1
|
D'Anna L, Froux A, Rainot A, Spinello A, Perricone U, Barbault F, Grandemange S, Barone G, Terenzi A, Monari A. Resolving the Structure of a Guanine Quadruplex in TMPRSS2 Messenger RNA by Circular Dichroism and Molecular Modeling. Chemistry 2024; 30:e202403572. [PMID: 39365977 DOI: 10.1002/chem.202403572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
The presence of a guanine quadruplex in the opening reading frame of the messenger RNA coding for the transmembrane serine protease 2 (TMPRSS2) may pave the way to original anticancer and host-oriented antiviral strategy. Indeed, TMPRSS2 in addition to being overexpressed in different cancer types, is also related to the infection of respiratory viruses, including SARS-CoV-2, by promoting the cellular and viral membrane fusion through its proteolytic activity. The design of selective ligands targeting TMPRSS2 messenger RNA requires a detailed knowledge, at atomic level, of its structure. Therefore, we have used an original experimental-computational protocol to predict the first resolved structure of the parallel guanine quadruplex secondary structure in the RNA of TMPRSS2, which shows a rigid core flanked by a flexible loop. This represents the first atomic scale structure of the guanine quadruplex structure present in TMPRSS2 messenger RNA.
Collapse
Affiliation(s)
- Luisa D'Anna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, Edificio 17, Palermo, 90128, Italy
| | - Aurane Froux
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, Edificio 17, Palermo, 90128, Italy
- Université de Lorraine and CNRS, UMR 7039 CRAN, Nancy, F-54000, France
| | - Aurianne Rainot
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, Edificio 17, Palermo, 90128, Italy
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| | - Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, Edificio 17, Palermo, 90128, Italy
| | - Ugo Perricone
- Fondazione Ri.MED, Via Filippo Marini 14, Palermo, 90128, Italy
| | | | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, Edificio 17, Palermo, 90128, Italy
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università di Palermo, Viale delle Scienze, Edificio 17, Palermo, 90128, Italy
| | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, Paris, F-75013, France
| |
Collapse
|
2
|
Bednarz A, Rosendal RT, Lund LM, Birkedal V. Probing G-quadruplex-ligand binding using DNA intrinsic fluorescence. Biochimie 2024; 227:61-67. [PMID: 38936685 DOI: 10.1016/j.biochi.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
G-quadruplexes (G4s) are helical four-stranded nucleic acid structures that can form in guanine-rich sequences, which are mostly found in functional cellular regions, such as telomeres, promoters, and DNA replication origins. Great efforts are being made to target these structures towards the development of specific small molecule G4 binders for novel anti-cancer, neurological, and viral therapies. Here, we introduce an optical assay based on quenching of the intrinsic fluorescence of DNA G-quadruplexes for assessing and comparing the G4 binding affinity of various small molecule ligands in solutions. We show that the approach allows direct quantification of ligand binding to distinctive G4 topologies. We believe that this method will facilitate quick and reliable evaluation of small molecule G4 ligands and support their development.
Collapse
Affiliation(s)
- Aleksandra Bednarz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark
| | - Rebecca Torp Rosendal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark
| | - Line Mørkholt Lund
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark; Department of Chemistry, Aarhus University, Denmark.
