1
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
2
|
Solomon JB, Liu YA, Górecki K, Quechol R, Lee CC, Jasniewski AJ, Hu Y, Ribbe MW. Heterologous expression of a fully active Azotobacter vinelandii nitrogenase Fe protein in Escherichia coli. mBio 2023; 14:e0257223. [PMID: 37909748 PMCID: PMC10746259 DOI: 10.1128/mbio.02572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The heterologous expression of a fully active Azotobacter vinelandii Fe protein (AvNifH) has never been accomplished. Given the functional importance of this protein in nitrogenase catalysis and assembly, the successful expression of AvNifH in Escherichia coli as reported herein supplies a key element for the further development of heterologous expression systems that explore the catalytic versatility of the Fe protein, either on its own or as a key component of nitrogenase, for nitrogenase-based biotechnological applications in the future. Moreover, the "clean" genetic background of the heterologous expression host allows for an unambiguous assessment of the effect of certain nif-encoded protein factors, such as AvNifM described in this work, in the maturation of AvNifH, highlighting the utility of this heterologous expression system in further advancing our understanding of the complex biosynthetic mechanism of nitrogenase.
Collapse
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Abstract
The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
| | - Joseph B. Solomon
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| |
Collapse
|
4
|
Ribbe MW, Górecki K, Grosch M, Solomon JB, Quechol R, Liu YA, Lee CC, Hu Y. Nitrogenase Fe Protein: A Multi-Tasking Player in Substrate Reduction and Metallocluster Assembly. Molecules 2022; 27:molecules27196743. [PMID: 36235278 PMCID: PMC9571451 DOI: 10.3390/molecules27196743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The Fe protein of nitrogenase plays multiple roles in substrate reduction and metallocluster assembly. Best known for its function to transfer electrons to its catalytic partner during nitrogenase catalysis, the Fe protein is also a key player in the biosynthesis of the complex metalloclusters of nitrogenase. In addition, it can function as a reductase on its own and affect the ambient reduction of CO2 or CO to hydrocarbons. This review will provide an overview of the properties and functions of the Fe protein, highlighting the relevance of this unique FeS enzyme to areas related to the catalysis, biosynthesis, and applications of the fascinating nitrogenase system.
Collapse
Affiliation(s)
- Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
- Correspondence: (M.W.R.); (Y.H.)
| | - Kamil Górecki
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Mario Grosch
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Joseph B. Solomon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | - Robert Quechol
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yiling A. Liu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
- Correspondence: (M.W.R.); (Y.H.)
| |
Collapse
|
5
|
Solomon JB, Tanifuji K, Lee CC, Jasniewski AJ, Hedman B, Hodgson KO, Hu Y, Ribbe MW. Characterization of a Nitrogenase Iron Protein Substituted with a Synthetic [Fe 4 Se 4 ] Cluster. Angew Chem Int Ed Engl 2022; 61:e202202271. [PMID: 35218104 PMCID: PMC9038695 DOI: 10.1002/anie.202202271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Abstract
The Fe protein of nitrogenase plays multiple roles in substrate reduction and cluster maturation via its redox-active [Fe4 S4 ] cluster. Here we report the synthesis and characterization of a water-soluble [Fe4 Se4 ] cluster that is used to substitute the [Fe4 S4 ] cluster of the Azotobacter vinelandii Fe protein (AvNifH). Biochemical, EPR and XAS/EXAFS analyses demonstrate the ability of the [Fe4 Se4 ] cluster to adopt the super-reduced, all-ferrous state upon its incorporation into AvNifH. Moreover, these studies reveal that the [Fe4 Se4 ] cluster in AvNifH already assumes a partial all-ferrous state ([Fe4 Se4 ]0 ) in the presence of dithionite, where its [Fe4 S4 ] counterpart in AvNifH exists solely in the reduced state ([Fe4 S4 ]1+ ). Such a discrepancy in the redox properties of the AvNifH-associated [Fe4 Se4 ] and [Fe4 S4 ] clusters can be used to distinguish the differential redox requirements for the substrate reduction and cluster maturation of nitrogenase, pointing to the utility of chalcogen-substituted FeS clusters in future mechanistic studies of nitrogenase catalysis and assembly.
