1
|
Mahawar P, Rajeshkumar T, Spaniol TP, Maron L, Okuda J. Hydrogenolysis of Cationic Half-Sandwich Zinc Complexes Containing a Chelating Amine: Facile Cleavage of Zinc-Carbon Bond by Dihydrogen to Give Zinc Hydride Cations. Chemistry 2024; 30:e202401262. [PMID: 38777793 DOI: 10.1002/chem.202401262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Cationic half-sandwich zinc complexes containing chelating amines [Cp*Zn(Ln)][BAr4 F] (2 a, Cp*=η3-C5Me5, Ln=N,N,N',N'-tetramethylethylenediamine, TMEDA; 2 b, Ln=N,N,N',N'-tetraethylethylenediamine, TEEDA; 2 c, Cp*=η1-C5Me5, Ln=N,N,N',N'',N''-pentamethyldiethylenetriamine, PMDTA; Ar4 F=(3,5-(CF3)2C6H3)4) reacted with dihydrogen (ca. 2 bar) in THF at 80 °C to give molecular zinc hydride cations [(Ln)ZnH(thf)m][BAr4 F] (3 a,b, m=1; 3 c, m=0) previously reported along with Cp*H. Pseudo first-order kinetics with respect to the concentration of 2 b suggests heterolytic cleavage of dihydrogen by the Zn-Cp* bond, reminiscent of σ-bond metathesis. Hydrogenolysis of the zinc cation 2 b in the presence of benzophenone gave the zinc alkoxide [(TEEDA)Zn(OCHPh2)(thf)][BAr4 F] (5 b). Cation 2 b was shown to catalytically hydrogenate N-benzylideneaniline. The PMDTA complex 2 c underwent C-H bond activation in acetonitrile to give a dinuclear μ-κC,κN-cyanomethyl zinc complex [(PMDTA)Zn(CH2CN)]2[BAr4 F]2 (6 c).
Collapse
Affiliation(s)
- Pritam Mahawar
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, 52062, Germany
| | - Thayalan Rajeshkumar
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Thomas P Spaniol
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, 52062, Germany
| | - Laurent Maron
- CNRS, INSA, UPS, UMR 5215, LPCNO, Université de Toulouse, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen, 52062, Germany
| |
Collapse
|
2
|
Karmakar H, Kumar GS, Pal K, Chandrasekhar V, Panda TK. Tri-coordinated zinc alkyl complexes with N^ S/ Se coordination of imino-phosphanamidinate chalcogenide ligands as precursors for efficient hydroboration of nitriles and esters. Dalton Trans 2024; 53:10592-10602. [PMID: 38855964 DOI: 10.1039/d4dt00840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A series of tri-coordinated zinc alkyl complexes with the general molecular formula [κ2NE-{NHIRP(Ph)(E)N-Dipp}ZnEt] [R = Dipp (2,6-diisopropylphenyl), E = S (3a), Se (3b) and R = tBu (tert-butyl), E = S (4a), Se (4b)] bearing imino-phosphanamidinate chalcogenide ligands were prepared in good yields from the reaction between the protic imino-phosphanamidinate chalcogenide ligand [NHIRP(Ph)(E)NH-Dipp] [R = Dipp, E = S (1a), Se (1b) and R = tBu, E = S (2a), Se (2b)] and diethylzinc at room temperature. The molecular structures of all the zinc complexes were established by single-crystal X-ray diffraction analysis. In the solid state, all complexes exhibited a distorted trigonal planar geometry around the zinc ion. Metal-chalcogenide (Zn-S/Se) interactions were observed in the coordination sphere. These zinc alkyl complexes were employed as pre-catalysts in the hydroboration reaction of nitriles and esters to obtain the corresponding N,N-diborylamines and boronate esters, respectively, under ambient conditions. A wide substrate scope of nitriles and esters is presented.
Collapse
Affiliation(s)
- Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Gobbilla Sai Kumar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| | - Kuntal Pal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, 500107, Hyderabad, India.
- Department of Chemistry, IIT Kanpur, Kanpur 208016, India.
