1
|
Gardner AM, Gardner PR. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J Inorg Biochem 2023; 245:112257. [PMID: 37229820 DOI: 10.1016/j.jinorgbio.2023.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
2
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
3
|
Shafizadeh N, Crestoni ME, de la Lande A, Soep B. Heme ligation in the gas phase. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1952006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma “La Sapienza”, Roma, Italy
| | | | - Benoît Soep
- ISMO-CNRS, Université Paris Saclay, Orsay Cedex, France
| |
Collapse
|
4
|
Schubert K, Guo M, Atak K, Dörner S, Bülow C, von Issendorff B, Klumpp S, Lau JT, Miedema PS, Schlathölter T, Techert S, Timm M, Wang X, Zamudio-Bayer V, Schwob L, Bari S. The electronic structure and deexcitation pathways of an isolated metalloporphyrin ion resolved by metal L-edge spectroscopy. Chem Sci 2021; 12:3966-3976. [PMID: 34163667 PMCID: PMC8179464 DOI: 10.1039/d0sc06591a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/23/2021] [Indexed: 11/21/2022] Open
Abstract
The local electronic structure of the metal-active site and the deexcitation pathways of metalloporphyrins are crucial for numerous applications but difficult to access by commonly employed techniques. Here, we applied near-edge X-ray absorption mass spectrometry and quantum-mechanical restricted active space calculations to investigate the electronic structure of the metal-active site of the isolated cobalt(iii) protoporphyrin IX cation (CoPPIX+) and its deexcitation pathways upon resonant absorption at the cobalt L-edge. The experiments were carried out in the gas phase, thus allowing for control over the chemical state and molecular environment of the metalloporphyrin. The obtained mass spectra reveal that resonant excitations of CoPPIX+ at the cobalt L3-edge lead predominantly to the formation of the intact radical dication and doubly charged fragments through losses of charged and neutral side chains from the macrocycle. The comparison between experiment and theory shows that CoPPIX+ is in a 3A2g triplet ground state and that competing excitations to metal-centred non-bonding and antibonding σ* molecular orbitals lead to distinct deexcitation pathways.
Collapse
Affiliation(s)
- Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Meiyuan Guo
- Division of Chemical Physics, Chemical Center, Lund University SE-221 00 Lund Sweden
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg 79104 Freiburg Germany
| | - Stephan Klumpp
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - J Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg 79104 Freiburg Germany
| | | | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen 9747 AG Groningen The Netherlands
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen 37077 Göttingen Germany
| | - Martin Timm
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
| | - Xin Wang
- Zernike Institute for Advanced Materials, University of Groningen 9747 AG Groningen The Netherlands
| | - Vicente Zamudio-Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie 12489 Berlin Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY 22607 Hamburg Germany
| |
Collapse
|
5
|
Aarabi M, Soorkia S, Grégoire G, Broquier M, de la Lande A, Soep B, Omidyan R, Shafizadeh N. Water binding to Fe III hemes studied in a cooled ion trap: characterization of a strong 'weak' ligand. Phys Chem Chem Phys 2019; 21:21329-21340. [PMID: 31531442 DOI: 10.1039/c9cp03608c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of a water molecule with ferric heme-iron protoporphyrin ([PP FeIII]+) has been investigated in the gas phase in an ion trap and studied theoretically by density functional theory. It is found that the interaction of water with ferric heme leads to a stable [PP-FeIII-H2O]+ complex in the intermediate spin state (S = 3/2), in the same state as its unligated [PP-FeIII]+ homologue, without spin crossing during water attachment. Using the Van't Hoff equation, the reaction enthalpy for the formation of a Fe-OH2 bond has been determined for [PP-FeIII-H2O]+ and [PP-FeIII-(H2O)2]+. The corrected binding energy for a single Fe-H2O bond is -12.2 ± 0.6 kcal mol-1, while DFT calculations at the OPBE level yield -11.7 kcal mol-1. The binding energy of the second ligation yielding a six coordinated FeIII atom is decreased with a bond energy of -9 ± 0.9 kcal mol-1, well reproduced by calculations as -7.1 kcal mol-1. However, calculations reveal features of a weaker bond type, such as a rather long Fe-O bond with 2.28 Å for the [PP-FeIII-H2O]+ complex and the absence of a spin change by complexation. Thus despite a strong bond with H2O, the FeIII atom does not show, through theoretical modelling, a strong acceptor character in its half filled 3dz2 orbital. It is also observed that the binding properties of H2O to hemes seem strikingly specific to ferric heme and we have shown, experimentally and theoretically, that the affinity of H2O for protonated heme [H PP-Fe]+, an intermediate between FeIII and FeII, is strongly reduced compared to that for ferric heme.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Satchin Soorkia
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France.
