1
|
Tan X, Yu L, Liao X, Chen C, Chu J, Xiong Z, Xia B, Tang W, Li X, Liu Y. A low-toxicity uranyl-selective-binding linear pentapeptide sequence as a potential uranium decorporation agent. RSC Adv 2024; 14:39094-39101. [PMID: 39664247 PMCID: PMC11629939 DOI: 10.1039/d4ra06173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Searching for highly selective, efficient, and low-toxicity chelating agents is central to resolving uranium contamination in vivo. Peptides composed of amino acids exhibit very low toxicity for accumulation in the human body and have been proven effective in chelating actinides within the human body. Herein, we report a rationally designed short phosphorylated peptide sequence PP-B, which exhibits high affinity and selectivity for uranyl compared to other trace elements present in the body (such as Na+, K+, Ca2+, Co2+, Fe2+, Fe3+, Mg2+, Mn2+, Zn2+). The association constant for the peptide-uranyl complex is calculated to be 7.3 ×105 M-1. The result of DFT calculation shows that the phosphate group binds strongly to the UO2 2+ center, potentially accounting for the peptide's strong affinity towards UO2 2+. The results of in vivo uranyl decorporation assays reveal that PP-B has a much lower toxicity and a much higher decorporation efficiency than that of the clinically approved DTPA. These findings render PP-B a promising candidate for utilization as a novel decorporation agent.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Safety Science and Emergency Management, Wuhan University of Technology Wuhan 430070 China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Xindan Liao
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Binyuan Xia
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics Jiangyou Mianyang Sichuan 621907 China
| | - Yanyan Liu
- School of Safety Science and Emergency Management, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
2
|
Abou-Zeid L, Pell A, Amaral Saraiva M, Delangle P, Bresson C. Hydrophilic interaction liquid chromatography: An efficient tool for assessing thorium interaction with phosphorylated biomimetic peptides. J Chromatogr A 2024; 1735:465341. [PMID: 39241408 DOI: 10.1016/j.chroma.2024.465341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
In the field of nuclear toxicology, the knowledge of the interaction of actinides (An) with biomolecules is of prime concern in order to elucidate their toxicity mechanism and to further develop selective decorporating agents. In this work, we demonstrated the great potential of hydrophilic interaction liquid chromatography (HILIC) to separate polar thorium (Th) biomimetic peptide complexes, as a key starting point to tackle these challenges. Th4+ was used as plutonium (Pu4+) analogue and pS16 and pS1368 as synthetic di- and tetra-phosphorylated peptides capable of mimicking the interaction sites of these An in osteopontin (OPN), a hyperphosphorylated protein. The objective was to determine the relative affinity of pS16 and pS1368 towards Th4+, and to evaluate the pS1368 selectivity when Th4+ was in competition complexation reaction with UO22+ at physiological pH. To meet these aims, HILIC was simultaneously coupled to electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS), which allowed to identify online the molecular structure of the separated complexes and quantify them, in a single step. Dedicated HILIC conditions were firstly set up to separate the new dimeric Th2(peptide)2 complexes with good separation resolution (peptide = pS16 or pS1368). By adding pS16 and pS1368 in different proportions relatively to Th4+, we found that lower or equal proportions of pS16 with respect to pS1368 were not sufficient to displace pS1368 from Th2pS13682 and pS16 proportion higher than pS1368 led to the formation of a predominant ternary complex Th2(pS16)(pS1368), demonstrating preferential Th4+ binding to the tetra-phosphorylated peptide. Finally, online identification and quantification of the formed complexes when Th4+ and UO22+ were mixed in equimolar ratio relatively to pS1368 showed that in spite of pS1368 has been specifically designed to coordinate UO22+, pS1368 is also Th4+-selective and exhibits stronger affinity for this latter than for UO22+. Hence, the results gathered through this approach highlight the impact of Th4+ coordination chemistry on its interaction with pS1368 and more widely to its affinity for biomolecules.
