1
|
Zatsikha YV, Schrage BR, Blesener TS, Harrison LA, Ziegler CJ, Nemykin VN. Meso
‐Carbon Atom Nucleophilic Attack Susceptibility in the Sterically Strained Antiaromatic Bis‐BODIPY Macrocycle and Extended Electron‐Deficient BODIPY Precursor**. Chemistry 2022; 28:e202201261. [DOI: 10.1002/chem.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Enamine Ltd Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Briana R. Schrage
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Tanner S. Blesener
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Laurel A. Harrison
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | | | - Victor N. Nemykin
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| |
Collapse
|
2
|
Chen H, Shi X, Lun Y, Xu Y, Lu T, Duan Z, Shao M, Sessler JL, Yu H, Lei C. 3,6-Carbazoylene Octaphyrin (1.0.0.0.1.0.0.0) and Its Bis-BF 2 Complex. J Am Chem Soc 2022; 144:8194-8203. [PMID: 35482960 DOI: 10.1021/jacs.2c01240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3,6-Carbazole precursors were used to prepare an octaphyrin. The conformation and electronic structure of the system could be modulated through trifluoroacetate (TFA) protonation and BF2 complexation. The resulting nonaromatic macrocyclic complexes, 2-2TFA and 2-2BF2, displayed noteworthy photophysical properties. For instance, the diprotonated species 2-2TFA showed a strong panchromic absorption up to 800 nm, while the bis-BF2-chelated dipyrromethene (BODIPY)-like complex 2-2BF2 exhibited an intense visible absorption feature (ε535nm = 2.1 × 105 M-1 cm-1), as well as a relatively red-shifted emission at 640 nm characterized by a large Stokes shift. It was found that 2-2BF2 could be used to construct a high-quality organic microlaser that functions under optical pumping. The present study highlights the potential utility of expanded porphyrins as possible laser dyes.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.,Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Xusheng Shi
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yipeng Lun
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Yan Xu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Tian Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, P. R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| | - Min Shao
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai University, Shanghai 200444, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Huakang Yu
- State Key Laboratory of Luminescent Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China.,China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, P. R. China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Jethava KP, Prakash P, Manchanda P, Arora H, Chopra G. One Scaffold, Different Organelle Sensors: pH-Activable Fluorescent Probes for Targeting Live Microglial Cell Organelles. Chembiochem 2022; 23:e202100378. [PMID: 34585478 PMCID: PMC9835645 DOI: 10.1002/cbic.202100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Indexed: 01/14/2023]
Abstract
Targeting live cell organelles is essential for imaging, understanding, and controlling specific biochemical processes. Typically, fluorescent probes with distinct structural scaffolds are used to target specific cell organelles. Here, we have designed a modular one-step synthetic strategy using a common reaction intermediate to develop new lysosomal, mitochondrial, and nucleus-targeting pH-activable fluorescent probes that are all based on a single boron dipyrromethane scaffold. The divergent cell organelle targeting was achieved by synthesizing probes with specific functional group changes to the central scaffold resulting in differential fluorescence and pKa . Specifically, we show that the functional group transformation of the same scaffold influences cellular localization and specificity of pH-activable fluorescent probes in live primary microglial cells with pKa values ranging from ∼3.2-6.0. We introduce a structure-organelle-relationship (SOR) framework to target nuclei (NucShine), lysosomes (LysoShine), and mitochondria (MitoShine) in live microglia. This work will result in future applications of SOR beyond imaging to target and control organelle-specific biochemical processes in disease-specific models.
Collapse
Affiliation(s)
- Krupal P. Jethava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Priya Prakash
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Harshit Arora
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA)
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 (USA),Purdue University, Purdue Institute for Drug Discovery, West Lafayette, IN 47907 (USA),Purdue University, Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907 (USA),Purdue University, Purdue Institute for Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907 (USA),Purdue University, Purdue Center for Cancer Research, West Lafayette, IN 47907 (USA),Purdue University, Integrative Data Science Initiative, West Lafayette, IN 47907 (USA)
| |
Collapse
|
4
|
Gong Q, Cheng K, Wu Q, Li W, Yu C, Jiao L, Hao E. One-Pot Access to Ethylene-Bridged BODIPY Dimers and Trimers through Single-Electron Transfer Chemistry. J Org Chem 2021; 86:15761-15767. [PMID: 34590860 DOI: 10.1021/acs.joc.1c01824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Cu(I)-promoted oxidative dimerization of BODIPY dyes was developed to give a series of α,α- ethylene-bridged BODIPY dimers and trimers for the first time. This methodology does not need harsh conditions but relies on the singlet-electron-transfer process between alkylated BODIPYs and Cu(I) salt to generate BODIPY-based radical species, which undergo a selective radical homocoupling reaction. Moreover, these resultant dimers and trimers showed high attenuation coefficients, small line widths of the absorption and emission, and intense fluorescence.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Kai Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
5
|
Kalaiselvan A, Dhamija S, Aswathi C, De AK, Gokulnath S. Planar hexaphyrin-like macrocycles turning into bis-BODIPYs with box-shaped structures exhibiting excitonic coupling. Chem Commun (Camb) 2021; 57:11485-11488. [PMID: 34651622 DOI: 10.1039/d1cc04403f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Planar carbazole based hexaphyrin-like macrocycles with bis-coordinating cores and box-shaped cyclic BODIPYs were synthesized. Solution and solid-state structure analysis of the free macrocycles indicates an inversion of two pyrrole rings, resulting in a two-dipyrrin-like environment. The BF2 complexes show large Stokes shifts and exhibit excitonic coupling, fine-tuned by the meso-substituents.
