1
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Abstract
Asymmetric catalysis has emerged as a general and powerful approach for constructing chiral compounds in an enantioselective manner. Hence, developing novel chiral ligands and catalysts that can effectively induce asymmetry in reactions is crucial in modern chemical synthesis. Among such chiral ligands and catalysts, chiral dienes and their metal complexes have received increased attention, and a great progress has been made over the past two decades. This review provides comprehensive and critical information on the essential aspects of chiral diene ligands and their importance in asymmetric catalysis. The literature covered ranges from August 2003 (when the first effective chiral diene ligand for asymmetric catalysis was reported) to October 2021. This review is divided into two parts. In the first part, the chiral diene ligands are categorized according to their structures, and their preparation methods are summarized. In the second part, their applications in asymmetric transformations are presented according to the reaction types.
Collapse
Affiliation(s)
- Yinhua Huang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tamio Hayashi
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Cheng YY, Li WS, Wu HL. Application of Rh(I)/Bicyclo[2.2.1]heptadiene Catalysts to the Enantioselective Synthesis of Chiral Amines. CHEM REC 2021; 21:3954-3963. [PMID: 34596958 DOI: 10.1002/tcr.202100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
The development of efficient synthetic methods for accessing enantioenriched α-chiral amines is of great importance in the disciplines of medicinal and synthetic organic chemistry. Enantioselective Rh-catalyzed 1,2-addition reactions to activated imine derivatives are regarded as useful protocols for forming α-chiral amines. This personal account outlines our efforts to develop chiral bicyclo[2.2.1]heptadiene ligands for Rh-catalyzed asymmetric additions of various organoboron reagents to a wide range of imine derivatives. Transformations of the thus-obtained adducts into known natural products or molecules of pharmaceutical importance serve to confirm their synthetic usefulness.
Collapse
Affiliation(s)
- Yu-Yi Cheng
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No.88, Sec. 4, Tingzhou Rd., Taipei, 11677, Taiwan
| |
Collapse
|
4
|
Bieliūnas V, Stončius S. Fine‐Tuning the Bicyclo[3.3.1]nona‐2,6‐diene Ligands: Second Generation 4,8‐Substituted Dienes for Rh‐Catalyzed Asymmetric 1,4‐Addition Reactions. ChemCatChem 2021. [DOI: 10.1002/cctc.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vidmantas Bieliūnas
- Department of Organic Chemistry Vilnius University Naugarduko 24 LT-03225 Vilnius Lithuania
- Present Address: Molecular Design and Synthesis Department of Chemistry KU Leuven Celestijnenlaan 200F Box 2404 3001 Leuven Belgium
| | - Sigitas Stončius
- Department of Organic Chemistry Center for Physical Sciences and Technology Akademijos 7 LT-08412 Vilnius Lithuania
| |
Collapse
|
5
|
Li WS, Kuo TS, Wu PY, Chen CT, Wu HL. Enantioselective Synthesis of 1-Aryl Tetrahydroisoquinolines by the Rhodium-Catalyzed Reaction of 3,4-Dihydroisoquinolinium Tetraarylborates. Org Lett 2021; 23:1141-1146. [PMID: 33492973 DOI: 10.1021/acs.orglett.1c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 1-aryl tetrahydroisoquinolines (1-aryl THIQs) are omnipresent in biologically active molecules. Here we report on the direct asymmetric synthesis of these valuable compounds via the reaction of 3,4-dihydroisoquinolinium tetraarylborates. The dual roles of anionic tetraarylborates, which function as both prenucleophiles and stabilizers of 3,4-dihydroisoquinolinium cations, enable this rhodium(I)-catalyzed protocol to convergently provide enantioenriched 1-aryl THIQs in good yields (≤95%) with ≤97% ee, as demonstrated by the formal synthesis of (-)-solifenacin and the facile synthesis of (-)-Cryptostyline I.
Collapse
Affiliation(s)
- Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Company, Ltd., 1F, No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Xue ZJ, Lu HY, Fu JG, Feng CG, Lin GQ. An azo-bridged ring system enabled by-standing immobilization of a chiral diene ligand. Org Chem Front 2021. [DOI: 10.1039/d1qo00852h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of 9-azabicyclo[3.3.1]nonadiene ligands were developed, and the nitrogen atom in the bridged ring enables a facile immobilization of diene ligands to silica.
Collapse
Affiliation(s)
- Ze-Jian Xue
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Guo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
7
|
Huang Y, Wang L, Li J, Qiu H, Leung PH. Enantioselective C,P-Palladacycle-Catalyzed Arylation of Imines. ACS OMEGA 2020; 5:15936-15941. [PMID: 32656414 PMCID: PMC7345393 DOI: 10.1021/acsomega.0c01124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Chiral diarylmethylamines are of great interest because of their prevalence in biological and pharmaceutical sciences. Herein, we report a C,P-palladacycle-catalyzed enantioselective synthesis of chiral diarylmethylamines via asymmetric arylation of N-protected imines with arylboronic acids. The C,P-palladacycle showed high reactivity (up to 99% yield) and enantioselectivity (up to 99% ee) toward this arylation, enabling the tolerance of a wide range of functionalities, providing a convenient and efficient access to enantiomerically enriched diarylmethylamines. The absolute configuration of the product was well rationalized by the proposed stereochemical pathway and the catalytical cycle.
