Mashima K. Renaissance of Homogeneous Cerium Catalysts with Unique Ce(IV/III) Couple: Redox-Mediated Organic Transformations Involving Homolysis of Ce(IV)-Ligand Covalent Bonds. J Am Chem Soc 2021; 143:7879-7890. [PMID: 33904711 DOI: 10.1021/jacs.1c02889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in the catalytic application of cerium complexes were achieved through controlling the Ce(IV/III) redox couple. Although Ce(IV) complexes have been extensively investigated as stoichiometric oxidants in organic synthesis on the basis of their highly positive redox potentials, these complexes can be used as catalysts, not only by introducing supporting ligands around the coordination sphere of cerium, but also by taking advantage of the photoresponsive properties of Ce(IV) and Ce(III) species. Cerium is highly abundant, comparable to that of some first-row transition metals such as copper, nickel, and zinc. Cerium complexes are new and promising homogeneous catalyst candidates for a variety of organic transformations under mild reaction conditions. They are typically used to activate dioxygen to oxidize organic compounds and applied for organic radical generation using the photoresponsive character of Ce(IV) carboxylates and alkoxides as well as electronic transition of Ce(III), in which homolysis of Ce(IV)-ligand covalent bonds is an important step for the overall catalytic cycle. In this Perspective, we first review the early discovery of Ce(OAc)4-mediated oxidative transformations to emphasize the importance of Ce(IV)-OAc bond homolysis in various C-C bond-forming reactions and its relation to recent developments. We then focus on the fundamental importance of Ce(IV) reactivity involving thermal and photoassisted homolysis of the Ce(IV)-ligand covalent bond and the developments regarding Ce(IV/III) redox changes in catalytic reactions together with our recent findings on cerium-based catalysis.
Collapse
Affiliation(s)
- Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
8
|
George IR, López-Tena M, Sundin AP, Strand D. A Unifying Bioinspired Synthesis of (-)-Asperaculin A and (-)-Penifulvin D. Org Lett 2021; 23:3536-3540. [PMID: 33830776 PMCID: PMC8155558 DOI: 10.1021/acs.orglett.1c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The first syntheses
of the isomeric dioxafenestrene natural products
(−)-asperaculin A and (−)-penifulvin D are reported.
Each target is formed selectively by choice of oxidant in a final
divergent bioinspired Baeyer–Villiger (BV) reaction. Density
functional theory calculations reveal that electrostatic interactions
between the oxidant leaving group and the lactone motif accounts for
a reversal of selectivity with H2O2/H3O+ compared to peracids. Synthetic features include forging
the polycyclic carbon framework with a diastereoselective meta-photocycloaddition biased by an ether substituent at
the aryl α-position. The encumbered tertiary alcohol was installed
by cyanation of a ketone intermediate followed by nonaqueous hydrolysis
of the resulting delicate cyanohydrin.
Collapse
Affiliation(s)
- Ian R George
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Miguel López-Tena
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Anders P Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
9
|
Kieslich D, Christoffers J. Formation of δ-Lactones by Cyanide Catalyzed Rearrangement of α-Hydroxy-β-oxoesters. Org Lett 2021; 23:953-957. [PMID: 33464092 DOI: 10.1021/acs.orglett.0c04157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
δ-Valerolactone derivatives are formed by cyanide-catalyzed ring-transformation of cyclic α-hydroxy-β-oxoesters. This unprecedented reaction defines a new synthetic methodology, and the products are obtained in up to quantitative yields. Several alkyl substitutions as well as different ester residues are tolerated. Furthermore, benzo- and heteroarene-annulated starting materials are converted without problems. As an additional benefit, the starting materials are straightforwardly accessed by cerium-catalyzed aerobic α-hydroxylation of readily available β-oxoesters.