Collapse
Affiliation(s)
- Arumugam Kalaiselvan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Shaina Dhamija
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab-140306, India.
| | - Chakrapani Aswathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| | - Arijit K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab-140306, India.
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram-695551, Maruthamala P.O., Vithura, Kerala, India.
| |
Collapse
|
6
|
Nabeshima T, Chiba Y, Nakamura T, Matsuoka R. Synthesis and Functions of Oligomeric and Multidentate Dipyrrin Derivatives and their Complexes. Synlett 2020. [DOI: 10.1055/s-0040-1707155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The dipyrrin–metal complexes and especially the boron complex 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) have recently attracted considerable attention because of their interesting properties and possible applications. We have developed two unique and useful ways to extend versatility and usefulness of the dipyrrin complexes. The first one is the linear and macrocyclic oligomerization of the BODIPY units. These arrangements of the B–F moieties of the oligomerized BODIPY units provide sophisticated functions, such as unique recognition ability toward cationic guest, associated with changes in the photophysical properties by utilizing unprecedented interactions between the B–F and a cationic species. The second one is introduction of additional ligating moieties into the dipyrrin skeleton. The multidentate N2Ox dipyrrin ligands thus obtained form a variety of complexes with 13 and 14 group elements, which are difficult to synthesize using the original N2 dipyrrin derivatives. Interestingly, these unique complexes exhibit novel structures, properties, and functions such as guest recognition, stimuli-responsive structural conversion, switching of the optical properties, excellent stability of the neutral radicals, etc. We believe that these multifunctional dipyrrin complexes will advance the basic chemistry of the dipyrrin complexes and develop their applications in the materials and medicinal chemistry fields.1 Introduction2 Linear Oligomers of Boron–Dipyrrin Complexes3 Cyclic Oligomers of Boron–Dipyrrin Complexes4 A Cyclic Oligomer of Zinc–Dipyrrin Complexes5 Group 13 Element Complexes of N2Ox Dipyrrins6 Chiral N2 and N2Ox Dipyrrin Complexes7 Group 14 Element Complexes of N2O2 Dipyrrins8 Other N2O2 Dipyrrin Complexes with Unique Properties and Functions9 Conclusion
Collapse
|
7
|
Abstract
During the past few years, the construction of BODIPY-based macrocycles has attracted extensive interest due to the widespread applications of these materials in sensing, bioimaging, molecular machines, and photodynamic therapy (PDT). Since significant progress has been made in this field, it is time to summarize the recent developments involving BODIPY-based macrocycles. In this review, we will briefly introduce the synthesis routes of BODIPY-based macrocycles, including a covalent synthetic protocol and a noncovalent self-assembly protocol. In addition, we will discuss the photophysical and photochemical properties and the applications of these BODIPY-based macrocycles in the areas of sensing, bioimaging, photodynamic therapy, etc.
Collapse
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Xi Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Pei-Pei Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
8
|
Macrocyclic Arenes Functionalized with BODIPY: Rising Stars among Chemosensors and Smart Materials. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8030051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrocycles play a crucial role in supramolecular chemistry and the family of macrocyclic arenes represents one of the most important types of hosts. Among them, calixarenes, resorcinarenes and pillararenes are the most commonly encountered macrocyclic arenes, and they have received considerable attention. Boron-dipyrromethene (BODIPY) dyes are fascinating compounds with multiple functionalization sites and outstanding luminescence properties including high fluorescence quantum yields, large molar absorption coefficients and remarkable photo- and chemical stability. The combination of macrocyclic arenes and BODIPY dyes has been demonstrated to be an effective strategy to construct chemosensors for various guests and smart materials with tailored properties. Herein, we firstly summarize the recent advances made so far in macrocyclic arenes substituted with BODIPY. This review only focuses on the three macrocyclic arenes of calixarenes, resorcinarenes and pillararenes, as there are no other macrocyclic arenes substituted BODIPY units at the present time. Hopefully, this review will not only afford a guide and useful information for those who are interested in developing novel chemosensors and smart materials, but also inspire new opportunities in this field.