Collapse
Affiliation(s)
- Joseph B Solomon
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
| | - Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Keith O Hodgson
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of Califronia, Irvine, Irvine, CA 92697-3900, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| |
Collapse
|
6
|
Oehlmann NN, Rebelein JG. The Conversion of Carbon Monoxide and Carbon Dioxide by Nitrogenases. Chembiochem 2022; 23:e202100453. [PMID: 34643977 PMCID: PMC9298215 DOI: 10.1002/cbic.202100453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Indexed: 12/02/2022]
Abstract
Nitrogenases are the only known family of enzymes that catalyze the reduction of molecular nitrogen (N2 ) to ammonia (NH3 ). The N2 reduction drives biological nitrogen fixation and the global nitrogen cycle. Besides the conversion of N2 , nitrogenases catalyze a whole range of other reductions, including the reduction of the small gaseous substrates carbon monoxide (CO) and carbon dioxide (CO2 ) to hydrocarbons. However, it remains an open question whether these 'side reactivities' play a role under environmental conditions. Nonetheless, these reactivities and particularly the formation of hydrocarbons have spurred the interest in nitrogenases for biotechnological applications. There are three different isozymes of nitrogenase: the molybdenum and the alternative vanadium and iron-only nitrogenase. The isozymes differ in their metal content, structure, and substrate-dependent activity, despite their homology. This minireview focuses on the conversion of CO and CO2 to methane and higher hydrocarbons and aims to specify the differences in activity between the three nitrogenase isozymes.
Collapse
Affiliation(s)
- Niels N. Oehlmann
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Johannes G. Rebelein
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| |
Collapse
|
7
|
Solomon J, Tanifuji K, Lee CC, Jasniewski A, Hedman B, Hodgson K, Hu Y, Ribbe M. Characterization of a Nitrogenase Iron Protein Substituted with a Synthetic [Fe4Se4] Cluster. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kazuki Tanifuji
- Kyoto University Institute for Chemical Research UNITED STATES
| | - Chi Chung Lee
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | - Andrew Jasniewski
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | - Britt Hedman
- Stanford University Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory UNITED STATES
| | | | - Yilin Hu
- University of California Irvine Molecular Biology and Biochemistry UNITED STATES
| | - Markus Ribbe
- Irvine Molecular Biology & Biochemistry 2236 McGaugh Hall 92697 Irvine UNITED STATES
| |
Collapse
|
8
|
Solomon J, Rasekh MF, Hiller CJ, Lee CC, Tanifuji K, Ribbe MW, Hu Y. Probing the All-Ferrous States of Methanogen Nitrogenase Iron Proteins. JACS AU 2021; 1:119-123. [PMID: 34467276 PMCID: PMC8395668 DOI: 10.1021/jacsau.0c00072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Fe protein of nitrogenase reduces two C1 substrates, CO2 and CO, under ambient conditions when its [Fe4S4] cluster adopts the all-ferrous [Fe4S4]0 state. Here, we show disparate reactivities of the nifH- and vnf-encoded Fe proteins from Methanosarcina acetivorans (designated MaNifH and MaVnfH) toward C1 substrates in the all-ferrous state, with the former capable of reducing both CO2 and CO to hydrocarbons, and the latter only capable of reducing CO to hydrocarbons at substantially reduced yields. EPR experiments conducted at varying solution potentials reveal that MaVnfH adopts the all-ferrous state at a more positive reduction potential than MaNifH, which could account for the weaker reactivity of the MaVnfH toward C1 substrates than MaNifH. More importantly, MaVnfH already displays the g = 16.4 parallel-mode EPR signal that is characteristic of the all-ferrous [Fe4S4]0 cluster at a reduction potential of -0.44 V, and the signal reaches 50% maximum intensity at a reduction potential of -0.59 V, suggesting the possibility of this Fe protein to access the all-ferrous [Fe4S4]0 state under physiological conditions. These results bear significant relevance to the long-lasting debate of whether the Fe protein can utilize the [Fe4S4]0/2+ redox couple to support a two-electron transfer during substrate turnover which, therefore, is crucial for expanding our knowledge of the reaction mechanism of nitrogenase and the cellular energetics of nitrogenase-based processes.