Collapse
Affiliation(s)
- Yinhua Huang
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lijun Wang
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Junbao Li
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huayu Qiu
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pak-Hing Leung
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
8
|
Li WS, Kuo TS, Hsieh MC, Tsai MK, Wu PY, Wu HL. Enantioselective Rhodium-Catalyzed Allylation of Aliphatic Imines: Synthesis of Chiral C-Aliphatic Homoallylic Amines. Org Lett 2020; 22:5675-5679. [PMID: 32628021 DOI: 10.1021/acs.orglett.0c02069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reported herein is a method for the efficient syntheses of optically active 1-alkyl homoallylic amines in yields up to 95%, 13.5:1 dr, and 98% ee under mild, aqueous reaction conditions, via the Rh-catalyzed asymmetric allylation of aliphatic aldimines. This method provides a streamlined synthetic platform for the preparation of indolizidine and piperidine alkaloids, thus demonstrating its usefulness.
Collapse
Affiliation(s)
- Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Meng-Chi Hsieh
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ming-Kang Tsai
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co., Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
9
|
Yonesaki R, Kusagawa I, Morimoto H, Hayashi T, Ohshima T. Rhodium(I)/Chiral Diene‐Catalyzed Enantioselective Addition of Boronic Acids to
N
‐Unsubstituted Isatin‐Derived Ketimines. Chem Asian J 2020; 15:499-502. [DOI: 10.1002/asia.201901745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ryohei Yonesaki
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi 3-1-1 Higashi-ku Fukuoka 812-8582 Japan
| | - Ibuki Kusagawa
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi 3-1-1 Higashi-ku Fukuoka 812-8582 Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi 3-1-1 Higashi-ku Fukuoka 812-8582 Japan
| | - Tamio Hayashi
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Takashi Ohshima
- Graduate School of Pharmaceutical SciencesKyushu University Maidashi 3-1-1 Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
10
|
Roy D, Panda G. Benzhydryl Amines: Synthesis and Their Biological Perspective. ACS OMEGA 2020; 5:19-30. [PMID: 31956747 PMCID: PMC6963937 DOI: 10.1021/acsomega.9b03090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
The current review describes the recent progress in the chemistry and biology of the benzhydryl amines where the central carbon atom is directly attached to the nitrogen atom of one ring and which have published in the last five years (2015-2019). Both metal and metal-free racemic and asymmetric synthetic approaches along with their activities as anti-leishmanial, antiviral, antibacterial, and anti-aromatase and other miscellaneous properties are discussed.
Collapse
Affiliation(s)
| | - Gautam Panda
- E-mail: , . Phone: 915222772450,
ext 4659. Fax: 915222771941
| |
Collapse
|
11
|
Jian JH, Zeng HW, Kuo TS, Wu PY, Wu HL. Asymmetric Synthesis of Functionalized Phenylalanine Derivatives via Rh-Catalyzed Conjugate Addition and Enantioselective Protonation Cascade. Org Lett 2019; 21:9468-9472. [DOI: 10.1021/acs.orglett.9b03666] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jia-Hong Jian
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Hao-Wei Zeng
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co., Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou
Township, Hsinchu 30345, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|
12
|
Wang X, Ou Y, Peng Z, Yu G, Huang Y, Li X, Huo Y, Chen Q. TBHP/NH 4I-Mediated Direct N-H Phosphorylation of Imines and Imidates. J Org Chem 2019; 84:14949-14956. [PMID: 31622097 DOI: 10.1021/acs.joc.9b02301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct and practical metal-free N-H phosphorylation has been achieved via the TBHP/NH4I-mediated cross-dehydrogenative coupling (CDC) reactions between imines/imidates and P(O)H compounds. This transformation provides an efficient synthetic route to the construction of P-N bonds with good functional group compatibility, leading to the formation of N-phosphorylimines and N-phosphorylimidates in up to 95% yield (33 examples) under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yingcong Ou
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Zhenbo Peng
- Chemical Engineering College , Ningbo Polytechnic , Ningbo 315800 , China
| | - Guodian Yu
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yuanting Huang
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Qian Chen
- School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
13
|
|
14
|
Deimling M, Kirchhof M, Schwager B, Qawasmi Y, Savin A, Mühlhäuser T, Frey W, Claasen B, Baro A, Sottmann T, Laschat S. Asymmetric Catalysis in Liquid Confinement: Probing the Performance of Novel Chiral Rhodium–Diene Complexes in Microemulsions and Conventional Solvents. Chemistry 2019; 25:9464-9476. [DOI: 10.1002/chem.201900947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Max Deimling
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Manuel Kirchhof
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Barbara Schwager
- Institut für Physikalische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Yaseen Qawasmi
- Institut für Physikalische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Alex Savin
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Tina Mühlhäuser
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Birgit Claasen
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Angelika Baro
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Thomas Sottmann
- Institut für Physikalische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Sabine Laschat
- Institut für Organische ChemieUniversität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
15
|
Jian JH, Hsu CL, Syu JF, Kuo TS, Tsai MK, Wu PY, Wu HL. Access to β 2-Amino Acids via Enantioselective 1,4-Arylation of β-Nitroacrylates Catalyzed by Chiral Rhodium Catalysts. J Org Chem 2018; 83:12184-12191. [PMID: 30153730 DOI: 10.1021/acs.joc.8b00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The highly enantioselective conjugate addition of a variety of arylboronic acids to β-nitroacrylates is reported to provide optically active α-aryl β-nitropropionates in up to 70% yields and >99.5% ee's, which are useful building blocks for preparing chiral β2-amino acids. The applicability of this transformation is demonstrated by converting 3aa into the β2-amino acid 5 and transforming 3ap to β-amino ester 7 via reduction and reductive N-alkylation. The latter compound is a precursor for preparing ent-ipatasertib.
