1
|
Yang L, Hou A, Jiang Q, Cheng M, Liu Y. Methodological Development and Applications of Tryptamine-Ynamide Cyclizations in Synthesizing Core Skeletons of Indole Alkaloids. J Org Chem 2023; 88:11377-11391. [PMID: 37540141 DOI: 10.1021/acs.joc.3c01088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Over the past two decades, synthetic strategies for synthesizing the skeletons of various indole alkaloids based on tryptamine-ynamide have been continuously developed and applied to the total syntheses or formal total syntheses of related molecules. In this synopsis, we summarized the cyclization pathways of tryptamine-ynamide under different catalytic conditions, emphasizing the reaction mechanism and applications in the syntheses of indole alkaloids.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Anbin Hou
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Qing Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
2
|
Zhu J, Li J, Zhang L, Sun S, Yang L, Fu J, Sun H, Cheng M, Lin B, Liu Y. Gold(I)-Catalyzed Substitution-Controlled Syntheses of Spiro[indoline-3,3 '-pyrrolidine] and Spiro[indoline-3,3 '-piperidine] Derivatives. J Org Chem 2023. [PMID: 37449800 DOI: 10.1021/acs.joc.3c00604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Spiro[indoline-3,3'-pyrrolidine] and spiro[indoline-3,3'-piperidine] derivatives were synthesized in a substitution-controlled manner under the catalysis of cationic gold(I) species in the presence of Hantzsch ester (HEH). The optimal reaction condition was determined by screening, and the functional group tolerances of these two pathways were examined by readily synthetic substrates. The endo and exo selectivities of these cyclizations were elucidated by density functional theory calculations, and a plausible mechanism for these transformations was proposed.
Collapse
Affiliation(s)
- Jiang Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiaji Li
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Hanyang Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
3
|
Sun Z, Zhang X, Fu J, Zhang L, Cheng M, Yang L, Liu Y. Collective Syntheses of 8-Oxoprotoberberines via Sequential In(OTf) 3-Catalyzed Cyclization and Pd(OAc) 2-Catalyzed Heck Coupling. J Org Chem 2023. [PMID: 37172220 DOI: 10.1021/acs.joc.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six 8-oxoprotoberberines were synthesized collectively in four steps with acceptable yields (14-19%), of which the products 8-oxopalmatine, 8-oxopseudopalmatine, 8-oxoberberine, and 8-oxopseudoberberine come from nature. The synthetic route was featured with the In(OTf)3-catalyzed cyclization and Heck coupling. Moreover, the syntheses of the natural products berberine, canadine, and iambertine were achieved via various reductions from 8-oxoberberine, which provided a concise approach to the syntheses of this kind of alkaloids.
Collapse
Affiliation(s)
- Zenghui Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
4
|
Sun S, Hao J, Cheng M, Liu Y, Lin B. Computational insight into gold(I)-catalyzed intramolecular regioselectivity of tryptamine-ynamide cycloisomerizations. Org Biomol Chem 2023; 21:2610-2619. [PMID: 36896738 DOI: 10.1039/d3ob00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The regioselectivity for gold(I)-catalyzed intramolecular cycloisomerizations of tryptamine-ynamides has long been elusive despite various synthetic examples of similar substrates being available. Computational studies were carried out to provide insight into the mechanisms and the origin of the substrate-dependent regioselectivity of these transformations. Based on the analyses of non-covalent interactions, distortion/interaction, and energy decomposition on the interactions between the terminal substituent of alkynes and the gold(I) catalytic ligand, the electrostatic effect was determined to be the key factor for α-position selectivity while the dispersion effect was determined to be the key factor for β-position selectivity. Our computational results were consistent with the experimental observations. This study provides useful guidance for understanding other similar gold(I)-catalyzed asymmetric alkyne cyclization reactions.