Collapse
Affiliation(s)
- Lana Abou-Zeid
- Université Paris-Saclay, CEA, Service de Physico Chimie, Gif-sur-Yvette F-91191, France; Sorbonne Université, UPMC, Paris F-75005, France
| | - Albert Pell
- Université Paris-Saclay, CEA, Service de Physico Chimie, Gif-sur-Yvette F-91191, France
| | - Marina Amaral Saraiva
- Université Paris-Saclay, CEA, Service de Physico Chimie, Gif-sur-Yvette F-91191, France
| | - Pascale Delangle
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, Grenoble 38 000, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service de Physico Chimie, Gif-sur-Yvette F-91191, France.
| |
Collapse
|
3
|
Stefanelli R, Beccia MR, Solari PL, Suhard D, Pagnotta S, Jeanson A, Mullot JU, Vernier F, Moulin C, Monfort M, Aupiais J, Den Auwer C. Uranium contamination of bivalve Mytilus galloprovincialis, speciation and localization. ENVIRONMENTAL RESEARCH 2024; 252:118877. [PMID: 38609067 DOI: 10.1016/j.envres.2024.118877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Uranium is a natural radioelement (also a model for heavier actinides), but may be released through anthropogenic activities. In order to assess its environmental impact in a given ecosystem, such as the marine system, it is essential to understand its distribution and speciation, and also to quantify its bioaccumulation. Our objective was to improve our understanding of the transfer and accumulation of uranium in marine biota with mussels taken here as sentinel species because of their sedentary nature and ability to filter seawater. We report here on the investigation of uranium accumulation, speciation, and localization in Mytilus galloprovincialis using a combination of several analytical (Inductively Coupled Plasma Mass Spectrometry, ICP-MS), spectroscopic (X ray Absorption Spectroscopy, XAS, Time Resolved Laser Induced Fluorescence Spectroscopy, TRLIFS), and imaging (Transmission Electron Microscopy, TEM, μ-XAS, Secondary Ion Mass Spectrometry, SIMS) techniques. Two cohorts of mussels from the Toulon Naval Base and the Villefranche-sur-Mer location were studied. The measurement of uranium Concentration Factor (CF) values show a clear trend in the organs of M. galloprovincialis: hepatopancreas ≫ gill > body ≥ mantle > foot. Although CF values for the entire mussel are comparable for TNB and VFM, hepatopancreas values show a significant increase in those from Toulon versus Villefranche-sur-Mer. Two organs of interest were selected for further spectroscopic investigations: the byssus and the hepatopancreas. In both cases, U(VI) (uranyl) is accumulated in a diffuse pattern, most probably linked to protein complexing functions, with the absence of a condensed phase. While such speciation studies on marine organisms can be challenging, they are an essential step for deciphering the impact of metallic radionuclides on the marine biota in the case of accidental release. Following our assumptions on uranyl speciation in both byssus and hepatopancreas, further steps will include the inventory and identification of the proteins or metabolites involved.
Collapse
Affiliation(s)
- Romain Stefanelli
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France; CEA, DAM, DIF, F-91297 Arpajon, France
| | - Maria Rosa Beccia
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | - Pier Lorenzo Solari
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI, Fontenay-aux-Roses 92260, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06108 Nice France
| | - Aurélie Jeanson
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Vallet A, Martin-Laffon J, Favier A, Revel B, Bonnot T, Vidaud C, Armengaud J, Gaillard JC, Delangle P, Devime F, Figuet S, Serre NBC, Erba EB, Brutscher B, Ravanel S, Bourguignon J, Alban C. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130668. [PMID: 36608581 DOI: 10.1016/j.jhazmat.2022.130668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | | | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | - Benoît Revel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Titouan Bonnot
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Vidaud
- BIAM, CEA, CNRS, Univ. Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
5
|
Abou-Zeid L, Pell A, Garcia Cortes M, Isnard H, Delangle P, Bresson C. Determination of the affinity of biomimetic peptides for uranium through the simultaneous coupling of HILIC to ESI-MS and ICP-MS. Anal Chim Acta 2023; 1242:340773. [PMID: 36657886 DOI: 10.1016/j.aca.2022.340773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Several proteins have been identified in the past decades as targets of uranyl (UO22+) in vivo. However, the molecular interactions responsible for this affinity are still poorly known which requires the identification of the UO22+ coordination sites in these proteins. Biomimetic peptides are efficient chemical tools to characterize these sites. In this work, we developed a dedicated analytical method to determine the affinity of biomimetic, synthetic, multi-phosphorylated peptides for UO22+ and evaluate the effect of several structural parameters of these peptides on this affinity at physiological pH. The analytical strategy