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
3
|
Koop S, Mrózek O, Janiak L, Belyaev A, Putscher M, Marian CM, Steffen A. Synthesis, Structural Characterization, and Phosphorescence Properties of Trigonal Zn(II) Carbene Complexes. Inorg Chem 2024; 63:891-901. [PMID: 38118184 DOI: 10.1021/acs.inorgchem.3c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The sterically demanding N-heterocyclic carbene ITr (N,N'-bis(triphenylmethyl)imidazolylidene) was employed for the preparation of novel trigonal zinc(II) complexes of the type [ZnX2(ITr)] [X = Cl (1), Br (2), and I (3)], for which the low coordination mode was confirmed in both solution and solid state. Because of the atypical coordination geometry, the reactivity of 1-3 was studied in detail using partial or exhaustive halide exchange and halide abstraction reactions to access [ZnLCl(ITr)] [L = carbazolate (4), 3,6-di-tert-butyl-carbazolate (5), phenoxazine (6), and phenothiazine (7)], [Zn(bdt)(ITr)] (bdt = benzene-1,2-dithiolate) (8), and cationic [Zn(μ2-X)(ITr)]2[B(C6F5)4]2 [X = Cl (9), Br (10), and I (11)], all of which were isolated and structurally characterized. Importantly, for all complexes 4-11, the trigonal coordination environment of the ZnII ion is maintained, demonstrating a highly stabilizing effect due to the steric demand of the ITr ligand, which protects the metal center from further ligand association. In addition, complexes 1-3 and 8-11 show long-lived luminescence from triplet excited states in the solid state at room temperature, according to our photophysical studies. Our quantum chemical density functional theory/multireference configuration interaction (DFT/MRCI) calculations reveal that the phosphorescence of 8 originates from a locally excited triplet state on the bdt ligand. They further suggest that the phenyl substituents of ITr are photochemically not innocent but can coordinate to the electron-deficient metal center of this trigonal complex in the excited state.
Collapse
Affiliation(s)
- Stefan Koop
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Ondřej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Lars Janiak
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| | - Markus Putscher
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany
| |
Collapse
|
4
|
de Frémont P, Adet N, Parmentier J, Xu X, Jacques B, Dagorne S. Cationic organometallic complexes of group 12 metals: A decade of progress toward the quest of novel Lewis acidic catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Baalbaki HA, Shu J, Nyamayaro K, Jung HJ, Mehrkhodavandi P. Thermally stable zinc hydride catalyst for hydrosilylation of CO 2 to silyl formate at atmospheric pressure. Chem Commun (Camb) 2022; 58:6192-6195. [PMID: 35506769 DOI: 10.1039/d2cc01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral zinc complexes supported by H[PNNO], a diaminophenolate ligand bearing a pendant phosphine group, were synthesized and characterized. The phosphine arm adopts two different configurations in solution and prevents aggregation. The monomeric zinc hydride complex is stable at elevated temperatures up to 125 °C and reacts readily with CO2 to afford a zinc formate complex. The zinc hydride is active for CO2 hydrosilylation at atmospheric CO2 pressure and is selective for CO2 reduction to the silyl-formate product.
Collapse
Affiliation(s)
- Hassan A Baalbaki
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Julia Shu
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Kudzanai Nyamayaro
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Hyuk-Joon Jung
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| | - Parisa Mehrkhodavandi
- University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Chen P, Xiong T, Liang Y, Pan Y. Recent progress on N‐heterocyclic carbene catalysts in chemical fixation of CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peibo Chen
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Tingkai Xiong
- Guilin University of Electronic Technology School of Life and Environmental Sciences CHINA
| | - Ying Liang
- Guilin University of Electronic Technology School of Life and Environmental Sciences Guilin, 541004, People’s Republic of China. 541004 Guilin CHINA
| | - Yingming Pan
- Guangxi Normal University School of Chemistry and Molecular Engineering of Medicinal Resources CHINA
| |
Collapse
|
7
|
Miloserdov FM, Pécharman AF, Sotorrios L, Rajabi NA, Lowe JP, Macgregor SA, Mahon MF, Whittlesey MK. Bonding and Reactivity of a Pair of Neutral and Cationic Heterobimetallic RuZn 2 Complexes. Inorg Chem 2021; 60:16256-16265. [PMID: 34661399 PMCID: PMC8730504 DOI: 10.1021/acs.inorgchem.1c02072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/15/2023]
Abstract
A combined experimental and computational study of the structure and reactivity of two [RuZn2Me2] complexes, neutral [Ru(PPh3)(Ph2PC6H4)2(ZnMe)2] (2) and cationic [Ru(PPh3)2(Ph2PC6H4)(ZnMe)2][BArF4] ([BArF4] = [B{3,5-(CF3)2C6H3}4]) (3), is presented. Structural and computational analyses indicate these complexes are best formulated as containing discrete ZnMe ligands in which direct Ru-Zn bonding is complemented by weaker Zn···Zn interactions. The latter are stronger in 2, and both complexes exhibit an additional Zn···Caryl interaction with a cyclometalated phosphine ligand, this being stronger in 3. Both 2 and 3 show diverse reactivity under thermolysis and with Lewis bases (PnBu3, PCy3, and IMes). With 3, all three Lewis bases result in the loss of [ZnMe]+. In contrast, 2 undergoes PPh3 substitution with PnBu3, but with IMes, loss of ZnMe2 occurs to form [Ru(PPh3)(C6H4PPh2)(C6H4PPhC6H4Zn(IMes))H] (7). The reaction of 3 with H2 affords the cationic trihydride complex [Ru(PPh3)2(ZnMe)2(H)3][BArF4] (12). Computational analyses indicate that both 12 and 7 feature bridging hydrides that are biased toward Ru over Zn.