Collapse
Affiliation(s)
- Joseph
B. Solomon
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697-3900, United States
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Mahtab F. Rasekh
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697-3900, United States
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Caleb J. Hiller
- Department
of Physical Science, Southern Utah University, Cedar City, Utah 84720, United States
| | - Chi Chung Lee
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697-3900, United States
| | - Kazuki Tanifuji
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697-3900, United States
| | - Markus W. Ribbe
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697-3900, United States
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697-3900, United States
| |
Collapse
|
9
|
Huang Y, Chen J, Zhu L, Ma K, Kang K, Yang M, Lu S, Yan M, Wan Y, Deng S. Electrochemiluminescence-Repurposed Abiological Catalysts in Full Protein Tag for Ultrasensitive Immunoassay. Anal Chem 2020; 92:14076-14084. [PMID: 32938180 DOI: 10.1021/acs.analchem.0c03114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Being announced as one of the "2019 Top Ten Emerging Technologies in Chemistry" by IUPAC, the directed evolution of artificial metalloenzymes has led to a broad scope of abiotic processes. Here, inspired by those key proteins in bioluminescence, a rudimentary expression of bio-electrochemiluminescent (ECL) macromolecules was achieved via the complexation of zinc proto-porphyrin IX (ZnPPIX) within apo-hemoglobin (apo-Hb). A high-yield monochromic irradiation at 644 nm could be provoked potentiostatically from the reconstituted holo-HbZnPPIX in solutions. Its secondary structure integrity was elucidated by UV and circular dichroism spectrometry, while voltammetry-hyphenated surface plasmon resonance authenticated its ligation conservativeness in electrical fields. Further conjugation with streptavidin rendered a homogeneous Janus fusion of both receptor and reporter domains, enabling a new abiological catalyst-linked ECL bioassay. On the other hand, singular ZnPPIX inside each tetrameric subunit of Hb accomplished an overall signal amplification without the bother of luminogenic heterojunctions. This pH-tolerant and non-photobleaching optics was essentialized to be the unique configuration interaction between Zn and O2, by which the direct electrochemistry of proteins catalyzed the transient progression of O2 → O2·- → O2* + hυ selectively. Such principle was implemented as a signal-on strategy for the determination of a characteristic cancer biomarker, the vascular endothelial growth factor, resulting in competent performance at a low detection limit of 0.6 pg·mL-1 and a wide calibration range along with good stability and reliability in real practices. This simple mutation repurposed the O2-transport Hb in the erythrocytes of almost all vertebrates into a cluster of oxidoreductases with intrinsic ECL activity, which would enrich the chromophore library. More importantly, its genetically engineered variants may come in handy in biomedical diagnosis and visual electrophysiology.