was based on the implementation of the simultaneous coupling of hydrophilic interaction chromatography (HILIC) with electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS). An essential step had been devoted to the definition of the best separation conditions of UO22+ complexes formed with di-phosphorylated peptide isomers and also with peptides of different structure and degrees of phosphorylation. We performed the first separations of several sets of UO22+ complexes by HILIC ever reported in the literature. A dedicated method had then been developed for identifying the separated peptide complexes online by ESI-MS and simultaneously quantifying them by ICP-MS, based on uranium quantification using external calibration. Thus, the affinity of the peptides for UO22+ was determined and made it possible to demonstrate that (i) the increasing number of phosphorylated residues (pSer) promotes the affinity of the peptides for UO22+, (ii) the position of the pSer in the peptide backbone has very low impact on this affinity (iii) and finally the cyclic structure of the peptide favors the UO22+ complexation in comparison with the linear structure. These results are in agreement with those previously obtained by spectroscopic techniques, which allowed to validate the method. Through this approach, we obtained essential information to better understand the mechanisms of toxicity of UO22+ at the molecular level and to further develop selective decorporating agents by chelation.
Collapse
Affiliation(s)
- Lana Abou-Zeid
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191, Gif-sur-Yvette, France; Sorbonne Université, UPMC, F-75005, Paris, France
| | - Albert Pell
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191, Gif-sur-Yvette, France
| | - Marta Garcia Cortes
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191, Gif-sur-Yvette, France
| | - Hélène Isnard
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191, Gif-sur-Yvette, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38 000, Grenoble, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Pardoux R, Sauge-Merle S, Bremond N, Beccia MR, Lemaire D, Battesti C, Delangle P, Solari PL, Guilbaud P, Berthomieu C. Optimized Coordination of Uranyl in Engineered Calmodulin Site 1 Provides a Subnanomolar Affinity for Uranyl and a Strong Uranyl versus Calcium Selectivity. Inorg Chem 2022; 61:20480-20492. [DOI: 10.1021/acs.inorgchem.2c03185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Romain Pardoux
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| | - Sandrine Sauge-Merle
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| | - Nicolas Bremond
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| | - Maria Rosa Beccia
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| | - David Lemaire
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| | - Christine Battesti
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000Grenoble, France
| | - Pier Lorenzo Solari
- MARS beamline, Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192Gif-sur-Yvette Cedex, France
| | | | - Catherine Berthomieu
- Aix Marseille Univ, CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, 13108Saint Paul-Lez-Durance, France
| |
Collapse
|
7
|
Beccia MR, Sauge-Merle S, Brémond N, Lemaire D, Henri P, Battesti C, Guilbaud P, Crouzy S, Berthomieu C. Inter-Site Cooperativity of Calmodulin N-Terminal Domain and Phosphorylation Synergistically Improve the Affinity and Selectivity for Uranyl. Biomolecules 2022; 12:1703. [PMID: 36421716 PMCID: PMC9687771 DOI: 10.3390/biom12111703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 09/08/2024] Open
Abstract
Uranyl-protein interactions participate in uranyl trafficking or toxicity to cells. In addition to their qualitative identification, thermodynamic data are needed to predict predominant mechanisms that they mediate in vivo. We previously showed that uranyl can substitute calcium at the canonical EF-hand binding motif of calmodulin (CaM) site I. Here, we investigate thermodynamic properties of uranyl interaction with site II and with the whole CaM N-terminal domain by spectrofluorimetry and ITC. Site II has an affinity for uranyl about 10 times lower than site I. Uranyl binding at site I is exothermic with a large enthalpic contribution, while for site II, the enthalpic contribution to the Gibbs free energy of binding is about 10 times lower than the entropic term. For the N-terminal domain, macroscopic binding constants for uranyl are two to three orders of magnitude higher than for calcium. A positive cooperative process driven by entropy increases the second uranyl-binding event as compared with the first one, with ΔΔG = -2.0 ± 0.4 kJ mol-1, vs. ΔΔG = -6.1 ± 0.1 kJ mol-1 for calcium. Site I phosphorylation largely increases both site I and site II affinity for uranyl and uranyl-binding cooperativity. Combining site I phosphorylation and site II Thr7Trp mutation leads to picomolar dissociation constants Kd1 = 1.7 ± 0.3 pM and Kd2 = 196 ± 21 pM at pH 7. A structural model obtained by MD simulations suggests a structural role of site I phosphorylation in the affinity modulation.