| | - Gilles Grégoire
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France.
| | - Michel Broquier
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France. and Centre Laser de l'Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| | - Aurélien de la Lande
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000, 15, rue Jean Perrin, 91405 Orsay Cedex, France
| | - Benoît Soep
- LIDYL, CEA, CNRS, Université Paris-Saclay, UMR 9222 CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - Reza Omidyan
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Niloufar Shafizadeh
- ISMO, Université Paris-Sud, CNRS UMR 8214, bat 520, Université Paris-Sud 91405, Orsay Cedex, France.
| |
Collapse
|
6
|
Aarabi M, Omidyan R, Soorkia S, Grégoire G, Broquier M, Crestoni ME, de la Lande A, Soep B, Shafizadeh N. The dramatic effect of N-methylimidazole on trans axial ligand binding to ferric heme: experiment and theory. Phys Chem Chem Phys 2019; 21:1750-1760. [PMID: 30623949 DOI: 10.1039/c8cp06210b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The binding energy of CO, O2 and NO to isolated ferric heme, [FeIIIP]+, was studied in the presence and absence of a σ donor (N-methylimidazole and histidine) as the trans axial ligand. This study combines the experimental determination of binding enthalpies by equilibrium measurements in a low temperature ion trap using the van't Hoff equation and high level DFT calculations. It was found that the presence of N-methylimidazole as the axial ligand on the [FeIIIP]+ porphyrin dramatically weakens the [FeIIIP-ligand]+ bond with an up to sevenfold decrease in binding energy owing to the σ donation by N-methylimidazole to the FeIII(3d) orbitals. This trans σ donor effect is characteristic of ligation to iron in hemes in both ferrous and ferric redox forms; however, to date, this has not been observed for ferric heme.
Collapse
Affiliation(s)
- Mohammad Aarabi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jäger P, Brendle K, Schneider E, Kohaut S, Armbruster MK, Fink K, Weis P, Kappes MM. Photodissociation of Free Metalloporphyrin Dimer Multianions. J Phys Chem A 2018; 122:2974-2982. [PMID: 29490134 DOI: 10.1021/acs.jpca.8b00641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick Jäger
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Katrina Brendle
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Erik Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Stephan Kohaut
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Markus K. Armbruster
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M. Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Postfach 3630, 76021 Karlsruhe, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Phung QM, Pierloot K. The dioxygen adducts of iron and manganese porphyrins: electronic structure and binding energy. Phys Chem Chem Phys 2018; 20:17009-17019. [DOI: 10.1039/c8cp03078b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electronic structures of adducts of O2 and metal porphyrins were thoroughly investigated by highly accurate DMRG-CASPT2.
Collapse
|
9
|
Dillinger S, Lang J, Niedner-Schatteburg G. Cryo IR Spectroscopy of [Hemin] + Complexes in Isolation. J Phys Chem A 2017; 121:7191-7196. [PMID: 28876926 DOI: 10.1021/acs.jpca.7b08604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We present cryo IR spectra of isolated [Hemin]+ adducts with CO, N2, and O2 ([Hemin(CO)1]+, [Hemin(CO)2]+, [Hemin(14N2)]+, [Hemin(15N2)]+, and [Hemin(O2)]+). Well resolved bands allow for the elucidation of structure and spin multiplicity in conjunction with density functional (DFT) calculations. There is a quartet spin state for the N2 and CO adducts and a sextet spin state for the O2 adduct, where the O2 retains its triplet state. The double CO adsorption induces significant changes in the vibrational patterns of the IR spectra, which we take as strong evidence for a spin quenching into a doublet. Our study characterizes [Hemin]+, which is the Fe3+ oxidation product of heme that is of ubiquitous presence in hemeproteins.
Collapse
Affiliation(s)
- Sebastian Dillinger
- Fachbereich Chemie and Forschungszentrum OPTIMAS, TU Kaiserslautern , 67663 Kaiserslautern, Germany
| | - Johannes Lang
- Fachbereich Chemie and Forschungszentrum OPTIMAS, TU Kaiserslautern , 67663 Kaiserslautern, Germany
| | | |
Collapse
|