Collapse
Affiliation(s)
- Yaqi Huang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kai Kang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meng Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shaohui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minchuan Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Jasniewski AJ, Lee CC, Ribbe MW, Hu Y. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases. Chem Rev 2020; 120:5107-5157. [PMID: 32129988 PMCID: PMC7491575 DOI: 10.1021/acs.chemrev.9b00704] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Markus W Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
11
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Solomon JB, Lee CC, Jasniewski AJ, Rasekh MF, Ribbe MW, Hu Y. Heterologous Expression and Engineering of the Nitrogenase Cofactor Biosynthesis Scaffold NifEN. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joseph B. Solomon
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Mahtab F. Rasekh
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Markus W. Ribbe
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| |
Collapse
|
13
|
Solomon JB, Lee CC, Jasniewski AJ, Rasekh MF, Ribbe MW, Hu Y. Heterologous Expression and Engineering of the Nitrogenase Cofactor Biosynthesis Scaffold NifEN. Angew Chem Int Ed Engl 2020; 59:6887-6893. [PMID: 32022452 DOI: 10.1002/anie.201916598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/01/2023]
Abstract
NifEN plays a crucial role in the biosynthesis of nitrogenase, catalyzing the final step of cofactor maturation prior to delivering the cofactor to NifDK, the catalytic component of nitrogenase. The difficulty in expressing NifEN, a complex, heteromultimeric metalloprotein sharing structural/functional homology with NifDK, is a major challenge in the heterologous expression of nitrogenase. Herein, we report the expression and engineering of Azotobacter vinelandii NifEN in Escherichia coli. Biochemical and spectroscopic analyses demonstrate the integrity of the heterologously expressed NifEN in composition and functionality and, additionally, the ability of an engineered NifEN variant to mimic NifDK in retaining the matured cofactor at an analogous cofactor-binding site. This is an important step toward piecing together a viable pathway for the heterologous expression of nitrogenase and identifying variants for the mechanistic investigation of this enzyme.
Collapse
Affiliation(s)
- Joseph B Solomon
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.,Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Andrew J Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Mahtab F Rasekh
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.,Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.,Department Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| |
Collapse
|
14
|
Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO 2 Capture by a Surface-Exposed [Fe 4S 4] Cluster. mBio 2019; 10:mBio.01497-19. [PMID: 31289188 PMCID: PMC6747716 DOI: 10.1128/mbio.01497-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation. Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities.
Collapse
|
15
|
Lee CC, Stiebritz MT, Hu Y. Reactivity of [Fe 4S 4] Clusters toward C1 Substrates: Mechanism, Implications, and Potential Applications. Acc Chem Res 2019; 52:1168-1176. [PMID: 30977994 DOI: 10.1021/acs.accounts.9b00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
FeS proteins are metalloproteins prevalent in the metabolic pathways of most organisms, playing key roles in a wide range of essential cellular processes. A member of this protein family, the Fe protein of nitrogenase, is a homodimer that contains a redox-active [Fe4S4] cluster at the subunit interface and an ATP-binding site within each subunit. During catalysis, the Fe protein serves as the obligate electron donor for its catalytic partner, transferring electrons concomitant with ATP hydrolysis to the cofactor site of the catalytic component to enable substrate reduction. The effectiveness of Fe protein in electron transfer is reflected by the unique reactivity of nitrogenase toward small-molecule substrates. Most notably, nitrogenase is capable of catalyzing the ambient reduction of N2 and CO into NH4+ and hydrocarbons, respectively, in reactions that parallel the important industrial Haber-Bosch and Fischer-Tropsch processes. Other than participating in nitrogenase catalysis, the Fe protein also functions as an essential factor in nitrogenase assembly, which again highlights its capacity as an effective, ATP-dependent electron donor. Recently, the Fe protein of a soil bacterium, Azotobacter vinelandii, was shown to act as a reductase on its own and catalyze the ambient conversion of CO2 to CO at its [Fe4S4] cluster either under in vitro conditions when a strong reductant is supplied or under in vivo conditions through the action of an unknown electron donor(s) in the cell. Subsequently, the Fe protein of a mesophilic methanogenic organism, Methanosarcina acetivorans, was shown to catalyze the in vitro reduction of CO2 and CO into hydrocarbons under ambient conditions, illustrating an impact of protein scaffold on the redox properties of the [Fe4S4] cluster and the reactivity of the cluster toward C1 substrates. This reactivity was further traced to the [Fe4S4] cluster itself, as a synthetic [Fe4S4] compound was shown to catalyze the reduction of CO2 and CO to hydrocarbons in solutions in the presence of a strong reductant. Together, these observations pointed to an inherent ability of the [Fe4S4] clusters and, possibly, the FeS clusters in general to catalyze C1-substrate reduction. Theoretical calculations have led to the proposal of a plausible reaction pathway that involves the formation of hydrocarbons via aldehyde-like intermediates, providing an important framework for further mechanistic investigations of FeS-based activation and reduction of C1 substrates. In this Account, we summarize the recent work leading to the discovery of C1-substrate reduction by protein-bound and free [Fe4S4] clusters as well as the current mechanistic understanding of this FeS-based reactivity. In addition, we briefly discuss the evolutionary implications of this discovery and potential applications that could be developed to enable FeS-based strategies for the ambient recycling of unwanted C1 waste into useful chemical commodities.
