1
|
Beura SK, Panigrahi AR, Yadav P, Palacio I, Casero E, Quintana C, Singh J, Singh MK, Martín Gago JA, Singh SK. Harnessing two-dimensional nanomaterials for diagnosis and therapy in neurodegenerative diseases: Advances, challenges and prospects. Ageing Res Rev 2024; 94:102205. [PMID: 38272267 DOI: 10.1016/j.arr.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are specific brain disorders characterized by the progressive deterioration of different motor activities as well as several cognitive functions. Current conventional therapeutic options for NDDs are limited in addressing underlying causes, delivering drugs to specific neuronal targets, and promoting tissue repair following brain injury. Due to the paucity of plausible theranostic options for NDDs, nanobiotechnology has emerged as a promising field, offering an interdisciplinary approach to create nanomaterials with high diagnostic and therapeutic efficacy for these diseases. Recently, two-dimensional nanomaterials (2D-NMs) have gained significant attention in biomedical and pharmaceutical applications due to their precise drug-loading capabilities, controlled release mechanisms, enhanced stability, improved biodegradability, and reduced cell toxicity. Although various studies have explored the diagnostic and therapeutic potential of different nanomaterials in NDDs, there is a lack of comprehensive review addressing the theranostic applications of 2D-NMs in these neuronal disorders. Therefore, this concise review aims to provide a state-of-the-art understanding of the need for these ultrathin 2D-NMs and their potential applications in biosensing and bioimaging, targeted drug delivery, tissue engineering, and regenerative medicine for NDDs.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Irene Palacio
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Jyoti Singh
- Department of Applied Agriculture, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Manoj Kumar Singh
- Department of Physics, School of Engineering and Technology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana 123031, India
| | - Jose A Martín Gago
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain.
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Zhou X, Jin W, Zhang R, Mao X, Jia J, Zhou H. Perturbation of autophagy pathways in murine alveolar macrophage by 2D TMDCs is chalcogen-dependent. J Environ Sci (China) 2024; 135:97-107. [PMID: 37778845 DOI: 10.1016/j.jes.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 10/03/2023]
Abstract
Increasing risks of incidental and occupational exposures to two-dimensional transition metal dichalcogenides (2D TMDCs) due to their broad application in various areas raised their public health concerns. While the composition-dependent cytotoxicity of 2D TMDCs has been well-recognized, how the outer chalcogenide atoms and inner transition metal atoms differentially contribute to their perturbation on cell homeostasis at non-lethal doses remains to be identified. In the present work, we compared the autophagy induction and related mechanisms in response to WS2, NbS2, WSe2 and NbSe2 nanosheets exposures in MH-S murine alveolar macrophages. All these 2D TMDCs had comparable physicochemical properties, overall cytotoxicity and capability in triggering autophagy in MH-S cells, but showed outer chalcogen-dependent subcellular localization and activation of autophagy pathways. Specifically, WS2 and NbS2 nanosheets adhered on the cell surface and internalized in the lysosomes, and triggered mTOR-dependent activation of autophagy. Meanwhile, WSe2 and NbSe2 nanosheets had extensive distribution in cytoplasm of MH-S cells and induced autophagy in an mTOR-independent manner. Furthermore, the 2D TMDCs-induced perturbation on autophagy aggravated the cytotoxicity of respirable benzo[a]pyrene. These findings provide a deeper insight into the potential health risk of environmental 2D TMDCs from the perspective of homeostasis perturbation.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Rui Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
4
|
Ghasemi M, Liang S, Luu QM, Kempson I. The MTT Assay: A Method for Error Minimization and Interpretation in Measuring Cytotoxicity and Estimating Cell Viability. Methods Mol Biol 2023; 2644:15-33. [PMID: 37142913 DOI: 10.1007/978-1-0716-3052-5_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The MTT assay is extensively used, most often to infer a measure of cytotoxicity of treatments to cells. As with any assay though, there are a number of limitations. The method described here is designed with consideration of how the MTT assay fundamentally works to account for, or at least identify, confounding factors in measurements. It also provides a decision-making framework to best interpret and complement the MTT assay to apply it as either a measure of metabolic activity or cell viability.