Collapse
Affiliation(s)
- Maria Rosa Beccia
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Sandrine Sauge-Merle
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Nicolas Brémond
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - David Lemaire
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Pierre Henri
- LPC2E, CNRS, University Orléans, 45071 Orléans, France
- Laboratoire Lagrange, Observatoire Côte d’Azur, Université Côte d’Azur, CNRS, CEDEX 4, 06304 Nice, France
| | - Christine Battesti
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| | - Philippe Guilbaud
- CEA, DES, ISEC, DMRC, Département de Recherche sur les Procédés pour la Mine et le Recyclage du Combustible, University Montpellier, Marcoule, France, 30207 Bagnols-sur-Cèze, France
| | - Serge Crouzy
- Groupe de Modélisation et Chimie Théorique, IRIG, UMR CEA, CNRS, Université Joseph Fourier, CEDEX 9, 38054 Grenoble, France
| | - Catherine Berthomieu
- CEA, CNRS, UMR 7265, BIAM, Interactions Protéine Métal, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
8
|
Zuo L, Peng W, Xu Z, Guo H, Luo M. Selective adsorption of uranyl by glutamic acid-modified amidoxime fiber. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Laporte F, Chenavier Y, Botz A, Gateau C, Lebrun C, Hostachy S, Vidaud C, Delangle P. A Simple Fluorescence Affinity Assay to Decipher Uranyl-Binding to Native Proteins. Angew Chem Int Ed Engl 2022; 61:e202203198. [PMID: 35466512 PMCID: PMC9322271 DOI: 10.1002/anie.202203198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Determining the affinity of proteins for uranyl is key to understand the toxicity of this cation and to further develop decorporation strategies. However, usual techniques to achieve that goal often require specific equipment and expertise. Here, we propose a simple, efficient, fluorescence‐based method to assess the affinity of proteins and peptides for uranyl, at equilibrium and in buffered solution. We first designed and characterized an original uranyl‐binding fluorescent probe. We then built a reference scale for uranyl affinity in solution, relying on signal quenching of our fluorescent probe in presence of high‐affinity uranyl‐binding peptides. We finally validated our approach by re‐evaluating the uranyl‐binding affinity of four native proteins. We envision that this tool will facilitate the reliable and reproducible assessment of affinities of peptides and proteins for uranyl.
Collapse
Affiliation(s)
- Fanny Laporte
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| | - Yves Chenavier
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| | - Alexandra Botz
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| | - Christelle Gateau
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| | - Colette Lebrun
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| | - Sarah Hostachy
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| | - Claude Vidaud
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute of Aix-Marseille, 30207, Bagnols sur Céze, France
| | - Pascale Delangle
- IRIG, SyMMES, Université Grenoble Alpes, CEA, CNRS, Grenoble INP, 38000, Grenoble, France
| |
Collapse
|
10
|
Laporte F, Chenavier Y, Botz A, Gateau C, Lebrun C, Hostachy S, Vidaud C, Delangle P. A Simple Fluorescence Affinity Assay to Decipher Uranyl‐Binding to Native Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fanny Laporte
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| | - Yves Chenavier
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| | - Alexandra Botz
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| | - Christelle Gateau
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| | - Colette Lebrun
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| | - Sarah Hostachy
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| | - Claude Vidaud
- CEA, Fundamental Research Division Biosciences and Biotechnologies Institute of Aix-Marseille 30207 Bagnols sur Céze France
| | - Pascale Delangle
- IRIG, SyMMES Université Grenoble Alpes, CEA, CNRS, Grenoble INP 38000 Grenoble France
| |
Collapse
|
11
|
Tsushima S, Takao K. Hydrophobic core formation and secondary structure elements in uranyl(VI)-binding peptides. Phys Chem Chem Phys 2022; 24:4455-4461. [PMID: 35113097 DOI: 10.1039/d1cp05401e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cyclic peptides as well as a modified EF-hand motif of calmodulin have been newly designed to achieve high affinity towards uranyl(VI). Cyclic peptides may be engineered to bind uranyl(VI) to its backbone under acidic conditions, which may enhance its selectivity. For the modified EF-hand motif of calmodulin, strong electrostatic interactions between uranyl(VI) and negatively charged side chains play an important role in achieving high affinity; however, it is also essential to have a secondary structure element and formation of hydrophobic cores in the metal-bound state of the peptide.