Collapse
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Martin T. Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
16
|
Hiller CJ, Lee CC, Stiebritz MT, Rettberg LA, Hu Y. Strategies Towards Capturing Nitrogenase Substrates and Intermediates via Controlled Alteration of Electron Fluxes. Chemistry 2018; 25:2389-2395. [PMID: 30225894 DOI: 10.1002/chem.201803735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/07/2022]
Abstract
Nitrogenase utilizes an ATP-dependent reductase to deliver electrons to its catalytic component to enable two important reactions: the reduction of N2 to NH4 + , and the reduction of CO to hydrocarbons. The two nitrogenase-based reactions parallel the industrial Haber-Bosch and Fischer-Tropsch processes, yet they occur under ambient conditions. As such, understanding the enzymatic mechanism of nitrogenase is crucial for the future development of biomimetic strategies for energy-efficient production of valuable chemical commodities. Mechanistic investigations of nitrogenase has long been hampered by the difficulty to trap substrates and intermediates relevant to the nitrogenase reactions. Recently, we have successfully captured CO on the Azotobacter vinelandii V-nitrogenase via two approaches that alter the electron fluxes in a controlled manner: one approach utilizes an artificial electron donor to trap CO on the catalytic component of V-nitrogenase in the resting state; whereas the other employs a mismatched reductase component to reduce the electron flux through the system and consequently accumulate CO on the catalytic component of V-nitrogenase. Here we summarize the major outcome of these recent studies, which not only clarified the catalytic relevance of the one-CO (lo-CO) and multi-CO (hi-CO) bound states of nitrogenase, but also pointed to a potential competition between N2 and CO for binding to the same pair of reactive Fe sites across the sulfur belt of the cofactor. Together, these results highlight the utility of these strategies in poising the cofactor at a well-defined state for substrate- or intermediate-trapping via controlled alteration of electron fluxes, which could prove beneficial for further elucidation of the mechanistic details of nitrogenase-catalyzed reactions.
Collapse
Affiliation(s)
- Caleb J Hiller
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
- Department of Chemistry, University of California, Irvine, CA, 92697-2025, USA
| | - Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Martin T Stiebritz
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Lee A Rettberg
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| |
Collapse
|
17
|
|
18
|
Rettberg L, Tanifuji K, Jasniewski A, Ribbe MW, Hu Y. Radical S-Adenosyl-l-Methionine (SAM) Enzyme Involved in the Maturation of the Nitrogenase Cluster. Methods Enzymol 2018; 606:341-361. [PMID: 30097098 DOI: 10.1016/bs.mie.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitrogenase is the only known enzymatic system that converts atmospheric dinitrogen (N2) into bioavailable ammonia (NH3). The active-site cofactor responsible for this reactivity is a [(R-homocitrate)MoFe7S9C] cluster that is designated as the M-cluster. This important cofactor is assembled stepwise from a pair of [Fe4S4] clusters that become fused into a [Fe8S9C] core before additional refinements take place to complete the biosynthesis. NifB, a member of the radical S-adenosyl-l-methionine (SAM) superfamily, facilitates the conversion of the [Fe4S4] clusters (called the K-cluster) to the [Fe8S9C] core (called the L-cluster). This transformation includes a SAM-dependent carbide insertion with concomitant incorporation of an additional sulfur. While difficulties with the purification of NifB have historically prevented detailed biochemical analyses, we have developed a heterologous expression system in Escherichia coli that yields stable NifB proteins from various N2-fixing methanogenic organisms that can be used for studies. This chapter details the procedures necessary to prepare an active NifB protein. The methods used for the biochemical characterization of the SAM-dependent carbide insertion reactions are also described.