Collapse
Affiliation(s)
- Fedor M. Miloserdov
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708, WE, The Netherlands
| | | | - Lia Sotorrios
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Nasir A. Rajabi
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - John P. Lowe
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Stuart A. Macgregor
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Mary F. Mahon
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | | |
Collapse
|
8
|
Chambenahalli R, Bhargav RM, McCabe KN, Andrews AP, Ritter F, Okuda J, Maron L, Venugopal A. Cationic Zinc Hydride Catalyzed Carbon Dioxide Reduction to Formate: Deciphering Elementary Reactions, Isolation of Intermediates, and Computational Investigations. Chemistry 2021; 27:7391-7401. [PMID: 33459452 DOI: 10.1002/chem.202005392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Zinc has been an element of choice for carbon dioxide reduction in recent years. Zinc compounds have been showcased as catalysts for carbon dioxide hydrosilylation and hydroboration. The extent of carbon dioxide reduction can depend on various factors, including electrophilicity at the zinc center and the denticity of the ancillary ligands. In a few cases, the addition of Lewis acids to zinc hydride catalysts markedly influences carbon dioxide reduction. These factors have been investigated by exploring elementary reactions of carbon dioxide hydrosilylation and hydroboration by using cationic zinc hydrides bearing tetradentate tris[2-(dimethylamino)ethyl]amine and tridentate N,N,N',N'',N''-pentamethyldiethylenetriamine in the presence of triphenylborane and tris(pentafluorophenyl)borane.
Collapse
Affiliation(s)
- Raju Chambenahalli
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - R M Bhargav
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Karl N McCabe
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077, Toulouse, France
| | - Alex P Andrews
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Florian Ritter
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Laurent Maron
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077, Toulouse, France
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| |
Collapse
|
9
|
Specklin D, Fliedel C, Dagorne S. Recent Representative Advances on the Synthesis and Reactivity of N-Heterocyclic-Carbene-Supported Zinc Complexes. CHEM REC 2021; 21:1130-1143. [PMID: 33792152 DOI: 10.1002/tcr.202100041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Indexed: 12/21/2022]
Abstract
The present account reviews the most recent noteworthy developments on the synthesis, structure and catalytic applications of Zn-NHC species, a class of complexes that have attracted attention over the past five to ten years due to their enhanced robustness and hydrolytic stability versus classical Zn organometallics. In particular, thanks to NHC stabilization, access to unprecedented Zn species were recently achieved, including two-coordinate Zn(II) organocations and thermally stable molecularly well-defined Zn hydride species, opening the way to effective Zn-mediated hydro-silylation/-boration catalysis of various unsaturated substrates under mild conditions. The potential of NHC-Zn species for the stabilization of unprecedented Zn species and use in various catalytic applications is only emerging and the vast array of readily available NHC structures should promote future developments of the field.