Collapse
Affiliation(s)
- Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jinle Hao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
5
|
Zhu BH, Ye SB, Nie ML, Xie ZY, Wang YB, Qian PC, Sun Q, Ye LW, Li L. I 2 -Catalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angew Chem Int Ed Engl 2023; 62:e202215616. [PMID: 36573021 DOI: 10.1002/anie.202215616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 12/28/2022]
Abstract
Herein, an I2 -catalyzed unprecedented cycloisomerization of ynamides is developed, furnishing various functionalized bis(indole) derivatives in generally good to excellent yields with wide substrate scope and excellent atom-economy. This protocol not only represents the first molecular-iodine-catalyzed tandem complex alkyne cycloisomerizations, but also constitutes the first chemoselective cycloisomerization of tryptamine-ynamides involving distinctively different C(sp3 )-C(sp3 ) bond cleavage and rearrangement. Moreover, chiral tetrahydropyridine frameworks containing two stereocenters are obtained with moderate to excellent diastereoselectivities and excellent enantioselectivities. Meanwhile, cycloisomerization and aromatization of ynamides produce pyrrolyl indoles with high efficiency enabled by I2 . Additionally, control experiments and theoretical calculations reveal that this reaction probably undergoes a tandem 5-exo-dig cyclization/rearrangement process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Sheng-Bing Ye
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Min-Ling Nie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Zhang ZX, Wang X, Jiang JT, Chen J, Zhu XQ, Ye LW. Brønsted acid-catalyzed asymmetric dearomatization of indolyl ynamides: practical and enantioselective synthesis of polycyclic indolines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Yamaoka Y, Yamasaki D, Kajiwara D, Shinozaki M, Yamada KI, Takasu K. Lewis Acid-Catalyzed Diastereoselective Domino Reaction of Ene-Ynamide with Trimethylsilyl Cyanide to Construct Spiroindolines. Org Lett 2022; 24:4389-4393. [PMID: 35687516 DOI: 10.1021/acs.orglett.2c01607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Zn(OTf)2-catalyzed domino reaction of enamide-ynamides in the presence of trimethylsilyl cyanide as an external nucleophile to construct spirocyclic indolines was developed. This domino reaction involved cyclization of enamide to ynamide to generate 4',5'-dihydrospiro[indoline-3,3'-pyrrol]-1'-ium followed by cyanide addition to produce spiroindolopyrrolidines with good diastereoselectivity.
Collapse
Affiliation(s)
- Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daisuke Yamasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daigo Kajiwara
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiko Shinozaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Yamada
- Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Chen Y, Wang Z, Zhao W, Sun S, Yang L, Zhang J, Zhang D, Cheng M, Lin B, Liu Y. Ag(I)/PPh 3-catalyzed diastereoselective syntheses of spiro[indole-3,4'-piperidine] derivatives via cycloisomerizations of tryptamine-ynamides. Chem Commun (Camb) 2022; 58:3051-3054. [PMID: 35165679 DOI: 10.1039/d1cc07298f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Ag(I)/PPh3-catalyzed chelation-controlled cycloisomerization of tryptamine-ynamide was developed to access the spiro[indole-3,4'-piperidine] scaffold in a racemic and diastereoselective manner. The diastereoselective products were achieved by a chiron approach. Density functional theory (DFT) calculations indicated that strong non-covalent effects between the substrate and catalyst/ligand complex stabilized the spiroindoleninium intermediate via cation-π-π interactions.
Collapse
Affiliation(s)
- Yanyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Zhaobo Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Wutong Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Junpeng Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Di Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
9
|
Shinde MH, Ramana CV. Facile synthesis of the spiro-pyridoindolone scaffold via a gold-catalysed intramolecular alkynol cyclisation/hydroindolylation. Org Biomol Chem 2022; 20:2086-2095. [PMID: 35188513 DOI: 10.1039/d1ob02483c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple approach for the synthesis of pyridoindolone scaffolds with a spiroannulated tetrahydrofuran ring is described. The overall process comprises intramolecular sequential gold-catalysed 5-endo-dig alkynol cycloisomerization and subsequent addition of indole C2 to the in situ generated oxocarbenium cation.