Collapse
Affiliation(s)
- Mahshid Ghasemi
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Sisi Liang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Quang Minh Luu
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.
| |
Collapse
|
5
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Marian M, Berman D, Nečas D, Emani N, Ruggiero A, Rosenkranz A. Roadmap for 2D materials in biotribological/biomedical applications – A review. Adv Colloid Interface Sci 2022; 307:102747. [DOI: 10.1016/j.cis.2022.102747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/01/2023]
|
7
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
8
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
9
|
Liu H, Chen H, Liu X, Mo L, Chen C, Guo Z, Liu Z. Dual-responsive ultrathin 1T-phase niobium telluride nanosheet-based delivery systems for enhanced chemo-photothermal therapy. J Mater Chem B 2021; 9:8109-8120. [PMID: 34494067 DOI: 10.1039/d1tb01469b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1T-phase niobium telluride (NbTe2) nanosheets are becoming increasingly important in emerging fields, such as spintronics, sensors and magneto-optoelectronics, due to their excellent physical and chemical properties. However, exploration on their biomedical applications are limited. Herein, ultrathin 1T-phase NbTe2 single-crystalline nanosheets with excellent photothermal performance, high drug-loading rate, near-infrared (NIR) light/acidic pH-triggered drug release, and low toxicity were developed for potentiated photothermal therapy. Importantly, they showed excellent biocompatibility in vivo and in vitro. NbTe2 nanosheets loaded with integrated stress response inhibitors (ISRIB) could achieve chemo-photothermal therapy of tumors through the ATF4-ASNS signaling axis. Ultrathin 1T-phase NbTe2 single-crystalline nanosheets with unique photothermal properties, drug loading rate and safety provide dramatic possibilities in biomedical applications, such as tissue imaging, photothermal therapeutics and pharmaceutics.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Haolin Chen
- Department of Haematology, The Seventh Hospital of Sun Yat-sen University, Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoying Liu
- Cell Biology Department, Weifang Medical University, Weifang, 261053, China
| | - Luoqi Mo
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Zhouyi Guo
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| |
Collapse
|
10
|
Xu J, Zhang S, Wei Z, Yan W, Wei X, Huang K. Orientated VSe 2 nanoparticles anchored on N-doped hollow carbon sphere for high-stable aqueous energy application. J Colloid Interface Sci 2020; 585:12-19. [PMID: 33279694 DOI: 10.1016/j.jcis.2020.11.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Transition metal dichalcogenides (TMDs) have been considered as the promising energy storage materials due to their unique crystalline structure. In this work, the VSe2 nanoparticles are vertically anchored on N-doping carbon (NC) hollow nanosphere (VSe2@NC) for aqueous energy application. The electrochemical measurements indicate that the VSe2@NC electrode exhibits outstanding electrochemical properties with high specific capacitance and excellent cycling life. Moreover, the asymmetric supercapacitor was assembled by using VSe2@NC cathode and activated carbon anode. It shows high energy density of 85.41 Wh Kg-1 at a power density of 701.99 W Kg-1, and high-stable cycling performance of 90% retention after 2000 cycles. The superior properties are attributed to the particular hollow structure design, which accommodates both the high specific capacity of VSe2 and the desired electrical conductivity of N-doping carbon sphere template.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Shaokang Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Zhengnan Wei
- Postdoctor Scientific Research Station of Shengli Petroleun Administration, SINOPEC, Dongying 257000, PR China
| | - Wenran Yan
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China
| | - Xijun Wei
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Kejing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
11
|
Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 2020; 50:619-657. [PMID: 33206730 DOI: 10.1039/d0cs00150c] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-dimensional (2D) materials are at the forefront of materials research. Here we overview their applications beyond graphene, such as transition metal dichalcogenides, monoelemental Xenes (including phosphorene and bismuthene), carbon nitrides, boron nitrides along with transition metal carbides and nitrides (MXenes). We discuss their usage in various biomedical and environmental monitoring applications, from biosensors to therapeutic treatment agents, their toxicity and their utility in chemical sensing. We highlight how a specific chemical, physical and optical property of 2D materials can influence the performance of bio/sensing, improve drug delivery and photo/thermal therapy as well as affect their toxicity. Such properties are determined by crystal phases electrical conductivity, degree of exfoliation, surface functionalization, strong photoluminescence, strong optical absorption in the near-infrared range and high photothermal conversion efficiency. This review conveys the great future of all the families of 2D materials, especially with the expanding 2D materials' landscape as new materials emerge such as germanene and silicene.
Collapse
Affiliation(s)
- Nasuha Rohaizad
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
12
|
Liu Y, Cai Q, Qin C, Jin Y, Wang J, Chen Y, Ouyang Y, Li H, Liu S. Field-effect transistor bioassay for ultrasensitive detection of folate receptor 1 by ligand-protein interaction. Mikrochim Acta 2020; 187:637. [PMID: 33146801 DOI: 10.1007/s00604-020-04630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023]
Abstract
A miniaturized and integrated bioassay was developed based on molybdenum disulfide (MoS2) field-effect transistor (FET) functionalized with bovine serum albumin-folic acid (BSA-FA) for monitoring FOLR1. We performed the electrical test of FOLR1 within the range 100 fg/mL to 10 ng/mL, and the limit of detection was 0.057 pg/mL. The ultrahigh sensitivity of the bioassay was realized by ligand-protein interaction between FA and FOLR1, with a ligand-protein binding ratio of 3:1. The formation of FA-FOLR1 was confirmed with ELISA. The binding affinity dissociation constant KD was 12 ± 6 pg/mL. This device can work well for FOLR1 detection in human serum, which presents its promising application in point-of-care diagnosis. This study supports the future applications of such ligand-protein-based bioassays in the clinical practices. Graphical abstract MoS2-based FET device for detecting folate receptor 1 (FOLR1) was fabricated. The molecular folic acid as a probe can specifically bound to FOLR1 with a high affinity.