Collapse
Affiliation(s)
- David Specklin
- Institut de Chimie (UMR CNRS 7177), Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Christophe Fliedel
- Institut de Chimie (UMR CNRS 7177), Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| | - Samuel Dagorne
- Institut de Chimie (UMR CNRS 7177), Université de Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
10
|
Thevenin L, Daran JC, Poli R, Fliedel C. Cobalt complexes of an OSNSO-tetrapodal pentadentate ligand: Synthesis, structures and reactivity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Caise A, Hicks J, Ángeles Fuentes M, Goicoechea JM, Aldridge S. Partnering a Three-Coordinate Gallium Cation with a Hydroborate Counter-Ion for the Catalytic Hydrosilylation of CO 2. Chemistry 2021; 27:2138-2148. [PMID: 33169886 DOI: 10.1002/chem.202004408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Indexed: 12/16/2022]
Abstract
A novel β-diketiminate stabilized gallium hydride, (Dipp L)Ga(Ad)H (where (Dipp L)={HC(MeCDippN)2 }, Dipp=2,6-diisopropylphenyl and Ad=1-adamantyl), has been synthesized and shown to undergo insertion of carbon dioxide into the Ga-H bond under mild conditions. In this case, treatment of the resulting κ1 -formate complex with triethylsilane does not lead to regeneration of the hydride precursor. However, when combined with B(C6 F5 )3 , (Dipp L)Ga(Ad)H catalyses the reductive hydrosilylation of CO2 . Under stoichiometric conditions, the addition of one equivalent of B(C6 F5 )3 to (Dipp L)Ga(Ad)H leads to the formation of a 3-coordinate cationic gallane complex, partnered with a hydroborate anion, [(Dipp L)Ga(Ad)][HB(C6 F5 )3 ]. This complex rapidly hydrometallates carbon dioxide and catalyses the selective reduction of CO2 to the formaldehyde oxidation level at 60 °C in the presence of Et3 SiH (yielding H2 C(OSiEt3 )2 ). When catalysis is undertaken in the presence of excess B(C6 F5 )3 , appreciable enhancement of activity is observed, with a corresponding reduction in selectivity: the product distribution includes H2 C(OSiEt3 )2 , CH4 and O(SiEt3 )2 . While this system represents proof-of-concept in CO2 hydrosilylation by a gallium hydride system, the TOF values obtained are relatively modest (max. 10 h-1 ). This is attributed to the strength of binding of the formatoborate anion to the gallium centre in the catalytic intermediate (Dipp L)Ga(Ad){OC(H)OB(C6 F5 )3 }, and the correspondingly slow rate of the turnover-limiting hydrosilylation step. In turn, this strength of binding can be related to the relatively high Lewis acidity measured for the [(Dipp L)Ga(Ad)]+ cation (AN=69.8).
Collapse
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
12
|
Sattler W, Shlian DG, Sambade D, Parkin G. Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Du C, Chen Y. Zinc Powder Catalysed Formylation and Urealation of Amines Using
CO
2
as a
C1
Building Block
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chongyang Du
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
14
|
Yambulatov DS, Petrov PA, Nelyubina YV, Starikova AA, Pavlov AA, Aleshin DY, Nikolaevskii SA, Kiskin MA, Sokolov MN, Eremenko IL. Rare example of structurally characterized mononuclear N-heterocyclic carbene containing zinc carboxylate. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Fernández-Alvarez FJ, Oro LA. Iridium-Catalyzed Homogeneous Hydrogenation and Hydrosilylation of Carbon Dioxide. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Wang X, Chang K, Xu X. Hydroboration of carbon dioxide enabled by molecular zinc dihydrides. Dalton Trans 2020; 49:7324-7327. [DOI: 10.1039/d0dt01090a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular zinc dihydrides were found to be active catalysts for hydroboration of carbon dioxide, selectively giving boryl formate, bis(boryl)acetal, or methoxy-borane compounds by varying the borane reductant.