| |
Collapse
|
3
|
Laigre E, Bonnet H, Beauvineau C, Lavergne T, Verga D, Defrancq E, Dejeu J, Teulade-Fichou MP. Systematic Evaluation of Benchmark G4 Probes and G4 Clinical Drugs using three Biophysical Methods: A Guideline to Evaluate Rapidly G4-Binding Affinity. Chembiochem 2024; 25:e202400210. [PMID: 38619969 DOI: 10.1002/cbic.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
G-quadruplex DNA structures (G4) are proven to interfere with most genetic and epigenetic processes. Small molecules binding these structures (G4 ligands) are invaluable tools to probe G4-biology and address G4-druggability in various diseases (cancer, viral infections). However, the large number of reported G4 ligands (>1000) could lead to confusion while selecting one for a given application. Herein we conducted a systematic affinity ranking of 11 popular G4 ligands vs 5 classical G4 sequences using FRET-melting, G4-FID assays and SPR. Interestingly SPR data globally align with the rankings obtained from the two semi-quantitative assays despite discrepancies due to limits and characteristics of each assay. In the whole, PhenDC3 emerges as the most potent binder irrespective of the G4 sequence. Immediately below PDS, PDC-360A, BRACO19, TMPyP4 and RHPS4 feature strong to medium binding again with poor G4 topology discrimination. More strikingly, the G4 drugs Quarfloxin, CX5461 and c-PDS exhibit weak affinity with all G4s studied. Finally, NMM and Cu-ttpy showed heterogeneous behaviors due, in part, to their physicochemical particularities poorly compatible with screening conditions. The remarkable properties of PhenDC3 led us to propose its use for benchmarking FRET-melting and G4-FID assays for rapid G4-affinity evaluation of newly developed ligands.
Collapse
Affiliation(s)
- E Laigre
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - H Bonnet
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - C Beauvineau
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - T Lavergne
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - D Verga
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - E Defrancq
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - J Dejeu
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
- SUPMICROTECH, Université Franche-Comté, CNRS, Institut FEMTO-ST, 25000, Besançon, France
| | - M-P Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| |
Collapse
|
4
|
Luo Y, Granzhan A, Marquevielle J, Cucchiarini A, Lacroix L, Amrane S, Verga D, Mergny JL. Guidelines for G-quadruplexes: I. In vitro characterization. Biochimie 2023; 214:5-23. [PMID: 36596406 DOI: 10.1016/j.biochi.2022.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Besides the well-known DNA double-helix, non-canonical nucleic acid structures regulate crucial biological activities. Among these oddities, guanine-rich DNA sequences can form unusual four-stranded secondary structures called G-quadruplexes (G4s). G4-prone sequences have been found in the genomes of most species, and G4s play important roles in essential processes such as transcription, replication, genome integrity and epigenetic regulation. Here, we present a short overview of G-quadruplexes followed by a detailed description of the biophysical and biochemical methods used to characterize G4s in vitro. The principles, experimental details and possible shortcomings of each method are discussed to provide a comprehensive view of the techniques used to study these structures. We aim to provide a set of guidelines for standardizing research on G-quadruplexes; these guidelines are not meant to be a dogmatic set of rules, but should rather provide useful information on the methods currently used to study these fascinating motifs.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
| | - Julien Marquevielle
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Anne Cucchiarini
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Laurent Lacroix
- Institut de Biologie de L'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Samir Amrane
- Université de Bordeaux, ARNA Laboratory, INSERM U1212, CNRS UMR 5320, IECB, 33076, Bordeaux, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France; CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France.
| | - Jean-Louis Mergny
- Laboratoire D'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91120, Palaiseau, France; Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
5
|
Deiana M, Andrés Castán J, Josse P, Kahsay A, Sánchez D, Morice K, Gillet N, Ravindranath R, Patel A, Sengupta P, Obi I, Rodriguez-Marquez E, Khrouz L, Dumont E, Abad Galán L, Allain M, Walker B, Ahn HS, Maury O, Blanchard P, Le Bahers T, Öhlund D, von Hofsten J, Monnereau C, Cabanetos C, Sabouri N. A new G-quadruplex-specific photosensitizer inducing genome instability in cancer cells by triggering oxidative DNA damage and impeding replication fork progression. Nucleic Acids Res 2023; 51:6264-6285. [PMID: 37191066 PMCID: PMC10325911 DOI: 10.1093/nar/gkad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Abraha Kahsay
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Korentin Morice
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Ranjitha Ravindranath
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Indian Institute for Science Education and Research (IISER), Tirupati-517507, India
| | - Ankit Kumar Patel
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 87, Umeå, Sweden
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Elise Dumont
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Laura Abad Galán
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Seo Ahn
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Olivier Maury
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | | | - Tangui Le Bahers
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Daniel Öhlund
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 87, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Cyrille Monnereau
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
- Building Blocks for FUture Electronics Laboratory (2BFUEL), IRL CNRS 2002, Yonsei University, Seoul, South Korea
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
6
|
Miclot T, Froux A, D'Anna L, Bignon E, Grandemange S, Barone G, Monari A, Terenzi A. Understanding the Interactions of Guanine Quadruplexes with Peptides as Novel Strategies for Diagnosis or Tuning Biological Functions. Chembiochem 2023; 24:e202200624. [PMID: 36598366 DOI: 10.1002/cbic.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches. We also show how the combined use of high-level molecular simulation techniques and experimental spectroscopy is the best avenue to design specifically tuned and selective peptides, thus leading to the control of important biological functions.