Collapse
Affiliation(s)
- David Kieslich
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26111 Oldenburg, Germany
| |
Collapse
|
10
|
Speldrich J, Christoffers J. Mechanistic Insights into the Formation of δ‐Lactones by Cerium‐Catalyzed Aerobic Coupling of β‐Oxoesters with Enol Acetates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jean‐Marico Speldrich
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
11
|
Dang FF, Wang CC, Han F, Zhang ZW. Synthesis of the ester side chains of homoharringtonine and harringtonine using lactones as building blocks. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1829643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fang-Fang Dang
- School of Chemistry and Chemical Engineering, Xi’an University of Architecture and Technology, Xi’an, P. R. China
| | - Cui-Cui Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China
| | - Feng Han
- CSPC Innovation Pharmaceutical Co., Ltd, Shijiazhuang, P. R. China
| | - Zhi-Wei Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, P. R. China
| |
Collapse
|
12
|
Goliszewska K, Rybicka-Jasińska K, Szurmak J, Gryko D. Visible-Light-Mediated Amination of π-Nucleophiles with N-Aminopyridinium Salts. J Org Chem 2019; 84:15834-15844. [DOI: 10.1021/acs.joc.9b02073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Katarzyna Goliszewska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jakub Szurmak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Li G, Garcia-Borràs M, Furst MJLJ, Ilie A, Fraaije MW, Houk KN, Reetz MT. Overriding Traditional Electronic Effects in Biocatalytic Baeyer-Villiger Reactions by Directed Evolution. J Am Chem Soc 2018; 140:10464-10472. [PMID: 30044629 PMCID: PMC6314816 DOI: 10.1021/jacs.8b04742] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlling the regioselectivity of Baeyer-Villiger (BV) reactions remains an ongoing issue in organic chemistry, be it by synthetic catalysts or enzymes of the type Baeyer-Villiger monooxygenases (BVMOs). Herein, we address the challenging problem of switching normal to abnormal BVMO regioselectivity by directed evolution using three linear ketones as substrates, which are not structurally biased toward abnormal reactivity. Upon applying iterative saturation mutagenesis at sites lining the binding pocket of the thermostable BVMO from Thermocrispum municipale DSM 44069 (TmCHMO) and using 4-phenyl-2-butanone as substrate, the regioselectivity was reversed from 99:1 (wild-type enzyme in favor of the normal product undergoing 2-phenylethyl migration) to 2:98 in favor of methyl migration when applying the best mutant. This also stands in stark contrast to the respective reaction using the synthetic reagent m-CPBA, which provides solely the normal product. Reversal of regioselectivity was also achieved in the BV reaction of two other linear ketones. Kinetic parameters and melting temperatures revealed that most of the evolved mutants retained catalytic activity, as well as thermostability. In order to shed light on the origin of switched regioselectivity in reactions of 4-phenyl-2-butanone and phenylacetone, extensive QM/MM and MD simulations were performed. It was found that the mutations introduced by directed evolution induce crucial changes in the conformation of the respective Criegee intermediates and transition states in the binding pocket of the enzyme. In mutants that destabilize the normally preferred migration transition state, a reversal of regioselectivity is observed. This conformational control of regioselectivity overrides electronic control, which normally causes preferential migration of the group that is best able to stabilize positive charge. The results can be expected to aid future protein engineering of BVMOs.
Collapse
Affiliation(s)
- Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agriproduct Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Maximilian J. L. J. Furst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Adriana Ilie
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Manfred T. Reetz
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
14
|
Liu CH, Wang Z, Xiao LY, Mukadas, Zhu DS, Zhao YL. Acid/Base-Co-catalyzed Formal Baeyer–Villiger Oxidation Reaction of Ketones: Using Molecular Oxygen as the Oxidant. Org Lett 2018; 20:4862-4866. [DOI: 10.1021/acs.orglett.8b02006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Hua Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Li-Yun Xiao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mukadas
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dong-Sheng Zhu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
15
|
Geibel I, Schmidtmann M, Christoffers J. Cerium-catalyzed, oxidative synthesis of annulated, tetrasubstituted dihydrofuran-derivatives. Org Biomol Chem 2017; 15:7824-7829. [DOI: 10.1039/c7ob01904a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Densely functionalized, annulated dihydrofuran derivatives are prepared from β-oxoesters and silylenolethers by a cerium-catalyzed aerobic oxidation.
Collapse
Affiliation(s)
- Irina Geibel
- Institut für Chemie
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| | - Marc Schmidtmann
- Institut für Chemie
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| | - Jens Christoffers
- Institut für Chemie
- Carl von Ossietzky Universität Oldenburg
- 26111 Oldenburg
- Germany
| |
Collapse
|