Collapse
Affiliation(s)
- Xiaoming Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Kejian Chang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
17
|
Zhang Q, Fukaya N, Fujitani T, Choi JC. Carbon Dioxide Hydrosilylation to Methane Catalyzed by Zinc and Other First-Row Transition Metal Salts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiao Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
18
|
Tulewicz A, Wolska-Pietkiewicz M, Jędrzejewska M, Ratajczyk T, Justyniak I, Lewiński J. Towards Extended Zinc Ethylsulfinate Networks by Stepwise Insertion of Sulfur Dioxide into Zn-C Bonds. Chemistry 2019; 25:14072-14080. [PMID: 31379036 DOI: 10.1002/chem.201902733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022]
Abstract
The ability to utilize polluting gases in efficient metal-mediated transformations is one of the most pressing challenges of modern chemistry. Despite numerous studies on the insertion of SO2 into M-C bonds, the chemical reaction of SO2 with organozinc compounds remains little explored. To fill this gap, we report here the systematic study of the reaction of Et2 Zn towards SO2 as well as the influence of Lewis bases on the reaction course. Whereas the equimolar reaction provided a novel example of a structurally characterized organozinc ethylsulfinate compound of general formula [(EtSO2 )ZnEt]n , the utilization of an excess of SO2 led to the formation of the zinc(II) bis(ethylsulfinate) compound [(EtSO2 )2 Zn]n . Moreover, we have discovered that the presence of N-donor Lewis bases represents an efficient tool for the preparation of extended zinc ethylsulfinates, which in turn led to the formation of 1D [(EtSO2 ZnEt)2 (hmta)]n and 2D [((EtSO2 )2 Zn)2 (DABCO)]n ⋅solv (in which solv=THF or toluene, hmta= hexamethylenetetramine, and DABCO=1,4-diazabicyclo[2.2.2]octane) coordination polymers, respectively. The results of DFT calculations on the reactivity of SO2 towards selected Zn-C reactive species as well as the role of an N-donor Lewis base on the stabilization of the transition states complement the discussion.
Collapse
Affiliation(s)
- Adam Tulewicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | | | - Maria Jędrzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.,Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
19
|
Chen J, McGraw M, Chen EYX. Diverse Catalytic Systems and Mechanistic Pathways for Hydrosilylative Reduction of CO 2. CHEMSUSCHEM 2019; 12:4543-4569. [PMID: 31386795 DOI: 10.1002/cssc.201901764] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Catalytic hydrosilylation of carbon dioxide has emerged as a promising approach for carbon dioxide utilization. It allows the reductive transformation of carbon dioxide into value-added products at the levels of formate, formaldehyde, methanol, and methane. Tremendous progress has been made in the area of carbon dioxide hydrosilylation since the first reports in 1981. This focus review describes recent advances in the design and catalytic performance of leading catalyst systems, including transition-metal, main-group, and transition-metal/main-group and main-group/main-group tandem catalysts. Emphasis is placed on discussions of key mechanistic features of these systems and efforts towards the development of more selective, efficient, and sustainable carbon dioxide hydrosilylation processes.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Michael McGraw
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
20
|
Bruyere JC, Gourlaouen C, Karmazin L, Bailly C, Boudon C, Ruhlmann L, de Frémont P, Dagorne S. Synthesis and Characterization of Neutral and Cationic Magnesium Complexes Supported by NHC Ligands. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Charles Bruyere
- Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie-Fédération de Chimie Le Bel, FR2010-1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg Cedex, France
| | - Corinne Bailly
- Service de Radiocristallographie-Fédération de Chimie Le Bel, FR2010-1 rue Blaise Pascal, BP296/R8, 67008 Strasbourg Cedex, France
| | - Corinne Boudon
- Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurent Ruhlmann
- Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Pierre de Frémont
- Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| | - Samuel Dagorne
- Institut de Chimie de Strasbourg, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
21
|
Quinlivan PJ, Shlian DG, Amemiya E, Parkin G. Reactivity of the carbodiphosphorane, (Ph 3P) 2C, towards main group metal alkyl compounds: coordination and cyclometalation. Dalton Trans 2019; 48:9139-9151. [PMID: 31145405 DOI: 10.1039/c9dt00678h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The carbodiphosphorane, (Ph3P)2C, reacts with Me3Al and Me3Ga to afford the adducts, [(Ph3P)2C]AlMe3 and [(Ph3P)2C]GaMe3, which have been structurally characterized by X-ray diffraction. (Ph3P)2C also reacts with Me2Zn and Me2Cd to generate an adduct but the formation is reversible on the NMR time scale. At elevated temperatures, however, elimination of methane and cyclometalation occurs to afford [κ2-Ph3PC{PPh2(C6H4)}]ZnMe and [κ2-Ph3PC{PPh2(C6H4)}]CdMe. Analogous cyclometalated products, [κ2-Ph3P{CPPh2(C6H4)}]ZnN(SiMe3)2 and [κ2-Ph3P{CPPh2(C6H4)}]CdN(SiMe3)2, are also obtained upon reaction of (Ph3P)2C with Zn[N(SiMe3)2]2 and Cd[N(SiMe3)2]2. The magnesium compounds, Me2Mg and {Mg[N(SiMe3)2]2}2, likewise react with (Ph3P)2C to afford cyclometalated derivatives, namely [κ2-Ph3PC{PPh2(C6H4)}]MgN(SiMe3)2 and {[κ2-Ph3PC{PPh2(C6H4)}]MgMe}2. While this reactivity is similar to the zinc system, the magnesium methyl complex is a dimer with bridging methyl groups, whereas the zinc complex is a monomer. The greater tendency of the methyl groups to bridge magnesium centers rather than zinc centers is supported by density functional theory calculations.