Collapse
Affiliation(s)
- Mahesh H Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Kong X, Zhang Y, Dang L, Chen W, Zhang H. Research Progress in Synthesis of Indole Alkaloids Vindoline and Vindorosine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Lin X, Zhao C, Wang D, Wu G, Chen G, Chen S, Ren H, Deng D, Xu Y, Hu X, Liu Y. BiCl
3
‐Mediated Tandem Cyclization of Tryptamine‐Derived Ynamide: Concise Synthesis of Pentacyclic Spiroindolines and Tricyclic Indole Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiao‐Tong Lin
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Cheng Zhao
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Da‐Ru Wang
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guang‐Cheng Wu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Guo‐Shu Chen
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
| | - Dong‐Sheng Deng
- College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 People's Republic of China
| | - Yi‐Bing Xu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Xiao‐Wei Hu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center Guangzhou 510006 People's Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
12
|
Tang S, Ding S, Li D, Li L, Zhao H, Chai M, Wang J. Palladium-catalysed imidoylative spirocyclization of 3-(2-isocyanoethyl)indoles. Chem Commun (Camb) 2021; 57:10576-10579. [PMID: 34558575 DOI: 10.1039/d1cc03240b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalysed construction of spiroindolines through dearomative spirocyclization of 3-(2-isocyanoethyl)indoles has been developed. 2'-Aryl-, vinyl-, and alkyl-substituted spiroindolines could be accessed under mild conditions with excellent functional group tolerance. C1-tethered oxindole- and indole-spiroindoline bisheterocycles were generated in high yields via alkene/allene insertion and an imidoylative spirocyclization cascade. Additionally, a tandem dearomatization of two different indoles was realized with N-(2-bromobenzoyl)indoles as the electrophilic coupling partner of 3-(2-isocyanoethyl)indoles, affording polyindoline - spiroindoline bisheterocyclic scaffolds conveniently. Under the catalysis of Pd(OAc)2 and a spinol-derived phosphoramidite ligand, chiral spiroindolines were successfully accessed with up to 95% yield and 85% ee.
Collapse
Affiliation(s)
- Shi Tang
- China Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P. R. China
| | - Shumin Ding
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Dan Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Lianjie Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Haixia Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Minxue Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Jian Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
13
|
Zhao S, Sirasani G, Andrade RB. Aspidosperma and Strychnos alkaloids: Chemistry and biology. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:1-143. [PMID: 34565505 DOI: 10.1016/bs.alkal.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Of Nature's nearly 3000 unique monoterpene indole alkaloids derived from tryptophan, those members belonging to the Aspidosperma and Strychnos families continue to impact the fields of natural products (i.e., isolation, structure determination, biosynthesis) and organic chemistry (i.e., chemical synthesis, methodology development) among others. This review covers the biological activity (Section 2), biosynthesis (Section 3), and synthesis of both classical and novel Aspidosperma (Section 4), Strychnos (Section 5), and selected bis-indole (Section 6) alkaloids. Technological advancements in genetic sequencing and bioinformatics have deepened our understanding of how Nature assembles these intriguing molecules. The proliferation of innovative synthetic strategies and tactics for the synthesis of the alkaloids covered in this review, which include contributions from over fifty research groups from around the world, are a testament to the creative power and technical skills of synthetic organic chemists. To be sure, Nature-the Supreme molecular architect and source of a dazzling array of irresistible chemical logic puzzles-continues to inspire scientists across multiple disciplines and will certainly continue to do so for the foreseeable future.
Collapse
Affiliation(s)
- Senzhi Zhao
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| | | | - Rodrigo B Andrade
- Department of Chemistry, Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Bag D, Sawant SD. Heteroarene-tethered Functionalized Alkyne Metamorphosis. Chemistry 2021; 27:1165-1218. [PMID: 32603015 DOI: 10.1002/chem.202002154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Heteroarene-tethered functionalized alkynes are multipotent synthons in organic chemistry. This detailed Review described herein offers a thorough discussion of the metamorphosis of heteroarene-tethered functionalized alkynes, an area which has earned much attention over the past decade in the straightforward synthesis of architecturally complex heterocyclic scaffolds in atom and step economic manner. Depending upon the variety of functionalized alkynes, this Review is divided into multiple sections. Amongst the vast array of synthetic transformations covered, dearomatizing spirocyclizations and cascade spirocyclization/rearrangement are of great interest. Synthetic transformations involving the heteroarene-tethered functionalized alkynes with scope, challenges, limitations, mechanism, their application in the total synthesis of natural products and future perceptions are surveyed.