Collapse
|
9
|
Kim T, Duan Z, Talukdar S, Lei C, Kim D, Sessler JL, Sarma T. Excitonically Coupled Cyclic BF
2
Arrays of Calix[8]‐ and Calix[16]phyrin as Near‐IR‐Chromophores. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
| | - Sangita Talukdar
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
- Department of Physics College of Science Shanghai University 99 Shang-Da Road Shanghai 200444 P. R. China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Jonathan L. Sessler
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
- Department of Chemistry The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin TX 78712-1224 USA
| | - Tridib Sarma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
- School of Materials Science and Engineering Shanghai University Shanghai 200444 China
- Department of Chemistry The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin TX 78712-1224 USA
| |
Collapse
|
10
|
Excitonically Coupled Cyclic BF
2
Arrays of Calix[8]‐ and Calix[16]phyrin as Near‐IR‐Chromophores. Angew Chem Int Ed Engl 2020; 59:13063-13070. [DOI: 10.1002/anie.202004867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 01/23/2023]
|
11
|
Chan JYM, Kawata T, Kobayashi N, Ng DKP. Boron(III) Carbazosubphthalocyanines: Core-Expanded Antiaromatic Boron(III) Subphthalocyanine Analogues. Angew Chem Int Ed Engl 2019; 58:2272-2277. [PMID: 30600889 DOI: 10.1002/anie.201811420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/07/2018] [Indexed: 11/08/2022]
Abstract
Condensation of 1,8-diamino-3,6-dichlorocarbazole with a series of disubstituted 1,3-diiminoisoindolines, followed by treatment with BF3 ⋅OEt2 led to the formation of the corresponding core-expanded boron(III) subphthalocyanine analogues. These air-stable π-conjugated boron(III) carbazosubphthalocyanines possess two boron-containing seven-membered-ring units and a 16 π-electron skeleton, and represent the first examples of antiaromatic boron(III) subphthalocyanine analogues as supported by spectroscopic and theoretical studies. The molecular structure of one of these compounds was unambiguously determined by single-crystal X-ray diffraction analysis. In contrast to typical boron(III) subphthalocyanines, which adopt a cone-shaped structure, the π skeleton of this compound is almost planar.
Collapse
Affiliation(s)
- Joseph Y M Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Takahiro Kawata
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Nagao Kobayashi
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
12
|
Chan JYM, Kawata T, Kobayashi N, Ng DKP. Boron(III) Carbazosubphthalocyanines: Core-Expanded Antiaromatic Boron(III) Subphthalocyanine Analogues. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joseph Y. M. Chan
- Department of Chemistry; The Chinese University of Hong Kong; Shatin, N.T. Hong Kong China
| | - Takahiro Kawata
- Department of Chemistry and Materials; Faculty of Textile Science and Technology; Shinshu University; Ueda 386-8567 Japan
| | - Nagao Kobayashi
- Department of Chemistry and Materials; Faculty of Textile Science and Technology; Shinshu University; Ueda 386-8567 Japan
| | - Dennis K. P. Ng
- Department of Chemistry; The Chinese University of Hong Kong; Shatin, N.T. Hong Kong China
| |
Collapse
|
13
|
Didukh NO, Yakubovskyi VP, Zatsikha YV, Rohde GT, Nemykin VN, Kovtun YP. Flexible BODIPY Platform That Offers an Unexpected Regioselective Heterocyclization Reaction toward Preparation of 2-Pyridone[a]-Fused BODIPYs. J Org Chem 2019; 84:2133-2147. [DOI: 10.1021/acs.joc.8b03119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Natalia O. Didukh
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Viktor P. Yakubovskyi
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| | - Yuriy V. Zatsikha
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Victor N. Nemykin
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska str., 02660 Kyiv, Ukraine
| |
Collapse
|
14
|
Zhang Y, Song N, Li Y, Yang Z, Chen L, Sun T, Xie Z. Comparative study of two near-infrared coumarin–BODIPY dyes for bioimaging and photothermal therapy of cancer. J Mater Chem B 2019; 7:4717-4724. [DOI: 10.1039/c9tb01165j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, two novel NIR coumarin BODIPYs with different conjugation degrees were comparatively investigated for photothermal therapy and fluorescence bioimaging.
Collapse
Affiliation(s)
- Yuandong Zhang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Nan Song
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Yuanyuan Li
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhiyu Yang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|