Collapse
Affiliation(s)
- Patrick J Quinlivan
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
22
|
Bruyere J, Specklin D, Gourlaouen C, Lapenta R, Veiros LF, Grassi A, Milione S, Ruhlmann L, Boudon C, Dagorne S. Cyclic(Alkyl)(Amino)Carbene (CAAC)‐Supported Zn Alkyls: Synthesis, Structure and Reactivity in Hydrosilylation Catalysis. Chemistry 2019; 25:8061-8069. [DOI: 10.1002/chem.201900961] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jean‐Charles Bruyere
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - David Specklin
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Christophe Gourlaouen
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Rosita Lapenta
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”Università degli Studi di Salerno Via Giovanni Paolo II 84084 Fisciano (SA) Italy
| | - Luis F. Veiros
- Centro de Química EstruturalInstituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais No. 1 1049-001 Lisboa Portugal
| | - Alfonso Grassi
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”Università degli Studi di Salerno Via Giovanni Paolo II 84084 Fisciano (SA) Italy
| | - Stefano Milione
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”Università degli Studi di Salerno Via Giovanni Paolo II 84084 Fisciano (SA) Italy
| | - Laurent Ruhlmann
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Corinne Boudon
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| | - Samuel Dagorne
- Institut de Chimie (UMR CNRS 7177)Université de Strasbourg 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
23
|
Zhang J, Hübner EG, Namyslo JC, Nieger M, Schmidt A. Purine-substituted imidazolium mesomeric betaines and their tautomeric N-heterocyclic carbenes. Formation of a cyclic borane adduct. Org Biomol Chem 2019; 16:6801-6808. [PMID: 30203828 DOI: 10.1039/c8ob01916a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
6-Chloropurine and 2,6-dichloropurine were reacted with N1-substituted imidazoles to give purin-6-yl substituted imidazolium salts, respectively. Deprotonation of the 1-methylimidazolium derivative resulted in the formation of the corresponding stable conjugated mesomeric betaine, whereas the 1-phenyl,- 1-vinyl- and 1-(2-hydroxyethyl) derivatives proved to be unstable. In situ generation of the mesomeric betaines by caesium carbonate in the presence of sulfur and selenium, however, gave the thiones and the selenones of the tautomeric purine-substituted imidazol-2-ylidene, respectively. Its anionic N-heterocyclic carbene was formally trapped by reaction with triethylborane at high temperatures as a cyclic boron adduct which is the first representative of a new heterocyclic ring system. DFT calculations gained insight into the electronic properties of the N-heterocyclic carbenes substituted by π-electron donators. Results of a single crystal X-ray analysis of the boron adduct are presented.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany.
| | | | | | | | | |
Collapse
|
24
|
Guzmán J, García-Orduña P, Polo V, Lahoz FJ, Oro LA, Fernández-Alvarez FJ. Ir-catalyzed selective reduction of CO2 to the methoxy or formate level with HSiMe(OSiMe3)2. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02353k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ir-NSi-based catalysts allow controlling the selective reduction of CO2 with HSiMe(OSiMe3)2 to afford methoxysilane or silyl formate.