Collapse
Affiliation(s)
- Tom Miclot
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | - Aurane Froux
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, UMR 7039 CRAN, 54000, Nancy, France
| | - Luisa D'Anna
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | | | - Giampaolo Barone
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, 75006, Paris, France
| | - Alessio Terenzi
- Universita di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, 90128, Palermo, Italy
| |
Collapse
|
7
|
Reznichenko O, Leclercq D, Franco Pinto J, Mouawad L, Gabelica V, Granzhan A. Optimization of G-Quadruplex Ligands through a SAR Study Combining Parallel Synthesis and Screening of Cationic Bis(acylhydrazones). Chemistry 2023; 29:e202202427. [PMID: 36286608 PMCID: PMC10099395 DOI: 10.1002/chem.202202427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/06/2022]
Abstract
G-quadruplexes (G4s), secondary structures adopted by guanine-rich DNA and RNA sequences, are implicated in numerous biological processes and have been suggested as potential drug targets. Accordingly, there is an increasing interest in developing high-throughput methods that allow the generation of congeneric series of G4-targeting molecules ("ligands") and investigating their interactions with the targets. We have developed an operationally simple method of parallel synthesis to generate "ready-to-screen" libraries of cationic acylhydrazones, a motif that we have previously identified as a promising scaffold for potent, biologically active G4 ligands. Combined with well-established screening techniques, such as fluorescence melting, this method enables the rapid synthesis and screening of combinatorial libraries of potential G4 ligands. Following this protocol, we synthesized a combinatorial library of 90 bis(acylhydrazones) and screened it against five different nucleic acid structures. This way, we were able to analyze the structure-activity relationships within this series of G4 ligands, and identified three novel promising ligands whose interactions with G4-DNAs of different topologies were studied in detail by a combination of several biophysical techniques, including native mass spectrometry, and molecular modeling.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Denis Leclercq
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Jaime Franco Pinto
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Liliane Mouawad
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Valérie Gabelica
- Univ. BordeauxCNRS, INSERM, ARNAUMR 5320, U1212, IECB33600PessacFrance
| | - Anton Granzhan
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| |
Collapse
|
8
|
Luo Y, Verga D, Mergny JL. Iso-FRET: an isothermal competition assay to analyze quadruplex formation in vitro. Nucleic Acids Res 2022; 50:e93. [PMID: 35670668 PMCID: PMC9458428 DOI: 10.1093/nar/gkac465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Algorithms have been widely used to predict G-quadruplexes (G4s)-prone sequences. However, an experimental validation of these predictions is generally required. We previously reported a high-throughput technique to evidence G4 formation in vitro called FRET-MC. This method, while convenient and reproducible, has one known weakness: its inability to pin point G4 motifs of low thermal stability. As such quadruplexes may still be biologically relevant if formed at physiological temperature, we wanted to develop an independent assay to overcome this limitation. To this aim, we introduced an isothermal version of the competition assay, called iso-FRET, based on a duplex-quadruplex competition and a well-characterized bis-quinolinium G4 ligand, PhenDC3. G4-forming competitors act as decoys for PhenDC3, lowering its ability to stabilize the G4-forming motif reporter oligonucleotide conjugated to a fluorescence quencher (37Q). The decrease in available G4 ligand concentration restores the ability of 37Q to hybridize to its FAM-labeled short complementary C-rich strand (F22), leading to a decrease in fluorescence signal. In contrast, when no G4-forming competitor is present, PhenDC3 remains available to stabilize the 37Q quadruplex, preventing the formation of the F22 + 37Q complex. Iso-FRET was first applied to a reference panel of 70 sequences, and then used to investigate 23 different viral sequences.