Collapse
Affiliation(s)
- Lee Rettberg
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Kazuki Tanifuji
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Andrew Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Markus Walter Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Department of Chemistry, University of California, Irvine, CA, United States.
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
19
|
Noar JD, Bruno-Bárcena JM. Azotobacter vinelandii: the source of 100 years of discoveries and many more to come. MICROBIOLOGY-SGM 2018. [PMID: 29533747 DOI: 10.1099/mic.0.000643] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Azotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers - bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
Collapse
Affiliation(s)
- Jesse D Noar
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
20
|
Lee CC, Wilcoxen J, Hiller CJ, Britt RD, Hu Y. Evaluation of the Catalytic Relevance of the CO-Bound States of V-Nitrogenase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry; University of California, Irvine; Irvine CA 92697-3900 USA
| | - Jarett Wilcoxen
- Department of Chemistry; University of California, Davis; Davis CA 95616 USA
| | - Caleb J. Hiller
- Department of Molecular Biology and Biochemistry; University of California, Irvine; Irvine CA 92697-3900 USA
- Department of Chemistry; University of California, Irvine; Irvine CA 92697-2025 USA
| | - R. David Britt
- Department of Chemistry; University of California, Davis; Davis CA 95616 USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry; University of California, Irvine; Irvine CA 92697-3900 USA
| |
Collapse
|
21
|
Lee CC, Wilcoxen J, Hiller CJ, Britt RD, Hu Y. Evaluation of the Catalytic Relevance of the CO-Bound States of V-Nitrogenase. Angew Chem Int Ed Engl 2018; 57:3411-3414. [PMID: 29409145 DOI: 10.1002/anie.201800189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Indexed: 11/08/2022]
Abstract
Binding and activation of CO by nitrogenase is a topic of interest because CO is isoelectronic to N2 , the physiological substrate of this enzyme. The catalytic relevance of one- and multi-CO-bound states (the lo-CO and hi-CO states) of V-nitrogenase to C-C coupling and N2 reduction was examined. Enzymatic and spectroscopic studies demonstrate that the multiple CO moieties in the hi-CO state cannot be coupled as they are, suggesting that C-C coupling requires further activation and/or reduction of the bound CO entity. Moreover, these studies reveal an interesting correlation between decreased activity of N2 reduction and increased population of the lo-CO state, pointing to the catalytic relevance of the belt Fe atoms that are bridged by the single CO moiety in the lo-CO state. Together, these results provide a useful framework for gaining insights into the nitrogenase-catalyzed reaction via further exploration of the utility of the lo-CO conformation of V-nitrogenase.
Collapse
Affiliation(s)
- Chi Chung Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Caleb J Hiller
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.,Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| |
Collapse
|
22
|
Abstract
Although the nitrogen-fixing enzyme nitrogenase critically requires both a reductase component (Fe protein) and a catalytic component, considerably more work has focused on the latter species. Properties of the catalytic component, which contains two highly complex metallocofactors and catalyzes the reduction of N2 into ammonia, understandably making it the “star” of nitrogenase. However, as its obligate redox partner, the Fe protein is a workhorse with multiple supporting roles in both cofactor maturation and catalysis. In particular, the nitrogenase Fe protein utilizes nucleotide binding and hydrolysis in concert with electron transfer to accomplish several tasks of critical importance. Aside from the ATP-coupled transfer of electrons to the catalytic component during substrate reduction, the Fe protein also functions in a maturase and insertase capacity to facilitate the biosynthesis of the two-catalytic component metallocofactors: fusion of the [Fe8S7] P-cluster and insertion of Mo and homocitrate to form the matured [(homocitrate)MoFe7S9C] M-cluster. These and key structural-functional relationships of the indispensable Fe protein and its complex with the catalytic component will be covered in this review.
Collapse
|