Collapse
Affiliation(s)
- Yeru Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Qiyong Cai
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Chaopeng Qin
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Yuanyuan Jin
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jianxue Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yang Chen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
13
|
Kong L, Rosli NF, Chia HL, Guan J, Pumera M. Self-Propelled Autonomous Mg/Pt Janus Micromotor Interaction with Human Cells. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190104] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Nur Farhanah Rosli
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hui Ling Chia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Center of Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno 61200, Czech Republic
| |
Collapse
|
14
|
Bolotsky A, Butler D, Dong C, Gerace K, Glavin NR, Muratore C, Robinson JA, Ebrahimi A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS NANO 2019; 13:9781-9810. [PMID: 31430131 DOI: 10.1021/acsnano.9b03632] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Since the isolation of graphene in 2004, there has been an exponentially growing number of reports on layered two-dimensional (2D) materials for applications ranging from protective coatings to biochemical sensing. Due to the exceptional, and often tunable, electrical, optical, electrochemical, and physical properties of these materials, they can serve as the active sensing element or a supporting substrate for diverse healthcare applications. In this review, we provide a survey of the recent reports on the applications of 2D materials in biosensing and other emerging healthcare areas, ranging from wearable technologies to optogenetics to neural interfacing. Specifically, this review provides (i) a holistic evaluation of relevant material properties across a wide range of 2D systems, (ii) a comparison of 2D material-based biosensors to the state-of-the-art, (iii) relevant material synthesis approaches specifically reported for healthcare applications, and (iv) the technological considerations to facilitate mass production and commercialization.
Collapse
Affiliation(s)
| | | | - Chengye Dong
- State Key Lab of Electrical Insulation and Power Equipment , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , People's Republic of China
| | | | - Nicholas R Glavin
- Materials and Manufacturing Directorate , Air Force Research Laboratory , WPAFB , Ohio 45433 , United States
| | - Christopher Muratore
- Department of Chemical and Materials Engineering , University of Dayton , Dayton , Ohio 45469 , United States
| | | | | |
Collapse
|
15
|
Urbanová V, Pumera M. Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides. NANOSCALE 2019; 11:15770-15782. [PMID: 31424462 DOI: 10.1039/c9nr04658e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multifunctional platforms will play a key role and gain more prominence in the field of personalized healthcare worldwide in the near future due to the ever-increasing number of patients suffering from cancer. Along with the development of efficient techniques for cancer treatment, a considerable effort should be devoted toward the exploration of an emerging class of materials with unique properties that might be beneficial in this context. Currently, 2D post-carbon materials, such as pnictogens (phosphorene, antimonene), transition metal dichalcogenides, and boron nitride, have become popular due to their efficient photothermal behavior, drug-loading capability, and low toxicity. This review underlines the recent progresses made in the abovementioned 2D materials for photothermal/photodynamic cancer therapies and their applicability in bioimaging applications.
Collapse
Affiliation(s)
- Veronika Urbanová
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | | |
Collapse
|
16
|
Martín C, Kostarelos K, Prato M, Bianco A. Biocompatibility and biodegradability of 2D materials: graphene and beyond. Chem Commun (Camb) 2019; 55:5540-5546. [PMID: 31033990 DOI: 10.1039/c9cc01205b] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The potential risks associated with two-dimensional (2D) nanomaterials may cause serious concerns about their real applications and impact in biological systems. In addition, the demonstration of biodegradability of these flat nanomaterials is essential in living organisms. Here, we summarise the state-of-the-art in the field of biocompatibility and biodegradability of graphene-related materials (such as 2D materials like MoS2, BN or WS2). The impact of chemical functionalisation on the potential control of the biodegradability profile of these structures is also discussed.