Collapse
Affiliation(s)
- Yu Luo
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
9
|
Pipier A, Devaux A, Lavergne T, Adrait A, Couté Y, Britton S, Calsou P, Riou JF, Defrancq E, Gomez D. Constrained G4 structures unveil topology specificity of known and new G4 binding proteins. Sci Rep 2021; 11:13469. [PMID: 34188089 PMCID: PMC8241873 DOI: 10.1038/s41598-021-92806-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical secondary structures consisting in stacked tetrads of hydrogen-bonded guanines bases. An essential feature of G4 is their intrinsic polymorphic nature, which is characterized by the equilibrium between several conformations (also called topologies) and the presence of different types of loops with variable lengths. In cells, G4 functions rely on protein or enzymatic factors that recognize and promote or resolve these structures. In order to characterize new G4-dependent mechanisms, extensive researches aimed at identifying new G4 binding proteins. Using G-rich single-stranded oligonucleotides that adopt non-controlled G4 conformations, a large number of G4-binding proteins have been identified in vitro, but their specificity towards G4 topology remained unknown. Constrained G4 structures are biomolecular objects based on the use of a rigid cyclic peptide scaffold as a template for directing the intramolecular assembly of the anchored oligonucleotides into a single and stabilized G4 topology. Here, using various constrained RNA or DNA G4 as baits in human cell extracts, we establish the topology preference of several well-known G4-interacting factors. Moreover, we identify new G4-interacting proteins such as the NELF complex involved in the RNA-Pol II pausing mechanism, and we show that it impacts the clastogenic effect of the G4-ligand pyridostatin.
Collapse
Affiliation(s)
- A Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - A Devaux
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - T Lavergne
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - A Adrait
- CEA, INSERM, IRIG, BGE, Université Grenoble Alpes, 38000, Grenoble, France
| | - Y Couté
- CEA, INSERM, IRIG, BGE, Université Grenoble Alpes, 38000, Grenoble, France
| | - S Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - P Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - J F Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 75005, Paris, France
| | - E Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - D Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France.
| |
Collapse
|
10
|
Banerjee N, Panda S, Chatterjee S. Frontiers in G-Quadruplex Therapeutics in Cancer: Selection of Small Molecules, Peptides and Aptamers. Chem Biol Drug Des 2021; 99:1-31. [PMID: 34148284 DOI: 10.1111/cbdd.13910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022]
Abstract
G-quadruplex, a unique secondary structure in nucleic acids found throughout human genome, elicited widespread interest in the field of therapeutic research. Being present in key regulatory regions of oncogenes, RNAs and telomere, G-quadruplex structure regulates transcription, translation, splicing etc. Changes in its structure and stability leads to differential expression of oncogenes causing cancer. Thus, targeting G-Quadruplex structures with small molecules/other biologics has shown elevated research interest. Covering previous reports, in this review we try to enlighten the facts on the structural diversity in G-quadruplex ligands aiming to provide newer insights to design first-in-class drugs for the next generation cancer treatment.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| | - Suman Panda
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, India
| |
Collapse
|
11
|
Reznichenko O, Cucchiarini A, Gabelica V, Granzhan A. Quadruplex DNA-guided ligand selection from dynamic combinatorial libraries of acylhydrazones. Org Biomol Chem 2021; 19:379-386. [PMID: 33325973 DOI: 10.1039/d0ob01908a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic combinatorial libraries of acylhydrazones were prepared from diacylhydrazides and several cationic or neutral aldehydes in the presence of 5-methoxyanthranilic acid catalyst. Pull-down experiments with magnetic beads functionalized with a G-quadruplex (G4)-forming oligonucleotide led to the identification of putative ligands, which were resynthesized or emulated by close structural analogues. G4-binding properties of novel derivatives were assessed by fluorimetric titrations, mass spectrometry and thermal denaturation experiments, giving evidence of strong binding (Kd < 10 nM) for two compounds.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| | - Anne Cucchiarini