Collapse
Affiliation(s)
- Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany. .,World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
| |
Collapse
|
12
|
Abou Zeid L, Pell A, Tytus T, Delangle P, Bresson C. Separation of multiphosphorylated cyclopeptides and their positional isomers by hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS). J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1177:122792. [PMID: 34102536 DOI: 10.1016/j.jchromb.2021.122792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Peptides are efficient models used in different fields such as toxicology to study the interactions of several contaminants at the molecular scale, requiring the development of bio-analytical strategies. In this context, Hydrophilic interaction liquid chromatography (HILIC) coupled to electrospray ionization mass spectrometry (ESI-MS) was used to separate synthetic multiphosphorylated cyclopeptides and their positional isomers at physiological pH. We assessed (i) the selectivity of eleven HILIC columns, from different manufacturers and packed with diverse polar sorbents, and (ii) the effect of mobile phase composition on the separation selectivity. The best selectivity and baseline resolution were achieved with the columns grafted by neutral sorbents amide and diol. Furthermore, we investigated the HILIC retention mechanism of these peptides by examining the effect of the number of phosphorylated residues in the peptide scaffold on their retention. The peptide behavior followed the classical hydrophilic partitioning mechanism exclusively on amide and diol columns. This trend was not fully respected on bare and hybrid silica due to the attractive/repulsive interactions of the deprotonated surface silanol groups with the Arginine or Glutamate residues in the peptide scaffold according to the peptide sequence. The position of the phosphorylated amino acid in the peptide backbone also showed to have an impact on the retention, making possible the separation of positional isomers of these multiphosphorylated cyclic peptides using HILIC.
Collapse
Affiliation(s)
- Lana Abou Zeid
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France; Sorbonne Université, F-75005 Paris, France.
| | - Albert Pell
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France
| | - Théo Tytus
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38 000 Grenoble, France
| | - Carole Bresson
- Université Paris-Saclay, CEA, Service d'Etudes Analytiques et de Réactivité des Surfaces, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Lin YW. Uranyl Binding to Proteins and Structural-Functional Impacts. Biomolecules 2020; 10:biom10030457. [PMID: 32187982 PMCID: PMC7175365 DOI: 10.3390/biom10030457] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/08/2020] [Accepted: 03/13/2020] [Indexed: 01/29/2023] Open
Abstract
The widespread use of uranium for civilian purposes causes a worldwide concern of its threat to human health due to the long-lived radioactivity of uranium and the high toxicity of uranyl ion (UO22+). Although uranyl–protein/DNA interactions have been known for decades, fewer advances are made in understanding their structural-functional impacts. Instead of focusing only on the structural information, this article aims to review the recent advances in understanding the binding of uranyl to proteins in either potential, native, or artificial metal-binding sites, and the structural-functional impacts of uranyl–protein interactions, such as inducing conformational changes and disrupting protein-protein/DNA/ligand interactions. Photo-induced protein/DNA cleavages, as well as other impacts, are also highlighted. These advances shed light on the structure-function relationship of proteins, especially for metalloproteins, as impacted by uranyl–protein interactions. It is desired to seek approaches for biological remediation of uranyl ions, and ultimately make a full use of the double-edged sword of uranium.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; ; Tel.: +86-734-8578079
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Garai A, Delangle P. Recent advances in uranyl binding in proteins thanks to biomimetic peptides. J Inorg Biochem 2019; 203:110936. [PMID: 31864150 DOI: 10.1016/j.jinorgbio.2019.110936] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 12/29/2022]
Abstract
Uranium is an element belonging to the actinide series. It is ubiquitous in rock, soil, and water. Uranium is found in the ecosystem due to mining and milling industrial activities and processing to nuclear fuel, but also to the extensive use of phosphate fertilizers. Understanding uranium binding in vivo is critical, first to deepen our knowledge of molecular events leading to chemical toxicity, but also to provide new mechanistic information useful for the development of efficient decorporation treatments to be applied in case of intoxication. The most stable form in physiological conditions is the uranyl cation (UO22+), in which uranium oxidation state is +VI. This short review presents uranyl coordination properties and chelation, and what is currently known about uranium binding to proteins. Although several target proteins have been identified, the UO22+ binding sites have barely been identified. Biomimetic approaches using model peptides are good options to shed light on high affinity uranyl binding sites in proteins. A strategy based on constrained cyclodecapeptides allowed recently to propose a tetraphosphate binding site for uranyl that provides an affinity similar to the one measured with the phosphoprotein osteopontin.