Collapse
Affiliation(s)
- Jefferson Guzmán
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Pilar García-Orduña
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Víctor Polo
- Departamento de Química Física – Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) – Universidad de Zaragoza
- Zaragoza
- Spain
| | - Fernando J. Lahoz
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Francisco J. Fernández-Alvarez
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| |
Collapse
|
25
|
Espinosa MR, Charboneau DJ, Garcia de Oliveira A, Hazari N. Controlling Selectivity in the Hydroboration of Carbon Dioxide to the Formic Acid, Formaldehyde, and Methanol Oxidation Levels. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03894] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Matthew R. Espinosa
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - David J. Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - André Garcia de Oliveira
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
26
|
Zaremba R, Dranka M, Trzaskowski B, Chęcińska L, Horeglad P. Probing the M–CNHC Bond and Its Effect on the Synthesis, Structure, and Reactivity of R2MOR(NHC) (M = Al, Ga, In) Complexes. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rafał Zaremba
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Maciej Dranka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Lilianna Chęcińska
- Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236, Lodz, Poland
| | - Paweł Horeglad
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| |
Collapse
|
27
|
Vivancos Á, Segarra C, Albrecht M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. Chem Rev 2018; 118:9493-9586. [PMID: 30014699 DOI: 10.1021/acs.chemrev.8b00148] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mesoionic carbenes are a subclass of the family of N-heterocyclic carbenes that generally feature less heteroatom stabilization of the carbenic carbon and hence impart specific donor properties and reactivity schemes when coordinated to a transition metal. Therefore, mesoionic carbenes and their complexes have attracted considerable attention both from a fundamental point of view as well as for application in catalysis and beyond. As a follow-up of an earlier Chemical Reviews overview from 2009, the organometallic chemistry of N-heterocyclic carbenes with reduced heteroatom stabilization is compiled for the 2008-2017 period, including specifically the chemistry of complexes containing 1,2,3-triazolylidenes, 4-imidazolylidenes, and related 5-membered N-heterocyclic carbenes with reduced heteratom stabilization such as (is)oxazolylidenes, pyrrazolylidenes, and thiazolylidenes, as well as pyridylidenes as 6-membered N-heterocyclic carbenes with reduced heteroatom stabilization. For each ligand subclass, metalation strategies, electronic and steric properties, and applications, in particular, in metal-mediated catalysis, are compiled. Mesoionic carbenes demonstrate particularly high activity in (water) oxidation, hydrogen transfer reactions, and cyclization reactions. Unique features of these ligands are identified such as their dipolar structure, their specific donor properties, as well as stability aspects of the ligand and the complexes, which provides opportunities for further research.
Collapse
Affiliation(s)
- Ángela Vivancos
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland.,Departamento de Química Inorgánica , Universidad de Murcia , Apartado 4021 , 30071 Murcia , Spain
| | - Candela Segarra
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland.,Instituto de Tecnología Química , Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas , Avenida de los Naranjos s/n , 46022 Valencia , Spain
| | - Martin Albrecht
- Department of Chemistry and Biochemistry , University of Bern , Freiestrasse 3 , CH-3012 Bern , Switzerland
| |
Collapse
|
28
|
Fernández‐Alvarez FJ, Oro LA. Homogeneous Catalytic Reduction of CO
2
with Silicon‐Hydrides, State of the Art. ChemCatChem 2018. [DOI: 10.1002/cctc.201800699] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Francisco J. Fernández‐Alvarez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza Facultad de Ciencias 50009 Zaragoza Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza Facultad de Ciencias 50009 Zaragoza Spain
- Center of Refining & PetrochemicalsKing Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| |
Collapse
|
29
|
Tüchler M, Gärtner L, Fischer S, Boese AD, Belaj F, Mösch-Zanetti NC. Efficient CO2
Insertion and Reduction Catalyzed by a Terminal Zinc Hydride Complex. Angew Chem Int Ed Engl 2018; 57:6906-6909. [DOI: 10.1002/anie.201801800] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Tüchler
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| | - Lisa Gärtner
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| | - Susanne Fischer
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
- Institute of Chemistry; Physical and Theoretical Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - A. Daniel Boese
- Institute of Chemistry; Physical and Theoretical Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Ferdinand Belaj
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| | - Nadia C. Mösch-Zanetti
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| |
Collapse
|
30
|
Tüchler M, Gärtner L, Fischer S, Boese AD, Belaj F, Mösch-Zanetti NC. Efficient CO2
Insertion and Reduction Catalyzed by a Terminal Zinc Hydride Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael Tüchler
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| | - Lisa Gärtner
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| | - Susanne Fischer
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
- Institute of Chemistry; Physical and Theoretical Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - A. Daniel Boese
- Institute of Chemistry; Physical and Theoretical Chemistry; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Ferdinand Belaj
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| | - Nadia C. Mösch-Zanetti
- Institute of Chemistry; Inorganic Chemistry; University of Graz; Schubertstrasse 1 8010 Graz Austria
| |
Collapse
|
31
|
Cook BJ, Di Francesco GN, Abboud KA, Murray LJ. Countercations and Solvent Influence CO 2 Reduction to Oxalate by Chalcogen-Bridged Tricopper Cyclophanates. J Am Chem Soc 2018; 140:5696-5700. [PMID: 29676578 DOI: 10.1021/jacs.8b02508] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One-electron reduction of Cu3EL (L3- = tris(β-diketiminate)cyclophane, and E = S, Se) affords [Cu3EL]-, which reacts with CO2 to yield exclusively C2O42- (95% yield, TON = 24) and regenerate Cu3EL. Stopped-flow UV/visible data support an A→B mechanism under pseudo-first-order conditions ( kobs, 298K = 115(2) s-1), which is 106 larger than those for reported copper complexes. The kobs values are dependent on the countercation and solvent (e.g., kobs is greater for [K(18-crown-6)]+ vs (Ph3P)2N+, and there is a 20-fold decrease in kobs in THF vs DMF). Our results suggest a mechanism in which cations and solvent influence the stability of the transition state.