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, 33600 Pessac, France
| | - Anton Granzhan
- CNRS UMR9187, Inserm U1196, Institut Curie, PSL Research University, 91405 Orsay, France. and CNRS UMR9187, Inserm U1196, Université Paris Saclay, 91405 Orsay, France
| |
Collapse
|
12
|
Mestre-Fos S, Ito C, Moore CM, Reddi AR, Williams LD. Human ribosomal G-quadruplexes regulate heme bioavailability. J Biol Chem 2020; 295:14855-14865. [PMID: 32817343 PMCID: PMC7606673 DOI: 10.1074/jbc.ra120.014332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
The in vitro formation of stable G-quadruplexes (G4s) in human rRNA was recently reported. However, their formation in cells and their cellular roles were not resolved. Here, by taking a chemical biology approach that integrates results from immunofluorescence, G4 ligands, heme-affinity reagents, and a genetically encoded fluorescent heme sensor, we report that human ribosomes can form G4s in vivo that regulate heme bioavailability. Immunofluorescence experiments indicate that the vast majority of extra-nuclear G4s are associated with rRNA. Moreover, titrating human cells with a G4 ligand alters the ability of ribosomes to bind heme and disrupts cellular heme bioavailability as measured by a genetically encoded fluorescent heme sensor. Overall, these results suggest that ribosomes play a role in regulating heme homeostasis.
Collapse
Affiliation(s)
- Santi Mestre-Fos
- Center for the Origin of Life, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Chieri Ito
- Center for the Origin of Life, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Courtney M Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | - Loren Dean Williams
- Center for the Origin of Life, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA; Parker Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
13
|
Berlyoung AS, Armitage BA. Assembly and Characterization of RNA/DNA Hetero-G-Quadruplexes. Biochemistry 2020; 59:4072-4080. [PMID: 33048532 DOI: 10.1021/acs.biochem.0c00657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transient association of guanine-rich RNA and DNA in the form of hetero-G-quadruplexes (RDQs) has emerged as an important mechanism for regulating genome transcription and replication but relatively little is known about the structure and biophysical properties of RDQs compared with DNA and RNA homo-G-quadruplexes. Herein, we report the assembly and characterization of three RDQs based on sequence motifs found in human telomeres and mitochondrial nucleic acids. Stable RDQs were assembled using a duplex scaffold, which prevented segregation of the DNA and RNA strands into separate homo-GQs. Each of the RDQs exhibited UV melting temperatures above 50 °C in 100 mM KCl and predominantly parallel morphologies, evidently driven by the RNA component. The fluorogenic dye thioflavin T binds to each RDQ with low micromolar KD values, similar to its binding to RNA and DNA homo-GQs. These results establish a method for assembling RDQs that should be amenable to screening compounds and libraries to identify selective RDQ-binding small molecules, oligonucleotides, and proteins.
Collapse
Affiliation(s)
- April S Berlyoung
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bruce A Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Sontakke VA, Srivatsan SG. A dual-app nucleoside probe reports G-quadruplex formation and ligand binding in the long terminal repeat of HIV-1 proviral genome. Bioorg Med Chem Lett 2020; 30:127345. [PMID: 32631544 DOI: 10.1016/j.bmcl.2020.127345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
We have developed a dual-app nucleoside analog, 5-selenophene-modified 2'-deoxyuridine (SedU), to probe the structure and ligand-binding properties of a G-rich segment present in the long terminal repeat (LTR) of the HIV-1 proviral DNA promoter region. The nucleoside probe is made of an environment-responsive fluorophore and X-ray crystallography phasing label (Se atom). SedU incorporated into LTR-IV sequence, fluorescently reports the formation of G-quadruplex (GQ) structure without affecting the native fold. Further, using the environment sensitivity of the probe, a fluorescence assay was designed to estimate the binding affinity of small molecule ligands to the GQ motif. An added feature of this probe system is that it would enable direct correlation of structure and recognition properties in solution and atomic level by using a combination of fluorescence and X-ray crystallography techniques.