Collapse
Affiliation(s)
- Debojyoti Bag
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Sanghapal D Sawant
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| |
Collapse
|
16
|
Luna A, Herrera F, Higuera S, Murillo A, Fernández I, Almendros P. AgNO3·SiO2: Convenient AgNPs source for the sustainable hydrofunctionalization of allenyl-indoles using heterogeneous catalysis. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liang G, Pang Y, Ji Y, Zhuang K, Li L, Xie F, Yang L, Cheng M, Lin B, Liu Y. Diastereoselective Syntheses of Spiro[indoline-3,4′-pyridin]-2-yl Carbamates via AgOTf/Ph3P-Catalyzed Tandem Cyclizations of Tryptamine-Ynesulfonamides. J Org Chem 2020; 85:3010-3019. [DOI: 10.1021/acs.joc.9b02839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guoduan Liang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yadong Pang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yanjun Ji
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Kaitong Zhuang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Linji Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
18
|
Chen G, Chen S, Luo J, Mao X, Chan AS, Sun RW, Liu Y. Tandem Cross‐Coupling/Spirocyclization/Mannich‐Type Reactions of 3‐(2‐Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angew Chem Int Ed Engl 2020; 59:614-621. [DOI: 10.1002/anie.201911614] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/05/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Xiang‐Yu Mao
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Albert Sun‐Chi Chan
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| |
Collapse
|
19
|
Chen G, Chen S, Luo J, Mao X, Chan AS, Sun RW, Liu Y. Tandem Cross‐Coupling/Spirocyclization/Mannich‐Type Reactions of 3‐(2‐Isocyanoethyl)indoles with Diazo Compounds toward Polycyclic Spiroindolines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guo‐Shu Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Shu‐Jie Chen
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Jian Luo
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Xiang‐Yu Mao
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| | - Albert Sun‐Chi Chan
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Raymond Wai‐Yin Sun
- Guangzhou Lee & Man Technology Company LimitedRoom 401, Block A 8 Huanshi Avenue South, Nansha Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical EngineeringGuangzhou University 230 Wai Huan Xi Road Guangzhou 510006 China
| |
Collapse
|
20
|
Zaman M, Hasan M, Peshkov AA, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Silver(I) Triflate‐Catalyzed Protocol for the Post‐Ugi Synthesis of Spiroindolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Manzoor Zaman
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Muhammad Hasan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
| | - Anatoly A. Peshkov
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Kristof Van Hecke
- XStruct, Department of ChemistryGhent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Erik V. Van der Eycken
- Laboratory of Organic & Microwave-Assisted Chemistry (LOMAC), Department of ChemistryUniversity of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 Moscow 117198 Russia
| | - Olga P. Pereshivko
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
| | - Vsevolod A. Peshkov
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Dushu Lake Campus Suzhou 215123 People's Republic of China
- Department of Chemistry, School of Science and TechnologyNazarbayev University 53 Kabanbay Batyr Ave, Block 7 Nur-Sultan 010000 Republic of Kazakhstan
- The Environment and Resource Efficiency Cluster (EREC)Nazarbayev University Nur-Sultan Republic of Kazakhstan
| |
Collapse
|
21
|
Liang G, Ji Y, Liu H, Pang Y, Zhou B, Cheng M, Liu Y, Lin B, Liu Y. Silver Triflate/
N
‐Fluorobenzenesulfonimide‐Catalyzed Cycloisomerization of Tryptamine‐Ynamide to Spiro[indoline‐3,4′‐piperidine] Induced by Cation‐π‐π Interactions between Substrate and Metal Ligand. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Guoduan Liang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yanjun Ji
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Hairui Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yadong Pang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Bojun Zhou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of InnovationShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research inMedicine Capital of China Benxi 117000 People's Republic of China