Collapse
|
32
|
Feng G, Du C, Xiang L, del Rosal I, Li G, Leng X, Chen EYX, Maron L, Chen Y. Side Arm Twist on Zn-Catalyzed Hydrosilylative Reduction of CO2 to Formate and Methanol Equivalents with High Selectivity and Activity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guoqin Feng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Chongyang Du
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Iker del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Guangyu Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
33
|
Trose M, Burnett S, Bonyhady SJ, Jones C, Cordes DB, Slawin AMZ, Stasch A. NormalandabnormalNHC coordination in cationic hydride iodide complexes of aluminium. Dalton Trans 2018; 47:10281-10287. [DOI: 10.1039/c8dt01798k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sterically demanding NHC aluminium hydride iodide complexes react with one equivalent of NHC to cationic mixednormal–abnormalNHC AlIIIcomplexes.
Collapse
Affiliation(s)
- Michael Trose
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Stuart Burnett
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Cameron Jones
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - David B. Cordes
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Andreas Stasch
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| |
Collapse
|
34
|
Rauch M, Parkin G. Zinc and Magnesium Catalysts for the Hydrosilylation of Carbon Dioxide. J Am Chem Soc 2017; 139:18162-18165. [DOI: 10.1021/jacs.7b10776] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Rauch
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
35
|
Accessing Two-Coordinate ZnII
Organocations by NHC Coordination: Synthesis, Structure, and Use as π-Lewis Acids in Alkene, Alkyne, and CO2
Hydrosilylation. Chemistry 2017; 23:15908-15912. [DOI: 10.1002/chem.201704382] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 11/07/2022]
|
36
|
Waters JB, Tucker LS, Goicoechea JM. Deprotonation of Group 14 Metal Amide Complexes Bearing Ditopic Carbanionic N-Heterocyclic Carbene Ligands. Constitutional Isomerism and Dynamic Behavior. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jordan B. Waters
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Lajoy S. Tucker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jose M. Goicoechea
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
37
|
Romain C, Garden JA, Trott G, Buchard A, White AJP, Williams CK. Di-Zinc-Aryl Complexes: CO 2 Insertions and Applications in Polymerisation Catalysis. Chemistry 2017; 23:7367-7376. [PMID: 28370511 PMCID: PMC5488170 DOI: 10.1002/chem.201701013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/05/2022]
Abstract
Two new di-zinc-aryl complexes, [LZn2 Ph2 ] and [LZn2 (C6 F5 )2 ], coordinated by a diphenol tetraamine macrocyclic ligand have been prepared and fully characterised, including by single-crystal X-ray diffraction experiments. The complexes' reactivities with monomers including carbon dioxide, cyclohexene oxide, phthalic anhydride, isopropanol and phenol were investigated using both experimental studies and density functional theory calculations. In particular, [LZn2 Ph2 ] readily inserts carbon dioxide to form a carboxylate, at 1 bar pressure, whereas [LZn2 (C6 F5 )2 ] does not react. Under these conditions [LZn2 Ph2 ] shows moderate activity in the ring-opening copolymerisation of cyclohexene oxide/carbon dioxide (TOF=20 h-1 ), cyclohexene oxide/phthalic anhydride (TOF=33 h-1 ) and the ring-opening polymerisations of rac-lactide (TOF=99 h-1 ) and ϵ-caprolactone (TOF=5280 h-1 ).
Collapse
Affiliation(s)
- Charles Romain
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | | | - Gemma Trott
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX2 3TAUK
| | | | | | - Charlotte K. Williams
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX2 3TAUK
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| |
Collapse
|