Collapse
Affiliation(s)
- Cristina Martín
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
17
|
Singh E, Singh P, Kim KS, Yeom GY, Nalwa HS. Flexible Molybdenum Disulfide (MoS 2) Atomic Layers for Wearable Electronics and Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11061-11105. [PMID: 30830744 DOI: 10.1021/acsami.8b19859] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Flexible, stretchable, and bendable materials, including inorganic semiconductors, organic polymers, graphene, and transition metal dichalcogenides (TMDs), are attracting great attention in such areas as wearable electronics, biomedical technologies, foldable displays, and wearable point-of-care biosensors for healthcare. Among a broad range of layered TMDs, atomically thin layered molybdenum disulfide (MoS2) has been of particular interest, due to its exceptional electronic properties, including tunable bandgap and charge carrier mobility. MoS2 atomic layers can be used as a channel or a gate dielectric for fabricating atomically thin field-effect transistors (FETs) for electronic and optoelectronic devices. This review briefly introduces the processing and spectroscopic characterization of large-area MoS2 atomically thin layers. The review summarizes the different strategies in enhancing the charge carrier mobility and switching speed of MoS2 FETs by integrating high-κ dielectrics, encapsulating layers, and other 2D van der Waals layered materials into flexible MoS2 device structures. The photoluminescence (PL) of MoS2 atomic layers has, after chemical treatment, been dramatically improved to near-unity quantum yield. Ultraflexible and wearable active-matrix organic light-emitting diode (AM-OLED) displays and wafer-scale flexible resistive random-access memory (RRAM) arrays have been assembled using flexible MoS2 transistors. The review discusses the overall recent progress made in developing MoS2 based flexible FETs, OLED displays, nonvolatile memory (NVM) devices, piezoelectric nanogenerators (PNGs), and sensors for wearable electronic and optoelectronic devices. Finally, it outlines the perspectives and tremendous opportunities offered by a large family of atomically thin-layered TMDs.
Collapse
Affiliation(s)
- Eric Singh
- Department of Computer Science , Stanford University , Stanford , California 94305 , United States
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science , National Chiao Tung University , Hsinchu 30010 , Taiwan , R.O.C
| | - Ki Seok Kim
- School of Advanced Materials Science and Engineering , Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu , Suwon-si , Gyeonggi-do 16419 , South Korea
| | - Geun Young Yeom
- School of Advanced Materials Science and Engineering , Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu , Suwon-si , Gyeonggi-do 16419 , South Korea
- SKKU Advanced Institute of Nano Technology , Sungkyunkwan University , 2066 Seobu-ro, Jangan-gu , Suwon-si , Gyeonggi-do 16419 , South Korea
| | - Hari Singh Nalwa
- Advanced Technology Research , 26650 The Old Road, Suite 208 , Valencia , California 91381 , United States
| |
Collapse
|
18
|
Chia HL, Latiff NM, Gusmão R, Sofer Z, Pumera M. Cytotoxicity of Shear Exfoliated Pnictogen (As, Sb, Bi) Nanosheets. Chemistry 2019; 25:2242-2249. [DOI: 10.1002/chem.201804336] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/01/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Hui Ling Chia
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School; Nanyang Technological University; 50 Nanyang Drive Singapore 637553 Singapore
| | - Naziah Mohamad Latiff
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Rui Gusmão
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28/ Prague 6 Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28/ Prague 6 Czech Republic
| | - Martin Pumera
- Division of Chemistry and Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
- Department of Inorganic Chemistry; University of Chemistry and Technology Prague; Technicka 5 166 28/ Prague 6 Czech Republic
- Flexible Wearable Electronics (WearoniX) Laboratory; Central European Institute of Technology; Brno University of Technology; Purkyňova 656/123 Brno CZ-616 00 Czech Republic
| |
Collapse
|
19
|
Guiney LM, Wang X, Xia T, Nel AE, Hersam MC. Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS NANO 2018; 12:6360-6377. [PMID: 29889491 PMCID: PMC6130817 DOI: 10.1021/acsnano.8b02491] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The family of two-dimensional (2D) materials is comprised of a continually expanding palette of unique compositions and properties with potential applications in electronics, optoelectronics, energy capture and storage, catalysis, and nanomedicine. To accelerate the implementation of 2D materials in widely disseminated technologies, human health and environmental implications need to be addressed. While extensive research has focused on assessing the toxicity and environmental fate of graphene and related carbon nanomaterials, the potential hazards of other 2D materials have only recently begun to be explored. Herein, the toxicity and environmental fate of postcarbon 2D materials, such as transition metal dichalcogenides, hexagonal boron nitride, and black phosphorus, are reviewed as a function of their preparation methods and surface functionalization. Specifically, we delineate how the hazard potential of 2D materials is directly related to structural parameters and physicochemical properties and how experimental design is critical to the accurate elucidation of the underlying toxicological mechanisms. Finally, a multidisciplinary approach for streamlining the hazard assessment of emerging 2D materials is outlined, thereby providing a pathway for accelerating their safe use in a range of technologically relevant contexts.
Collapse
Affiliation(s)
- Linda M. Guiney
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - André E. Nel
- Division of NanoMedicine, Department of Medicine; California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Medicine, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|