Collapse
Affiliation(s)
- Aditya Garai
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
15
|
Interactions of phosphorylated cyclohexapeptides with uranyl: insights from experiments and theoretical calculations. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Creff G, Zurita C, Jeanson A, Carle G, Vidaud C, Den Auwer C. What do we know about actinides-proteins interactions? RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Since the early 40s when the first research related to the development of the atomic bomb began for the Manhattan Project, actinides (An) and their association with the use of nuclear energy for civil applications, such as in the generation of electricity, have been a constant source of interest and fear. In 1962, the first Society of Toxicology (SOT), led by H. Hodge, was established at the University of Rochester (USA). It was commissioned as part of the Manhattan Project to assess the impact of nuclear weapons production on workers’ health. As a result of this initiative, the retention and excretion rates of radioactive heavy metals, their physiological impact in the event of acute exposure and their main biological targets were assessed. In this context, the scientific community began to focus on the role of proteins in the transportation and in vivo accumulation of An. The first studies focused on the identification of these proteins. Thereafter, the continuous development of physico-chemical characterization techniques has made it possible to go further and specify the modes of interaction with proteins from both a thermodynamic and structural point of view, as well as from the point of view of their biological activity. This article reviews the work performed in this area since the Manhattan Project. It is divided into three parts: first, the identification of the most affine proteins; second, the study of the affinity and structure of protein-An complexes; and third, the impact of actinide ligation on protein conformation and function.
Collapse
Affiliation(s)
- Gaëlle Creff
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Cyril Zurita
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Aurélie Jeanson
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| | - Georges Carle
- Université Côte d’Azur, CEA, UMR E-4320 TIRO-MATOs , 06100 Nice , France
| | - Claude Vidaud
- CEA DRF, CNRS, UMR 7265, Institut de Biosciences et Biotechnologies d’Aix-Marseille , 13108 Saint-Paul-lez-Durance , France
| | - Christophe Den Auwer
- Université Côte d’Azur, CNRS, UMR 7272, Institut de Chimie de Nice , 06108 Nice , France
| |
Collapse
|
17
|
Laporte FA, Lebrun C, Vidaud C, Delangle P. Phosphate-Rich Biomimetic Peptides Shed Light on High-Affinity Hyperphosphorylated Uranyl Binding Sites in Phosphoproteins. Chemistry 2019; 25:8570-8578. [PMID: 30908736 DOI: 10.1002/chem.201900646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Some phosphoproteins such as osteopontin (OPN) have been identified as high-affinity uranyl targets. However, the binding sites required for interaction with uranyl and therefore involved in its toxicity have not been identified in the whole protein. The biomimetic approach proposed here aimed to decipher the nature of these sites and should help to understand the role of the multiple phosphorylations in UO2 2+ binding. Two hyperphosphorylated cyclic peptides, pS168 and pS1368 containing up to four phosphoserine (pSer) residues over the ten amino acids present in the sequences, were synthesized with all reactions performed in the solid phase, including post-phosphorylation. These β-sheet-structured peptides present four coordinating residues from four amino acid side chains pointing to the metal ion, either three pSer and one glutamate in pS168 or four pSer in pS1368 . Significantly, increasing the number of pSer residues up to four in the cyclodecapeptide scaffolds produced molecules with an affinity constant for UO2 2+ that is as large as that reported for osteopontin at physiological pH. The phosphate-rich pS1368 can thus be considered a relevant model of UO2 2+ coordination in this intrinsically disordered protein, which wraps around the metal ion to gather four phosphate groups in the UO2 2+ coordination sphere. These model hyperphosphorylated peptides are highly selective for UO2 2+ with respect to endogenous Ca2+ , which makes them good starting structures for selective UO2 2+ complexation.