| |
Collapse
|
22
|
Matsuoka J, Kumagai H, Inuki S, Oishi S, Ohno H. Construction of the Pyrrolo[2,3-d]carbazole Core of Spiroindoline Alkaloids by Gold-Catalyzed Cascade Cyclization of Ynamide. J Org Chem 2019; 84:9358-9363. [DOI: 10.1021/acs.joc.9b01149] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kumagai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Saya JM, Ruijter E, Orru RVA. Total Synthesis of
Aspidosperma
and
Strychnos
Alkaloids through Indole Dearomatization. Chemistry 2019; 25:8916-8935. [DOI: 10.1002/chem.201901130] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jordy M. Saya
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Eelco Ruijter
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Romano V. A. Orru
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines & SystemsVrije Universiteit Amsterdam De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
24
|
Pang Y, Liang G, Xie F, Hu H, Du C, Zhang X, Cheng M, Lin B, Liu Y. N-Fluorobenzenesulfonimide as a highly effective Ag(i)-catalyst attenuator for tryptamine-derived ynesulfonamide cycloisomerization. Org Biomol Chem 2019; 17:2247-2257. [DOI: 10.1039/c9ob00059c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
N-Fluorobenzenesulfonimide was identified for the first time as a unique Ag(i)-catalyst attenuator in the annulation of a tryptamine-derived ynesulfonamide to an azepino[4,5-b]indole.
Collapse
Affiliation(s)
- Yadong Pang
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Guoduan Liang
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Haibin Hu
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Chuan Du
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery Shenyang Pharmaceutical University
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| |
Collapse
|
25
|
Liu C, Sun Z, Xie F, Liang G, Yang L, Li Y, Cheng M, Lin B, Liu Y. Gold(i)-catalyzed pathway-switchable tandem cycloisomerizations to indolizino[8,7-b]indole and indolo[2,3-a]quinolizine derivatives. Chem Commun (Camb) 2019; 55:14418-14421. [DOI: 10.1039/c9cc05667j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A common strategy was developed to access both indolizino[8,7-b]indole and indolo[2,3-a]quinolizine derivatives from tryptamine-N-ethynylpropiolamide substrates in a switchable fashion via tuning both the electronic effects and steric effects.
Collapse
Affiliation(s)
- Chengjun Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Wuya College of Innovation
| | - Zenghui Sun
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Wuya College of Innovation
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Wuya College of Innovation
| | - Guoduan Liang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Wuya College of Innovation
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Yaqiao Li
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Institute of Drug Research in Medicine Capital of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University)
- Ministry of Education
- Shenyang 110016
- P. R. China
- Wuya College of Innovation
| |
Collapse
|
26
|
Vanjari R, Dutta S, Gogoi MP, Gandon V, Sahoo AK. Gold-Catalyzed syn-1,2-Difunctionalization of Ynamides via Nitrile Activation. Org Lett 2018; 20:8077-8081. [DOI: 10.1021/acs.orglett.8b03830] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajeshwer Vanjari
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana India-500046
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana India-500046
| | - Manash P. Gogoi
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana India-500046
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Université Paris-Saclay, route de Saclay, 91128 Palaiseau cedex, France
| | - Akhila K. Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana India-500046
| |
Collapse
|
27
|
Wang Y, Xie F, Lin B, Cheng M, Liu Y. Synthetic Approaches to Tetracyclic Indolines as Versatile Building Blocks of Diverse Indole Alkaloids. Chemistry 2018; 24:14302-14315. [DOI: 10.1002/chem.201800775] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/29/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yanshi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery; Ministry of Education; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
- Institute of Drug Research in Medicine Capital of China; Benxi 117000 P. R. China
- Wuya College of Innovation; Shenyang Pharmaceutical University; Shenyang 110016 P. R. China
| |
Collapse
|