Collapse
Affiliation(s)
- Vyankat A Sontakke
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
15
|
Devaux A, Bonnat L, Lavergne T, Defrancq E. Access to a stabilized i-motif DNA structure through four successive ligation reactions on a cyclopeptide scaffold. Org Biomol Chem 2020; 18:6394-6406. [DOI: 10.1039/d0ob01311k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Four successive chemical ligations were used for the assembly of a sophisticated biomolecular system allowing the formation of a stabilized i-motif DNA at pH 7.
Collapse
Affiliation(s)
- Alexandre Devaux
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Laureen Bonnat
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Thomas Lavergne
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| | - Eric Defrancq
- Univ. Grenoble Alpes
- Département de Chimie Moléculaire
- CNRS
- Grenoble 38000
- France
| |
Collapse
|
16
|
Deiana M, Jamroskovic J, Obi I, Sabouri N. Unravelling the cellular emission fingerprint of the benchmark G-quadruplex-interactive compound Phen-DC3. Chem Commun (Camb) 2020; 56:14251-14254. [DOI: 10.1039/d0cc05483f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The G4-interactive binding interactions enable one to tune the optical properties of Phen-DC3, allowing the detection of G4 structures in cancer cells.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics
- Umeå University
- Umeå 90187
- Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics
- Umeå University
- Umeå 90187
- Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics
- Umeå University
- Umeå 90187
- Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics
- Umeå University
- Umeå 90187
- Sweden
| |
Collapse
|
17
|
Bonnat L, Dautriche M, Saidi T, Revol-Cavalier J, Dejeu J, Defrancq E, Lavergne T. Scaffold stabilization of a G-triplex and study of its interactions with G-quadruplex targeting ligands. Org Biomol Chem 2019; 17:8726-8736. [PMID: 31549116 DOI: 10.1039/c9ob01537j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-triplex nucleic acid structures (G3) have been conjectured to form in vivo but little is known about their physiological functions. The identification of ligands capable of specific binding to G3 structures is therefore highly appealing but remains elusive. Here we report on the assembly of a DNA conjugate which folds into a stable G3 structure. The structural mimic was used to probe the interactions between a G3 ligand and first-in-class G4 ligands, revealing signification binding promiscuity.
Collapse
Affiliation(s)
- Laureen Bonnat
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| | - Maelle Dautriche
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| | - Taous Saidi
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| | - Johana Revol-Cavalier
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| | - Eric Defrancq
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| | - Thomas Lavergne
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, CNRS, 570 rue de la chimie, CS 40700, Grenoble 38000, France.