Collapse
Affiliation(s)
- Fanny A Laporte
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Colette Lebrun
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| | - Claude Vidaud
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute of Aix-Marseille, 30207, Bagnols sur Céze, France
| | - Pascale Delangle
- INAC SyMMES, Université Grenoble Alpes, CEA, CNRS, 38000, Grenoble, France
| |
Collapse
|
18
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zänker H, Heine K, Weiss S, Brendler V, Husar R, Bernhard G, Gloe K, Henle T, Barkleit A. Strong Uranium(VI) Binding onto Bovine Milk Proteins, Selected Protein Sequences, and Model Peptides. Inorg Chem 2019; 58:4173-4189. [PMID: 30860361 DOI: 10.1021/acs.inorgchem.8b03231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hexavalent uranium is ubiquitous in the environment. In view of the chemical and radiochemical toxicity of uranium(VI), a good knowledge of its possible interactions in the environment is crucial. The aim of this work was to identify typical binding and sorption characteristics of uranium(VI) with both the pure bovine milk protein β-casein and diverse related protein mixtures (caseins, whey proteins). For comparison, selected model peptides representing the amino acid sequence 13-16 of β-casein and dephosphorylated β-casein were also studied. Complexation studies using potentiometric titration and time-resolved laser-induced fluorescence spectroscopy revealed that the phosphoryl-containing proteins form uranium(VI) complexes of higher stability than the structure-analog phosphoryl-free proteins. That is in agreement with the sorption experiments showing a significantly higher affinity of caseins toward uranium(VI) in comparison to whey proteins. On the other hand, the total sorption capacity of caseins is lower than that of whey proteins. The discussed binding behavior of milk proteins to uranium(VI) might open up interesting perspectives for sustainable techniques of uranium(VI) removal from aqueous solutions. This was further demonstrated by batch experiments on the removal of uranium(VI) from mineral water samples.
Collapse
Affiliation(s)
- Harald Zänker
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Katja Heine
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany.,Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Stephan Weiss
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Vinzenz Brendler
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Richard Husar
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Gert Bernhard
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Karsten Gloe
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Thomas Henle
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| | - Astrid Barkleit
- Institute of Resource Ecology , Helmholtz-Zentrum Dresden-Rossendorf , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|
20
|
Laporte F, Stark M, Lebrun C, Oros S, Sisommay N, Gathu V, Lorenzo Solari P, Creff G, Roques J, Den Auwer C, Vidaud C, Delangle P. Uranyl-chelating peptides to help understanding uranium toxicity at a molecular level. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191406005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Chandrasekar A, Rao CVSB, Sundararajan M, Ghanty TK, Nagarajan S. Structure-Modulated Complexation of Actinides with Phosphonates: A Combined Experimental and Quantum Chemical Investigation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aditi Chandrasekar
- Homi Bhabha National Institute; Indira Gandhi Centre for Atomic Research; Kalpakkam 603102
| | | | - Mahesh Sundararajan
- Theoretical Chemistry Section; Chemistry Group, Bhabha Atomic Research Centre; Mumbai 400 085
| | - Tapan K. Ghanty
- Theoretical Chemistry Section; Chemistry Group, Bhabha Atomic Research Centre; Mumbai 400 085
| | - Sivaraman Nagarajan
- Homi Bhabha National Institute; Indira Gandhi Centre for Atomic Research; Kalpakkam 603102
| |
Collapse
|
22
|
Carugo O. Structural features of uranium-protein complexes. J Inorg Biochem 2018; 189:1-6. [PMID: 30149122 DOI: 10.1016/j.jinorgbio.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Uranium toxicity depends on its chemical properties rather than on its radioactivity and involves its interaction with macromolecules. Here, a systematic survey of the structural features of the uranyl sites observed in protein crystal structures deposited in the Protein Data Bank is reported. Beside the two uranyl oxygens, which occupy the axial positions, uranium tends to be coordinated by five other oxygen atoms, which occupy the equatorial vertices of a pentagonal bipyramid. Even if one or more of these equatorial positions are sometime empty, they can be occupied only by oxygen atoms that belong to the carboxylate groups of Glu and Asp side-chains, usually acting as monodentate ligands, to water molecules, or to acetate anions. Although several uranium sites appear undefined or unrefined, with a single uranium atom that lacks the two uranyl oxygen atoms, this problem seems to become less frequent in recent years. However, it is clear that the crystallographic refinements of the uranyl sites are not always well restrained and a better parametrization of these restraints seems to be necessary.