Collapse
Affiliation(s)
- Jia-Hong Jian
- Department of Chemistry , National Taiwan Normal University , No. 88, Section 4, Tingzhou Road , Taipei 11677 , Taiwan
| | - Chih-Lung Hsu
- Department of Chemistry , National Taiwan Normal University , No. 88, Section 4, Tingzhou Road , Taipei 11677 , Taiwan
| | - Jin-Fong Syu
- Department of Chemistry , National Taiwan Normal University , No. 88, Section 4, Tingzhou Road , Taipei 11677 , Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry , National Taiwan Normal University , No. 88, Section 4, Tingzhou Road , Taipei 11677 , Taiwan
| | - Ming-Kang Tsai
- Department of Chemistry , National Taiwan Normal University , No. 88, Section 4, Tingzhou Road , Taipei 11677 , Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co., Ltd. , 1F., No. 8, Aly. 29, Ln. 335, Chenggong Rd. , Hukou Township, 30345 Hsinchu , Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry , National Taiwan Normal University , No. 88, Section 4, Tingzhou Road , Taipei 11677 , Taiwan
| |
Collapse
|
16
|
Chang CA, Uang TY, Jian JH, Zhou MY, Chen ML, Kuo TS, Wu PY, Wu HL. Efficient and Enantioselective Rhodium(I)-Catalyzed Arylation of α-Ketoesters: Synthesis of (S
)-Flutriafol. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chiung-An Chang
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| | - Tsung-Ying Uang
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| | - Jia-Hong Jian
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| | - Meng-Yi Zhou
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| | - Ming-Liang Chen
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co., Ltd.; 1F., No. 8, Aly. 29, Ln. 335, Chenggong Rd., Hukou Township 30345 Hsinchu Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry; National Taiwan Normal University; No. 88, Section 4, Tingzhou Road Taipei 11677 Taiwan
| |
Collapse
|
17
|
Chiang PF, Li WS, Jian JH, Kuo TS, Wu PY, Wu HL. Rh-Catalyzed Enantioselective Allylation of N-Tosyl- and N-Nosylaldimines: Total Synthesis of (-)-Crispine A. Org Lett 2017; 20:158-161. [PMID: 29257696 DOI: 10.1021/acs.orglett.7b03523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unprecedented development of asymmetric Rh-catalyzed 1,2-allylation of N-Ts- and N-Ns-aldimines is achieved. This protocol utilizes potassium allyltrifluoroborates and various aldimines to generate enantioenriched homoallylic amines in the presence of 3.0 mol % of Rh(I)/L1b catalyst with up to 90% yield, 98% ee (R = H), and 10:1 diastereoselectivity (R = Me or Ph), yielding the same major diastereomer when using potassium (E)- and (Z)-crotyltrifluoroborate. Its synthetic utility is also illustrated in the total synthesis of (-)-crispine A.
Collapse
Affiliation(s)
- Pei-Fen Chiang
- Department of Chemistry, National Taiwan Normal University , No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Wei-Sian Li
- Department of Chemistry, National Taiwan Normal University , No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Jia-Hong Jian
- Department of Chemistry, National Taiwan Normal University , No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ting-Shen Kuo
- Department of Chemistry, National Taiwan Normal University , No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| | - Ping-Yu Wu
- Oleader Technologies, Co., Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Road, Hukou Township, Hsinchu 30345, Taiwan
| | - Hsyueh-Liang Wu
- Department of Chemistry, National Taiwan Normal University , No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan
| |
Collapse
|