| |
Collapse
|
18
|
Weynand J, Diman A, Abraham M, Marcélis L, Jamet H, Decottignies A, Dejeu J, Defrancq E, Elias B. Towards the Development of Photo‐Reactive Ruthenium(II) Complexes Targeting Telomeric G‐Quadruplex DNA. Chemistry 2018; 24:19216-19227. [DOI: 10.1002/chem.201804771] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Justin Weynand
- Université catholique de Louvain (UCLouvain)Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
- Université Grenoble-Alpes (UGA)Département de Chimie Moléculaire, UMR CNRS 5250, CS 40700 38058 Grenoble France
| | - Aurélie Diman
- Université catholique de Louvain (UCLouvain) de Duve Institute Avenue Hippocrate 75 1200 Brussels Belgium
| | - Michaël Abraham
- Université catholique de Louvain (UCLouvain)Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Lionel Marcélis
- Université catholique de Louvain (UCLouvain)Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Hélène Jamet
- Université Grenoble-Alpes (UGA)Département de Chimie Moléculaire, UMR CNRS 5250, CS 40700 38058 Grenoble France
| | - Anabelle Decottignies
- Université catholique de Louvain (UCLouvain) de Duve Institute Avenue Hippocrate 75 1200 Brussels Belgium
| | - Jérôme Dejeu
- Université Grenoble-Alpes (UGA)Département de Chimie Moléculaire, UMR CNRS 5250, CS 40700 38058 Grenoble France
| | - Eric Defrancq
- Université Grenoble-Alpes (UGA)Département de Chimie Moléculaire, UMR CNRS 5250, CS 40700 38058 Grenoble France
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain)Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
19
|
Agramunt J, Saltor L, Pedroso E, Grandas A. Compatibility between the cysteine-cyclopentenedione reaction and the copper(i)-catalyzed azide-alkyne cycloaddition. Org Biomol Chem 2018; 16:9185-9190. [PMID: 30457146 DOI: 10.1039/c8ob02451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cysteine-cyclopentenedione reaction can be combined with the copper(i)-catalyzed azide-alkyne cycloaddition provided that the former is carried out first. If not, the azide and the cyclopentenedione undergo a 1,3-dipolar cycloaddition, which furnishes triazole-containing compounds and products resulting from nitrogen loss. Both of these products were fully characterized. Attempts to obtain either of them as the main compound or to drive the reaction nearly to completion were unsuccessful, which points to the azide-cyclopentenedione reaction as not being useful for bioconjugation.
Collapse
Affiliation(s)
- Jordi Agramunt
- Departament de Química Inorgànica i Orgànica (secció de Química Orgànica) and IBUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
20
|
Prado E, Bonnat L, Bonnet H, Lavergne T, Van der Heyden A, Pratviel G, Dejeu J, Defrancq E. Influence of the SPR Experimental Conditions on the G-Quadruplex DNA Recognition by Porphyrin Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13057-13064. [PMID: 30293430 DOI: 10.1021/acs.langmuir.8b02942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface plasmon resonance (SPR) is a powerful technique to study the interactions of ligands with analytes and therefore a number of biosensor surfaces and injection methods have been developed so far. However, many experimental parameters can affect the interactions and consequently the affinity measurements. In particular, the interactions of positively charged analytes (often used for anionic nucleic acids targets) can be influenced by the sensing surfaces (e.g., negatively charged), leading to significant nonspecific interactions as well as regeneration problems. The aim of the present work is to investigate the effect of different parameters, including ionic strength, SPR biosensor (i.e., nature of the surfaces), and the injection method on the recognition of porphyrin G-quadruplex ligands. We demonstrate that the injection method does not influence the affinity whereas the ionic strength and the nature of the surface impact the recognition properties of the porphyrin for the G-quadruplex DNA. We also found that self-assembled monolayer coating surface presents many advantages in comparison with carboxymethylated dextran surface for SPR studies of G-quadruplex DNA/ligand interactions: (i) the electrostatic interaction with charged analytes is less important, (ii) its structure/composition is less sensitive to the ionic concentration and less prone to unspecific adsorption, (iii) it is easily homemade, and (iv) the cost is approximately 10 times cheaper.
Collapse
Affiliation(s)
- E Prado
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - L Bonnat
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - H Bonnet
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - T Lavergne
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | | | - G Pratviel
- CNRS, Laboratoire de Chimie de Coordination , 205 route de Narbonne, BP44099 , F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT , Toulouse , France
| | - J Dejeu
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - E Defrancq
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| |
Collapse
|
21
|
Beauvineau C, Guetta C, Teulade-Fichou MP, Mahuteau-Betzer F. PhenDV, a turn-off fluorescent quadruplex DNA probe for improving the sensitivity of drug screening assays. Org Biomol Chem 2017; 15:7117-7121. [DOI: 10.1039/c7ob01705g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PhenDV is a light-up probe for G4-fluorescent intercalator displacement. This potent G4-DNA binder discriminates between medium and high-affinity ligands.
Collapse
Affiliation(s)
| | - Corinne Guetta
- Institut Curie
- PSL Research University
- CNRS
- INSERM
- UMR9187/U1196
| | | | | |
Collapse
|