Collapse
Affiliation(s)
- Oliviero Carugo
- Chemistry Department, University of Pavia, Italy; Department of Structural and Computational Biology, University of Vienna, Austria.
| |
Collapse
|
23
|
Hadjithoma S, Papanikolaou MG, Leontidis E, Kabanos TA, Keramidas AD. Bis(hydroxylamino)triazines: High Selectivity and Hydrolytic Stability of Hydroxylamine-Based Ligands for Uranyl Compared to Vanadium(V) and Iron(III). Inorg Chem 2018; 57:7631-7643. [DOI: 10.1021/acs.inorgchem.8b00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sofia Hadjithoma
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus
| | - Michael G. Papanikolaou
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Themistoklis A. Kabanos
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | | |
Collapse
|
24
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
25
|
Sauge-Merle S, Brulfert F, Pardoux R, Solari PL, Lemaire D, Safi S, Guilbaud P, Simoni E, Merroun ML, Berthomieu C. Structural Analysis of Uranyl Complexation by the EF-Hand Motif of Calmodulin: Effect of Phosphorylation. Chemistry 2017; 23:15505-15517. [DOI: 10.1002/chem.201703484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Sandrine Sauge-Merle
- CEA; CNRS; Aix-Marseille Université; UMR 7265 Biologie Végétale et Microbiologie Environnementales; Laboratoire des Interactions Protéine Métal; 13108 Saint-Paul-lez-Durance France
| | - Florian Brulfert
- Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3; Univ. Paris-Sud, Univ. Paris-Saclay; 91405 Orsay France
| | - Romain Pardoux
- CEA; CNRS; Aix-Marseille Université; UMR 7265 Biologie Végétale et Microbiologie Environnementales; Laboratoire des Interactions Protéine Métal; 13108 Saint-Paul-lez-Durance France
| | - Pier Lorenzo Solari
- MARS beamline; Synchrotron SOLEIL; L'Orme des Merisiers, Saint-Aubin; 91192 Gif-sur-Yvette Cedex France
| | - David Lemaire
- CEA; CNRS; Aix-Marseille Université; UMR 7265 Biologie Végétale et Microbiologie Environnementales; Laboratoire des Interactions Protéine Métal; 13108 Saint-Paul-lez-Durance France
| | - Samir Safi
- Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3; Univ. Paris-Sud, Univ. Paris-Saclay; 91405 Orsay France
| | - Philippe Guilbaud
- CEA, Nuclear Energy Division; Research Department on Mining and fuel Recycling Processes (LILA); BP17171 30207 Bagnols-sur-Cèze France
| | - Eric Simoni
- Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3; Univ. Paris-Sud, Univ. Paris-Saclay; 91405 Orsay France
| | | | - Catherine Berthomieu
- CEA; CNRS; Aix-Marseille Université; UMR 7265 Biologie Végétale et Microbiologie Environnementales; Laboratoire des Interactions Protéine Métal; 13108 Saint-Paul-lez-Durance France
| |
Collapse
|